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overview paper

A review of blind source separation methods:
two converging routes to ILRMA originating
from ICA and NMF

hiroshi sawada1, nobutaka ono2, hirokazu kameoka1, daichi kitamura3 and
hiroshi saruwatari4

This paper describes several important methods for the blind source separation of audio signals in an integrated manner. Two
historically developed routes are featured. One started from independent component analysis and evolved to independent vector
analysis (IVA) by extending the notion of independence from a scalar to a vector. In the other route, nonnegative matrix fac-
torization (NMF) has been extended to multichannel NMF (MNMF). As a convergence point of these two routes, independent
low-rank matrix analysis has been proposed, which integrates IVA and MNMF in a clever way. All the objective functions in
these methods are efficiently optimized by majorization-minimization algorithms with appropriately designed auxiliary func-
tions. Experimental results for a simple two-source two-microphone case are given to illustrate the characteristics of these five
methods.
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I . I NTRODUCT ION

The technique of blind source separation (BSS) has been
studied for decades [1–5], and the research is still in
progress. The term “blind” refers to the situation that the
source activities and the mixing system information are
unknown. There are many diverse purposes for developing
this technology even if audio signals are focused on, such
as (1) implementing the cocktail party effect as an artificial
intelligence, (2) extracting the target speech in a noisy envi-
ronment for better speech recognition results, (3) separating
eachmusical instrumental part of an orchestra performance
for music analysis.

Various signal processing and machine learning meth-
ods have been proposed for BSS. They can be classified
using two axes (Fig. 1). The horizontal axis relates to the
number M of microphones used to observe sound mix-
tures. The most critical distinction is whether M = 1 or
M ≥ 2, i.e., a single-channel ormultichannel case. In amul-
tichannel case, the spatial information of a source signal
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(e.g., source position) can be utilized as an important cue
for separation. The second critical distinction is whether
the number M of microphones is greater than or equal to
the number N of source signals. In determined (N = M)
and overdetermined (N < M) cases, the separation can be
achieved using linear filters. For underdetermined (N > M)
cases, one popular approach is based on clustering, such
as by the Gaussian mixture model (GMM), followed by
time-frequency masking [6–12]. The vertical axis indicates
whether training data are utilized or not. If so, the charac-
teristics of speech and audio signals can be learned before-
hand. The learned knowledge helps to optimize the sep-
aration system, especially for single-channel cases where
no spatial cues can be utilized. Recently, many methods
based ondeep neural networks (DNNs) have been proposed
[13–21].

Among the various methods shown in Fig. 1, this paper
discusses the methods in blue. The motivation for select-
ing these methods is twofold: (1) As shown in Fig. 2, two
originally differentmethods, independent component anal-
ysis (ICA) [3, 4, 22–29] and nonnegative matrix factoriza-
tion (NMF) [30–36], have historically been extended to
independent vector analysis (IVA) [37–46] and multichan-
nel NMF [47–54], respectively, which have recently been
unified as independent low-rank matrix analysis (ILRMA)
[55–60]. (2) The objective functions used in these methods
can effectively beminimized bymajorization-minimization
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Fig. 1. Various methods for blind audio source separation. Methods in blue are
discussed in this paper in an integrated manner.

Fig. 2. Historical development of BSS methods.

algorithms with appropriately designed auxiliary functions
[36, 61–68].With regard to these two aspects, all the selected
methods are related and worth explaining in a single review
paper.

Although the mixing situation is unknown in the BSS
problem, the mixing model is described as follows. Let
s1, . . . , sN be N original sources and x1, . . . , xM be M mix-
tures at microphones. Let hmn denote the transfer character-
istic from source sn to mixture xm. When hmn is described
by a scalar, the problem is called instantaneous BSS and the
mixtures are modeled as

xm(t) =
N∑
n=1

hmnsn(t), m = 1, . . . ,M, (1)

where t represents time. When hmn is described by an
impulse response of L samples that represents the delay
and reverberations in a real-room situation, the problem is
called convolutive BSS and the mixtures are modeled as

xm(t) =
N∑
n=1

L−1∑
τ=0

hmn(τ )sn(t − τ), m = 1, . . . ,M. (2)

To cope with a real-room situation, we need to solve the
convolutive BSS problem.

Although there have been proposed time-domain
approaches [69–75] to the convolutive BSS problem, a
more suitable approach for combining ICA and NMF is
a frequency-domain approach [76–85], where we apply

Table 1. Notations.

i Frequency bin index
j Time frame index
m Microphone index
n Source index
I Number of frequency bins
J Number of time frames
M Number of microphones
N Number of sources
x Mixtures/observations

x Scalar
x Vector
X Matrix
X Hermitian positive semidefinite matrix
X Tensor

y Source estimates
W Separation system
T Basis spectrum
V Time-varying magnitudes
H Spatial properties, mixing matrices
U Weighted covariance matrix

Fig. 3. Tensor and sliced matrices.

a short-time Fourier transformation (STFT) to the time-
domain mixtures (2). Using a sufficiently long STFT win-
dow to cover the main part of the impulse responses, the
convolutivemixingmodel (2) can be approximated with the
instantaneous mixing model

xij,m =
N∑
n=1

hi,mnsij,n, m = 1, . . . ,M (3)

in each frequency bin i, with time frame j representing the
position index of each STFT window. Table 1 summarizes
the notations used in this paper.

The data structure that we deal with is a complex-valued
tensor with three axes, frequency i, time j, and channel
(mixture m or source n), as shown on the left-hand side of
Fig. 3. Until IVA was invented in 2006, there had been no
clear way to handle the tensor in a unified manner. A prac-
tical way was to slice the tensor into frequency-dependent
matrices with time and channel axes, and apply ICA to the
matrices. Another historical path is from NMF, applied to a
matrixwith time and frequency axes, tomultichannelNMF.
These two historical paths merged with the invention of
ILRMA, as shown in Figs 2 and 3.

The rest of the paper is organized as follows. In Section II,
we introduce probabilistic models for all the above meth-
ods and define corresponding objective functions. In
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Section III, we explain how to optimize the objective func-
tions based on majorization-minimization by designing
auxiliary functions. Section IV shows illustrative experi-
mental results to provide an intuitive understanding of the
characteristics of all thesemethods. SectionV concludes the
paper.

I I . MODELS

A) ICA and IVA
In this subsection, we assume determined (N = M) cases
for the application of ICA and IVA. For overdetermined
(N < M) cases, we typically apply a dimension reduction
method such as principal component analysis to the micro-
phone observations as a preprocessing [86, 87].

1) ICA
Let the sliced matrix depicted in the upper right of Fig. 3
be Xi = {xij}Jj=1 with xij = [xij,1, . . . , xij,M]T . ICA calculates
an M-dimensional square separation matrix Wi that lin-
early transforms the mixtures xij to source estimates yij =
[yij,1, . . . , yij,N]T by

yij =Wi xij. (4)

The separation matrixWi can be optimized in a maximum
likelihood sense [26]. We assume that the likelihood ofWi
is decomposed into time samples

p(Xi|Wi) =
J∏

j=1
p(xij|Wi). (5)

The complex-valued linear operation (4) transforms the
density as

p(xij|Wi) = | detWi|2 p(yij). (6)

We assume that the source estimates are independent of
each other,

p(yij) =
N∏
n=1

p(yij,n). (7)

Putting (5)–(7) together, the negative log-likelihood
C(Wi) = − log p(Xi|Wi), as the objective function to be
minimized, is given by

C(Wi) =
J∑

j=1

N∑
n=1

G(yij,n)− 2J log | detWi|, (8)

where G(yij,n) = − log p(yij,n) is called a contrast function.
In speech/audio applications, a typical choice for the density
function is the super-Gaussian distribution

p(yij,n) ∝ exp

(
−
√|yij,n|2 + α

β

)
, (9)

with nonnegative parametersα and β . How tominimize the
objective function (8) will be explained in Section III.

By applying ICA to the every sliced matrix, we have
N source estimates for every frequency bin. However, the
order of the N source estimates in each frequency bin is
arbitrary, and therefore we have the so-called permutation
problem. One approach to this problem is to align the per-
mutations in a post-processing [11, 88]. This paper focuses
on tensor methods (IVA and ILRMA) as another approach
that automatically solves the permutation problem.

2) IVA
Figure 4 shows the difference between ICA and IVA. In ICA,
we assume the independence of scalar variables, e.g., yij,1
and yij,2. In IVA, the notion of independence is extended to
vector variables. Let us define a vector of source estimates
spanning all frequency bins as yj,n = [y1j,n, . . . , yIj,n]T. The
independence among source estimate vectors is expressed
as

p({yj,n}Nn=1) =
N∏
n=1

p(yj,n). (10)

We now focus on the left-hand side of Fig. 3. The mixture is
denoted by two types of vectors. The first one is channel-
wise xij = [xij,1, . . . , xij,M]T. The second one is frequency-
wise xj,m = [x1j,m, . . . , xIj,m]T. The source estimates are cal-
culated by (4) using the first type for all frequency bins i =
1, . . . , I. A density transformation similar to (6) is expressed
using the second type as follows:

p({xj,m}Mm=1|W) = p({yj,n}Nn=1)
I∏

i=1
| detWi|2, (11)

with W = {Wi}Ii=1 being the set of separation matrices of
all frequency bins. Similarly to (5), the likelihood of W is
decomposed into time samples as

p(X |W) =
J∏

j=1
p({xj,m}Mm=1|W), (12)

where X = {{xj,m}Mm=1}Jj=1. Putting (10)–(12), together, the
objective function, i.e., the negative log-likelihood,
C(W) = − log p(X |W) is given as

C(W) =
J∑

j=1

N∑
n=1

G(yj,n)− 2J
I∑

i=1
log | detWi|, (13)

where G(yj,n) = − log p(yj,n) is again a contrast function. A
typical choice for the density function is the spherical super-
Gaussian distribution

p(yj,n) ∝ exp

⎛
⎝−

√∑I
i=1 |yij,n|2 + α

β

⎞
⎠ , (14)

with nonnegative parametersα and β . How tominimize the
objective function (13) will be explained in Section III.

Comparing (9) and (14), we see that there are frequency
dependences in the IVA cases. These dependences con-
tribute to solving the permutation problem.
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Fig. 4. Independence in ICA and IVA.

B) NMF and MNMF
Generally, NMF objective functions are defined as the dis-
tances or divergences between an observed matrix and
a low-rank matrix. Popular distance/divergence measures
are the Euclidean distance [31], the generalized Kullback–
Leibler (KL) divergence [31], and the Itakura–Saito (IS)
divergence [33]. In this paper, aiming to clarify the connec-
tion of NMF to IVA and ILRMA, we discuss NMF with the
IS divergence (IS-NMF).

1) NMF
Let the sliced matrix depicted in the lower right of Fig. 3 be
X, [X]ij = xij. Microphone indexm is omitted here for sim-
plicity. The nonnegative values considered in IS-NMF are
the power spectrograms |xij|2, and they are approximated
with the rank K structure

|xij|2 ≈
K∑
k=1

tikvkj = x̂ij, (15)

with nonnegativematricesT, [T]ik = tik, andV, [V]kj = vkj,
for i = 1, . . . , I and j = 1, . . . , J. In a matrix notation, we
have

X = TV, (16)

as a matrix factorization form. Figure 5 shows that a spec-
trogram can be modeled with this NMF model.

The objective function of IS-NMF can be derived in a
maximum-likelihood sense. We assume that the likelihood
of T and V for X is decomposed into matrix elements

p(X|T,V) =
I∏

i=1

J∏
j=1

p(xij|x̂ij), (17)

and each element xij follows a zero-mean complex Gaussian
distribution with variance x̂ij defined in (15),

p(xij|x̂ij) ∝ 1
x̂ij

exp
(
−|xij|

2

x̂ij

)
. (18)

Fig. 5. NMF as spectrogram model fitting.

Then, the objective function C(T,V) = − log p(X|T,V) is
simply given as

C(T,V) =
I∑

i=1

J∑
j=1

[ |xij|2
x̂ij
+ log x̂ij

]
. (19)

The IS divergence between |xij|2 and x̂ij is defined as [33]

dIS(|xij|2, x̂ij) =
|xij|2
x̂ij
− log

|xij|2
x̂ij
− 1, (20)

and is equivalent to the ij-element of the objective function
(19) up to a constant term. How to minimize the objective
function (19) will be explained in Section III.

2) MNMF
We now return to the left-hand side of Fig. 3 from the
lower-right corner, and the scalar xij,m is extended to the
channel-wise vector xij = [xij,1, . . . , xij,M]T. The power spec-
trograms |xij|2 considered in NMF are now extended to the
outer product of the channel vector

Xij = xijxH
ij =

⎡
⎢⎣
|xij,1|2 . . . xij,1x∗ij,M
...

. . .
...

xij,Mx∗ij,1 . . . |xij,M|2

⎤
⎥⎦ . (21)

To build amultichannelNMFmodel, let us introduce aHer-
mitian positive semidefinite matrix Hik that is the same size
as Xij and models the spatial property [48, 49, 84, 85] of
the kth NMF basis in the ith frequency bin. Then, the outer
products are approximated with a rank-K structure similar
to (15),

Xij ≈
K∑
k=1

Hiktikvkj = X̂ij. (22)

The objective function of MNMF can basically be
defined as the total sum

∑I
i=1
∑J

j=1 dIS(Xij, X̂ij) of themulti-
channel IS divergence (see [49] for the definition) between
Xij and X̂ij, and can also be derived in a maximum-
likelihood sense. LetH be an I × K hierarchicalmatrix such
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that [H]ik = Hik.We assume that the likelihood ofT,V, and
H for X = {{xij}Ii=1}Jj=1 is decomposed as

p(X |T,V,H) =
I∏

i=1

J∏
j=1

p(xij|X̂ij), (23)

and that each vector xij follows a zero-mean multivariate
complex Gaussian distribution with the covariance matrix
X̂ij defined in (22),

p(xij|X̂ij) ∝ 1

det X̂ij
exp

(
−xH

ij X̂
−1
ij xij

)
. (24)

Then, similar to (19), the objective function C(T,V,H) =
− log p(X |T,V,H) is given as

C(T,V,H) =
I∑

i=1

J∑
j=1

[
xH
ij X̂
−1
ij xij + log det X̂ij

]
. (25)

How to minimize the objective function (25) will be
explained in Section III.

The spatial properties Hik learned by the model (22)
can be used as spatial cues for clustering NMF bases. In
particular, the argument arg([Hik]mm′) of an off-diagonal
element m �= m′ represents the phase difference between
the twomicrophonesm andm′. The left plot of Fig. 6 follows
model (22) with k = 1, . . . , 10. The 10 bases can be clus-
tered into two sources based on their arguments as a post-
processing. However, a more elegant way is to introduce
the cluster-assignment variable [89] zkn ≥ 0,

∑N
n=1 zkn =

1, k = 1, . . . ,K, n = 1, . . . ,N, and the source-wise spatial
property Hin, and express the basis-wise property as Hik =∑N

n=1 zknHin. As a result, the model (22) and the objective
function (25) respectively become

X̂ij =
K∑
k=1

N∑
n=1

zknHintikvkj, (26)

C(T,V,H,Z) =
I∑

i=1

J∑
j=1

[
xH
ij X̂
−1
ij xij + log det X̂ij,

]
(27)

with [Z]kn = zkn and the size of H being I × N. The mid-
dle plot of Fig. 6 shows the result following the model (26).
We see that source-wise spatial properties are successfully
learned. The objective function (27) can be minimized in a
similar manner to (25).

C) ILRMA
ILRMA can be explained in two ways, as there are two paths
in Fig. 2.

1) Extending IVA with NMF
The first way is to extend IVA by introducing NMF for
source estimates, as illustrated in Fig. 7, with the aim of

Fig. 6. Example of MNMF-learned spatial property. The left and middle
plots show the learned complex arguments arg([Hik]12), k = 1, . . . , 10, and
arg([Hin]12), n = 1, 2, respectively. The right figure illustrates the corresponding
two-source two-microphone situation.

Fig. 7. ILRMA: unified method of IVA and NMF.

developing more precise spectral models. Let the objective
function (13) of IVA be rewritten as

C(W) =
N∑
n=1

G(Yn)− 2J
I∑

i=1
log | detWi| (28)

with Yn being an I × J matrix, [Yn]ij = yij,n. Then, let us
introduce the NMF model for Yn as

p(Yn|Tn,Vn) =
I∏

i=1

J∏
j=1

p(yij,n|ŷij,n) (29)

p(yij,n|ŷij,n) ∝ 1
ŷij,n

exp
(
−|yij,n|

2

ŷij,n

)
(30)

ŷij,n =
K∑
k=1

tik,nvkj,n (31)

with [Tn]ik = tik,n and [Vn]kj = vkj,n. The objective function
is then

C(W , {Tn}Nn=1, {Vn}Nn=1) =
N∑
n=1

I∑
i=1

J∑
j=1

[ |yij,n|2
ŷij,n

+ log ŷij,n
]

− 2J
I∑

i=1
log | detWi|. (32)

2) Restricting MNMF
The second way is to restrict MNMF in the following
manner for computational efficiency. Let the spatial prop-
erty matrix Hin be restricted to rank-1 Hin = hinhH

in with
hin = [hi1n, . . . , hiMn]T. Then, theMNMFmodel (26) can be
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simplified as

X̂ij = HiDijHH
i (33)

with Hi = [hi1, . . . , hiN] and an N × N diagonal matrix Dij
whose nth diagonal element is

ŷij,n =
K∑
k=1

zkntikvkj. (34)

We further restrict themixing system to be determined, i.e.,
N = M, enabling us to convert the mixing matrixHi to the
separation matrix Wi by Hi =W−1i . Substituting (33) into
(27), we have

C(W ,T,V,Z) =
I∑

i=1

J∑
j=1

N∑
n=1

[ |yij,n|2
ŷij,n

+ log ŷij,n
]

− 2J
I∑

i=1
log | detWi|. (35)

3) Difference between two models
The two ILRMA objective functions (32) and (35) are dif-
ferent in the models (31) and (34) of the source estimates.
In (31), the NMF bases are not shared among the source
estimates n through the optimization process. In (34), the
NMF bases are shared at the beginning of the optimization
in accordance with randomly generated cluster-assignment
variables 0 ≤ zkn ≤ 1, and assigned dynamically to the
source estimates by optimizing the variable zkn.

How to optimize the objective functions (32) and (35) will
be explained in the next section.

I I I . OPT IM IZAT ION

The objective functions (8), (13), (19), (25), (27), (32), and
(35) can be optimized in various ways. Regarding ICA (8),
for instance, gradient descent [23], natural gradient [24],
FastICA [27, 90], and auxiliary function-based optimiza-
tion (AuxICA) [29], to name a few, have been proposed as
optimization methods. This paper focuses on an auxiliary
function approach because all the above objective functions
can efficiently be optimized by updates derived from this
approach.

A) Auxiliary function approach
This subsection explains the general framework of the
approach known as the majorization-minimization algori-
thm [61–63]. Let θ be a set of objective variables, e.g., θ =
{T,V} in the case of NMF (19). For an objective function
C(θ), an auxiliary function C+(θ , θ̃ ) with a set of auxiliary
variables θ̃ satisfies the following two conditions.

• The auxiliary function is greater or equal to the objective
function

C+(θ , θ̃ ) ≥ C(θ). (36)

Fig. 8. Majorization-minimization: minimizing the auxiliary function indi-
rectly minimizes the objective function.

• When minimized with respect to the auxiliary variables,
both functions become the same,

minθ̃ C+(θ , θ̃ ) = C(θ). (37)

With these conditions, one can indirectly minimize the
objective function C(θ) by minimizing the auxiliary func-
tion C+(θ , θ̃ ) through the iteration of the following
updates:

(i) the update of auxiliary variables

θ̃ (�)← argminθ̃ C+(θ (�−1), θ̃ ), (38)

(ii) the update of objective variables

θ(�)← argminθ C+(θ , θ̃ (�)), (39)

as illustrated in Fig. 8. The superscript ·(�) indicates that
the update is in the �th iteration, starting from the initial
sets θ(0) and θ̃ (0) of variables (randomly initialized in most
cases).

A typical situation in which this approach is taken is
that the objective function is complicated and not easy to
directly minimize but an auxiliary function can be defined
in a way that it is easy to minimize.

In the next three subsections, we explain how to min-
imize the objective functions introduced in Section II.
The order is NMF/MNMF, IVA/ICA, and ILRMA, which
is different from that of Section II. The reason why the
NMF/MNMF case comes first is that the derivation is sim-
pler than the IVA/ICA case and directly by the auxiliary
function approach.

B) NMF and MNMF
1) NMF
For the objective function (19) with x̂ij defined in (15), we
employ the auxiliary function

C+(T,V,R,Q)

=
I∑

i=1

J∑
j=1

[ K∑
k=1

r2ij,k|xij|2
tikvkj

+ x̂ij
qij
+ log qij − 1

]
, (40)

with auxiliary variablesR, [R]ij,k = rij,k, andQ, [Q]ij = qij,
that satisfy rij,k ≥ 0,

∑K
k=1 rij,k = 1 and qij > 0. The auxiliary
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function C+ satisfies conditions (36) and (37) because the
following two equations hold. The first one,

1
x̂ij
= 1∑K

k=1 tikvkj
≤

K∑
k=1

r2ij,k
tikvkj

, (41)

originates from the fact that a reciprocal function is convex
and therefore satisfies Jensen’s inequality. The equality holds
when rij,k = (tikvkj)/(x̂ij). The second one,

log x̂ij ≤ log qij +
x̂ij − qij

qij
, (42)

is derived by the Taylor expansion of the logarithmic func-
tion. The equality holds when qij = x̂ij.

The update (38) of the auxiliary variables is directly
derived from the above equality conditions,

rij,k←
tikvkj
x̂ij

, ∀i, j, k and qij← x̂ij, ∀i, j. (43)

The update (39) of the objective variables is derived by let-
ting the partial derivatives ofC+with respect to the variables
T and V be zero,

t2ik←
∑J

j=1(r
2
ij,k|xij|2)/(vkj)∑J

j=1(vkj)/(qij)
and

v2kj←
∑I

i=1(r
2
ij,k|xij|2)/(tik)∑I

i=1(tik)/(qij)
. (44)

Substituting (43) into (44) and simplifying the resulting
expressions, we have well-known multiplicative update
rules

tik← tik

√√√√∑J
j=1((vkj)/(x̂ij))(|xij|2)/(x̂ij)∑J

j=1(vkj)/(x̂ij)

vkj← vkj

√√√√∑I
i=1((tik)/(x̂ij))(|xij|2)/(x̂ij)∑I

i=1(tik)/(x̂ij)
,

(45)

for minimizing the IS-NMF objective function (19).

2) MNMF
The derivation of the NMF update rules can be extended to
MNMF. Let us first introduce auxiliary variables Rij,k and
Qij of M ×M Hermitian positive semidefinite matrices as
extensions of rij,k and qij, respectively. Then, for the MNMF
objective function (25), let us employ the auxiliary function

C+(T,V,H,R,Q)

=
I∑

i=1

J∑
j=1

K∑
k=1

xH
ij Rij,kH−1ik Rij,kxij

tikvkj

+
I∑

i=1

J∑
j=1

[
tr(X̂ijQ−1ij )+ log detQij −M

]
, (46)

with auxiliary variables R, [R]ij,k = Rij,k, and Q, [Q]ij =
Qij, that satisfy

∑K
k=1 Rij,k = I with I being the identity

matrix of sizeM. The auxiliary function C+ satisfies the con-
ditions (36) and (37) because the following two equations
hold. The first one,

tr

⎡
⎣
( K∑

k=1
Hiktikvkj

)−1⎤⎦ ≤ K∑
k=1

tr(Rij,kH−1ik Rij,k)

tikvkj
, (47)

is amatrix extension of (41). The equality holdswhenRij,k =
tikvkjHikX̂−1ij . The second one [66],

log det X̂ij ≤ log detQij + tr(X̂ijQ−1ij )−M, (48)

is a matrix extension of (42). The equality holds when
Qij = X̂ij.

The update (38) of the auxiliary variables is directly
derived from the above equality conditions,

Rij,k← tikvkjHikX̂−1ij ,
∀i, j, k and Qij← X̂ij, ∀i, j. (49)

The update (39) of the objective variables is derived by let-
ting the partial derivatives ofC+with respect to the variables
T, V, andH be zero,

t2ik←
∑J

j=1(1/vkj)x
H
ij Rij,kH−1ik Rij,kxij∑J

j=1 vkjtr(Q
−1
ij Hik)

v2ik←
∑I

i=1(1/tik)x
H
ij Rij,kH−1ik Rij,kxij∑I

i=1 tiktr(Q
−1
ij Hik)

Hik

⎛
⎝tik

J∑
j=1

Q−1ij vkj

⎞
⎠Hik =

J∑
j=1

Rij,kXijRij,k

tikvkj
.

(50)

Substituting (49) into (50) and simplifying the resulting
expressions, we have the following multiplicative update
rules for minimizing the MNMF objective function (25):

tik← tik

√√√√∑J
j=1 vkjx

H
ij X̂
−1
ij HikX̂−1ij xij∑J

j=1 vkjtr(X̂
−1
ij Hik)

vkj← vkj

√√√√∑I
i=1 tikx

H
ij X̂
−1
ij HikX̂−1ij xij∑I

i=1 tiktr(X̂
−1
ij Hik)

Hik← A−1#(HikBHik),

(51)

where # calculates the geometric mean [91] of two positive
semidefinite matrices as

X#Y = X(X−1Y)1/2 (52)

and A =∑J
j=1 vkjX̂

−1
ij and B =∑J

j=1 vkjX̂
−1
ij XijX̂−1ij .

So far, we have explained the optimization of the objec-
tive function (25). The other objective function, (27) with
(26), can be optimized similarly [49].

C) IVA and ICA
We next explain how to minimize the IVA objective func-
tion (13). The ICA case (8) can simply be derived by letting
I = 1 in the IVA case.
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1) Auxiliary function for contrast function
Since the contrast function G(yj,n) = − log p(yj,n) is gener-
ally a complicated part to be minimized, we first discuss
an auxiliary function for a contrast function. The contrast
function with the density (14) is given as

G(yj,n) = 1
β

√
||yj,n||22 + α

with

||yj,n||2 =
√√√√ I∑

i=1
|yij,n|2

being the L2 norm. It is common that a contrast func-
tion depends only on the L2 norm. If there is a real-valued
function GR(rj,n) that satisfies GR(||yj,n||2) = G(yj,n) and
G′R(rj,n)/rj,n is monotonically decreasing in rj,n ≥ 0, we have
an auxiliary function,

G+(yj,n, rj,n) =
G′R(rj,n)
2rj,n

||yj,n||22 + F(rj,n), (53)

that satisfies [43] the two conditions (36) and (37). The term
F(rj,n) does not depend on the objective variable yj,n. The
equality holds when rj,n = ||yj,n||2. For the density function
(14), the coefficient ((G′R(rj,n))/(2rj,n)) is given as

1

2β
√
r2j,n + α

.

2) Auxiliary function for objective function
Now, we introduce an auxiliary function for the IVA
objective function (13) by simply replacing G(yj,n) with
G+(yj,n, rj,n),

C+(W ,R) =
J∑

j=1

N∑
n=1

G+(yj,n, rj,n)− 2J
I∑

i=1
log | detWi|,

(54)
with auxiliary variables R, [R]j,n = rj,n. The equality
C+(W ,R) = C(W) is satisfied when rj,n = ||yj,n||2 for all
j = 1, . . . , J and n = 1, . . . ,N. This corresponds to the
update (38) of the auxiliary variables.

For the minimization of C+ with respect to the setW =
{Wi}Ii=1 of separation matrices

Wi =

⎡
⎢⎣

wH
i,1
...

wH
i,N

⎤
⎥⎦ , (55)

let the auxiliary function C+ be rewritten as follows by
omitting the terms F(rj,n) that do not depend onW :

J
I∑

i=1

[ N∑
n=1

wH
i,nUi,nwi,n − 2 log | detWi|

]
(56)

Ui,n = 1
J

J∑
j=1

G′R(rj,n)
2rj,n

xijxH
ij . (57)

Note that ||yj,n||22 =
∑I

i=1 yij,ny
∗
ij,n and yij,n = wH

i,nxij from (4)
are used in the rewriting. Letting the gradient (∂C+)/(∂w∗i,n)
of (54), equivalently the gradient of (56), with respect tow∗i,n
be zero, we have N simultaneous equations [43],

wH
i,mUi,nwi,n = δmn, m = 1, . . . ,N, (58)

where δmn is the Kronecker delta. Considering allN rows of
the separation matrix (55), we then have N × N simultane-
ous equations, i.e., (58) for n = 1, . . . ,N. This problem has
been formulated as the hybrid exact-approximate diagonal-
ization (HEAD) [92] forUi,1, . . . ,Ui,N . SolvingHEADprob-
lems to updateWi for i = 1, . . . , I constitutes the update (39)
of the objective variables.

3) Solving the HEAD problem
An efficient way [43] to solve the HEAD problem for a
separation matrixWi is to calculate

wi,n← (WiUi,n)
−1en, (59)

for each n, where en is the vector whose nth element is one
and the other elements are zero, and update it as

wi,n← wi,n√
wH
i,nUi,nwi,n

, (60)

to accommodate the HEAD constraint wH
i,nUi,nwi,n = 1.

4) Whole AuxIVA algorithm
Algorithm 1 summarizes the procedures discussed so far in
this subsection. To be concrete, the algorithm description is
specific to the case of the super-Gaussian density (14).

D) ILRMA
The ILRMA objective function (32) can be minimized by
alternating NMF updates similar to (45) and the HEAD
problem solver (as the IVA part), as illustrated in Fig. 7.

Let us first consider the NMF updates of {Tn}Nn=1 and
{Vn}Nn=1 by focusing on the first term of (32). Note that for
each n, the objective function is the same as (19) if |yij,n|2
and ŷij,n are replaced with |xij|2 and x̂ij, respectively.We thus
have the following updates for n = 1, . . . ,N:

tik,n← tik,n

√√√√∑J
j=1((vkj,n)/(ŷij,n))((|yij,n|2/(ŷij))∑J

j=1(vkj,n)/(ŷij,n)

vkj,n← vkj,n

√√√√∑I
i=1((tik,n)/(ŷij,n))((|yij,n|2)/(ŷij,n))∑I

i=1(tik,n)/(ŷij,n)
.

(61)

Next we consider the update of W as the IVA part. For
the objective function (32), let us omit the log ŷij,n terms that
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Algorithm 1 AuxIVA: Auxiliary function approach to IVA
1: procedure AuxIVA
2: repeat
3: for n = 1 to N do
4: for i = 1 to I do � Aux. var. update (38)
5: yij,n← wH

i,nxij, j = 1, . . . , J
6: end for
7: rj,n←

√∑I
i=1 |yij,n|2, j = 1, . . . , J

8: for i = 1 to I do � Obj. var. update (39)
9: Ui,n← 1

J
∑J

j=1
1

2β
√

r2j,n+α
xijxH

ij

10: update wi,n by (59) and (60)
11: end for
12: end for
13: until convergence
14: end procedure

Fig. 9. Source images (left-most column) and source estimates by ICA, IVA, and ILRMA (three columns on the right) whose scales were adjusted by projection
back (PB). The first and second rows correspond to music and speech sources, respectively. The plots are spectrograms colored in log scale with large values being
yellow. The ICA estimates were not well separated in a full-band sense (SDRs = 6.27 dB, 1.38 dB). The IVA estimations were well separated (SDRs = 13.52 dB, 8.79 dB).
The ILRMA estimates were even better separated (SDRs = 16.78 dB, 12.33 dB). Detailed investigations are shown in Fig. 10.

Fig. 10. (Continued from Fig. 9) Source estimates and auxiliary variables of ICA, IVA, and ILRMA. The source estimates yij,n were not scale-adjusted, and had direct
links to the auxiliary variables. The ICA estimates were not well separated because there was no communication channel among frequency bins (auxiliary variables
used in the other two methods) and the permutation problem was not solved. The IVA estimates were well separated. The IVA auxiliary variables R, [R]j,n = rj,n,
represented the activities of source estimates and helped to solve the permutation problem. The ILRMA estimates were even better separated. The ILRMA bases
T and activations V, [Tn]ik = tik,n, [Vn]kj = vkj,n, modeled the source estimates with low-rank matrices, which were richer representations than the IVA auxiliary
variables R.

do not depend onW ,

N∑
n=1

I∑
i=1

J∑
j=1

|yij,n|2
ŷij,n

− 2J
I∑

i=1
log | detWi|, (62)

and then rewrite it in a similar way to (56),

J
I∑

i=1

[ N∑
n=1

wH
i,nUi,nwi,n − 2 log | detWi|

]
, (63)
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Fig. 11. Experimentalmixtures and variables (log scale, large values in yellow) ofNMFandMNMF.TheTwo-channelmixtures look very similar in a power spectrum
sense. However, the phases (not shown) are considerably different to achieve effective multichannel separation. The NMF results were obtained corresponding to
each mixture. No multichannel information was exploited, and thus the two sources were not separated. In the MNMF results, 10 NMF bases were clustered into
two classes according to the multichannel informationHin in the model (26). The off-diagonal elements [Hin]mm′ ,m �= m′, expressed the phase differences between
the microphones as spatial cues, and the two sources were well separated (SDRs = 14.96 dB, 10.31 dB).

Ui,n = 1
J

J∑
j=1

1
ŷij,n

xijxH
ij . (64)

Since (63) has the same form as (56), the optimization
reduces to solving the HEAD problem for the weighted
covariance matrices (64).

Note that no auxiliary function is used to derive (63),
unlike in the derivation of (56). A very similar objective
function to (62) is derived for the IVA objective function
(13) if we assume a Gaussian with time-varying variance σ 2

j,n
[44],

p(yj,n) ∝ 1
σ 2
j,n
exp

(
−
∑I

i=1 |yij,n|2
σ 2
j,n

)
. (65)

The difference between the objective functions is in ŷij,n and
σ 2
j,n, and this difference exactly corresponds to the difference
between ILRMA and IVA (see Fig. 4 in [56], where ILRMA
was called determined rank-1 MNMF).

So far, we have explained the optimization of the objec-
tive function (32). The other objective function, (35) with
(34), can be optimized similarly [56].

I V . EXPER IMENT

This section shows experimental results of the discussed
methods for a simple two-source two-microphone situa-
tion. Since this paper is a review paper, detailed experi-
mental results under a variety of conditions are not shown
here. Such experimental results can be found in the original
papers, e.g., [49, 56]. The purpose of this section is to illus-
trate the characteristics of the reviewed five methods (ICA,
IVA, ILRMA, NMF, MNMF).

In the experiment, we measured impulse responses from
two loudspeakers to two microphones in a room whose
reverberation time was RT60 = 200ms. Then, a music
source and a speech source were convolved (their source
images at the first microphone are shown at the left most of
Fig. 9) and mixed for 8-second microphone observations.
The sampling frequency was 8 kHz. The frame width and

shift of the STFT were 256ms and 64ms, respectively. For
the density functions of ICA (9) and IVA (14), we set the
parameters as α = β = 0.01. The number of update iter-
ations was 50 for ICA, IVA, ILRMA, and NMF to attain
sufficient separations. However, for MNMF, 50 was insuf-
ficient and we iterated the updates 200 times to obtain
sufficient separations.

The three plots in the right-hand side of Fig. 9 show the
separation results obtained by ICA, IVA, and ILRMA. These
are the spectrograms after scaling ambiguities were adjusted
to the source images shown in the leftmost by the projection
back (PB) approach [93–97], specifically by the procedure
described in [98]. Signal-to-distortion ratios (SDRs) [99]
are reported in the captions to show how well the results
were separated. To investigate the characteristics of these
methods, Fig. 10 shows the source estimates without PB
and related auxiliary variables. Specifically, in this example,
the speech source had a pause at around from 3 to 4 sec-
onds. Some of the IVA variables R and ILRMA variables V
shown in the bottom row successfully extracted the pause
and contributed to the separation.

Figure 11 shows howNMF andMNMFmodeled and sep-
arated the two-channel mixtures. NMF extracted 10 bases
for each channel. However, there was no link between the
bases and sources. Therefore, separation to two sources was
not attained in the NMF case. In the MNMF case, 10 NMF
bases were extracted for the multichannel mixtures, and
clustered and separated into two sources.

V . CONCLUS ION

Five methods for BSS of audio signals have been explained.
ICA and IVA resort to the independence and
super-Gaussianity of sources. NMF and MNMF model
spectrograms with low-rank structures. ILRMA integrates
these two different lines of methods and exploits the inde-
pendence and the low-rankness of sources. All the objec-
tive functions regarding these methods can be optimized
by auxiliary function approaches. This review paper has
explained these facts in a structured and concise manner,
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and hopefully will contribute to the development of further
methods for BSS.
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