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Combining acoustic signals and medical records
to improve pathological voice classification

shih-hau fang1chi-te wang,1,2,3 ji-ying chen,1,3 yu tsao4 and feng-chuan lin2,3

This study proposes two multimodal frameworks to classify pathological voice samples by combining acoustic signals and medi-
cal records. In the first framework, acoustic signals are transformed into static supervectors via Gaussian mixture models; then,
a deep neural network (DNN) combines the supervectors with the medical record and classifies the voice signals. In the second
framework, both acoustic features and medical data are processed through first-stage DNNs individually; then, a second-stage
DNN combines the outputs of the first-stage DNNs and performs classification. Voice samples were recorded in a specific voice
clinic of a tertiary teaching hospital, including three common categories of vocal diseases, i.e. glottic neoplasm, phonotrau-
matic lesions, and vocal paralysis. Experimental results demonstrated that the proposed framework yields significant accuracy
and unweighted average recall (UAR) improvements of 2.02–10.32 and 2.48–17.31, respectively, compared with systems that
use only acoustic signals or medical records. The proposed algorithm also provides higher accuracy and UAR than traditional
feature-based and model-based combination methods.
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I . I NTRODUCT ION

Deep learning technology has shown excellent performance
in a wide variety of practical applications (e.g. energy [1, 2],
aviation [3, 4], software [5, 6], traffic [7–10], etc). Biomed-
ical engineering [11] combines the knowledge of science
and techniques of engineering to solve clinical problems in
medicine. A common task in biomedical engineering is to
classify and predict the presence of diseases in the human
body through biological images, sounds, or patient pro-
vided information (e.g. alcohol or tobacco consumption,
medical history, and symptoms). Although previous studies
had already accomplished the detection of disease of abnor-
mal status using one of the above-mentioned biomedical
features, using two or more categories of features had rarely
been attempted before. To our knowledge, this is the first
study to classify voice disorders based on acoustic signals
and medical history, which brings great advancements to
both modeling techniques and clinical practicability.
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From a health science perspective, the pathological sta-
tus of the human voice can substantially reduce the qual-
ity of life and occupational performance, which results
in considerable costs for both the patient and the society
[12, 13]. Current standards recommend the use of laryn-
geal endoscopy for the accurate diagnoses of voice disorders
[13], which requires well-trained specialists and expensive
equipment. In places without sufficient medical resources,
and for patients lack of adequate insurance coverage, correct
diagnosis and subsequent treatment may be delayed [14]. A
previous study had also noticed that even among profes-
sional vocalists, reluctance to seek medical intervention is
frequent [15].

To mitigate these problems and lowering the barriers,
noninvasive screening methods have been proposed for
clinical applications [16]. Because of laryngeal disorders,
particularly those originating from the membranous vocal
folds, almost always result in the change of voice quality, an
automatic recognition framework was developed to detect
the presence of vocal diseases based on features extracting
from acoustic signals [14].

Voice disorders are one of the most common medi-
cal diseases in modern society, especially for patients with
occupational voice demand. Common etiologies include
neoplasm (e.g., squamous cell carcinoma), phonotraumatic
lesions (e.g., vocal polyps and cysts), and neurogenic dys-
function (e.g., unilateral vocal palsy); which can substan-
tially reduce an individuals quality of life [17]). In recent
decades, automatic detection of voice pathologies gathered
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a lot of academic interest, using various machine-learning-
based classifiers such as support vector machine [18–22],
Gaussian mixture model (GMM) [23–26], convolutional
neural network [27–29], and long short-term memory [30,
31]. Some approaches take advantage of automatic speech
recognition for acoustical analysis and assessment of patho-
logical speech [32]. Previous studies had already demon-
strated the potential to detect pathological voice samples
[33–35]. Our recent study used a deep neural network
(DNN) approach and achieved the highest accuracy of
99.32 [14] among current literature for a well-established
MEEI database [36, 37]. Another study from our research
group had also pointed out the potential advantage of using
patient-provided information to differentiate several cate-
gories of voice disorders [38].

Despite great success in the detection of abnormal voice
signals using various machine learning algorithms and
signal processing techniques, a further classification of
pathological voice samples into several different etiologies
has seldom been attempted before. Epidemiological studies
clearly demonstrated risk factors and specific symptoms for
different categories of voice disorders [39]. Personal habit-
ual behaviors may also contribute to the development of
voice disorder, e.g., laryngeal neoplasms typically resulted
from chronic exposure to tobacco and alcohol [40]. In this
study, we integrate a more comprehensive data set includ-
ing demographics, medical history, clinical symptoms, and
acoustic signals from dysphonic patients to examine if mul-
timodal learning can be applied to classify common voice
disorders. In earlier works, multimodal learning has been
used to combine voice signals with other modalities for
speech recognition [41, 42], speech emotion recognition
[43, 44], and speech enhancement [45] tasks. Experimen-
tal results have confirmed the effectiveness of incorporating
the information from additional modalities to improve the
performance in target objectives.

This study proposes two multimodal learning
frameworks to classify common voice disorders. In the first
framework, called hybrid GMM and DNN (HGD), acous-
tic signals are first converted into a one-dimensional static
supervector via a GMM. Then, a DNN fuses supervectors
with medical record data and performs classification. The
second framework, referred to as two-stage DNN (TSD),
performs classification in a two-stage manner. In the first-
stage, acoustic signals andmedical records are processed by
DNNs individually, and each of the two DNNs generates
a three-dimensional output vector indicating the possibil-
ity of three target voice disorders. The second-stage DNN
fuses the output vectors of the first-stage DNNs and gen-
erate final probabilities of disease prediction. Experimental
results show that the proposed TSD framework outper-
forms systems that rely solely on acoustic signals and med-
ical records, respectively, with notable accuracy improve-
ments of 10.32 (from 76.94 to 87.26) and 5.70 (from
81.56 to 87.26), and UAR improvements of 17.34 (from
64.25 to 81.59) and 7.94 (from 73.65 to 81.59). Model-
based combination is an effective scheme for diverse-source
learning. In contrast with feature-based combination, the

Table 1. FEMH data description.

Number Mean age (y) Age range (y) Standard deviation

♂ ♀ ♂ ♀ ♂ ♀ ♂ ♀
Neoplasm 84 15 57.63 59.93 27–86 36–87 13.44 14.18
Phonotrauma 97 269 43.92 39.19 21–77 20–75 12.95 10.94
Vocal Palsy 76 48 59.91 55.69 28–87 24–84 14.10 14.55

Abbreviations: ♂, male; ♀, female.

Table 2. Phonotrauma data description.

Phonotrauma

Nodules Polyps Cysts

♂ 11 69 17♀ 121 118 30

Abbreviations: ♂, male; ♀, female.

key principle is to train amodel to characterize eachmodal-
ity individually. Then a fusion module is used to combine
model outputs to perform disease diagnoses. To the best of
our knowledge, this is the first study combining both acous-
tic signals and patient-provided information in the task of
computerized classification of voice disorders.

I I . PATHOLOG ICAL VO ICE
CLASS I F ICAT ION FRAMEWORKS

A) Study subjects
1) Acoustic signals
Pathological voice samples were collected from a voice
clinic in a tertiary teaching hospital (Far Eastern Memo-
rial Hospital, FEMH, Taiwan). The database includes 589
samples of three common voice disorders, including phono-
traumatic diseases (i.e. vocal nodules, polyps, and cysts),
glottic neoplasm, and unilateral vocal paralysis (Tables 1
and 2). The clinical diagnosis of voice disorders is based
on videolaryngostroboscopic examination [13]. All patients
received voice recordings of a sustained vowel /a:/ at a
comfortable level of loudness, with amicrophone-to-mouth
distance of approximately 15−20 cms, using a unidirectional
microphone and a digital amplifier (CSL model 4150B, Kay
Pentax). The sampling rate was 44100Hz with a 16-bit
resolution, saved in the uncompressed .wav format.

2) Medical record
Besides voice recordings, study subjects also completed a
detailed questionnaire in Table 3 about demographic fea-
tures (e.g., age and sex), duration (years and months), and
onset of dysphonia, dysphonic symptoms, occupations (e.g.,
teacher, stage performer, and business), and occupational
vocal demands (using a 4-point Likert scale with the fol-
lowing anchors: always, frequent, occasional, andminimal).
Cigarette smoking was classified as active, past, and never.
Alcohol consumption was classified as never, occasionally,
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Table 3. Medical records of demographics and symptoms feature retrieved from the FEMH database.

Neoplasm Phonotrauma Vocal palsy
Items Respond Coding (n = 99) (n = 366) (n = 124)

Husky voice No/yes 0/1 9/90 9/357 20/104
Narrow pitch range No/yes 0/1 63/36 155/211 86/38
Decreased volume No/yes 0/1 64/35 239/127 47/77
Fatigue No/yes 0/1 75/24 141/225 72/52
Dysphonia No/yes 0/1 68/31 203/163 78/46
Dryness No/yes 0/1 59/40 150/216 77/47
Lumping No/yes 0/1 70/29 234/132 100/24
Heartburn No/yes 0/1 91/8 348/18 120/4
Night meal No/yes 0/1 91/8 318/48 119/5
Choking No/yes 0/1 89/10 329/37 64/60
Eyes dryness No/yes 0/1 88/11 289/77 112/12
Postnasal drip No/yes 0/1 86/13 264/102 111/13
Diabetes No/yes 0/1 92/7 362/4 117/7
Hypertension No/yes 0/1 70/29 346/20 108/16
Coronary artery disease No/yes 0/1 95/4 363/3 114/10
Head and neck cancer No/yes 0/1 96/3 364/2 106/18
Head injury No/yes 0/1 99/0 365/1 122/2
Cerebral vascular accident No/yes 0/1 99/0 366/0 123/1
Smoking Never/past/active 0/1/2 24/20/55 278/25/63 83/32/9
Alcohol Drinking Never/past/active 0/1/2 58/1/40 234/1/131 108/1/15
Drinking frequency Not/occasionally/ weekly/daily 0/1/2/3 56/29/12/2 235/108/ 17/6 110/12/0/2
Noise at work Not/a little/noisy 0/1/2 57/25/17 111/155/100 91/25/8
VAS Worst to best 0–10 3.02±1.98 2.74±1.54 2.34±1.65
Maximal phonation time (MPT) e.g. 10 s e.g. 10 10.16±6.23 8.93±4.39 4.96±4.35
Voice handicap index - 10 Sum of 10-item voice handicap index 0–40 21.23±9.99 22.85±7.81 28.35±9.46
Reflux symptom index Sum of reflux symptom index 0–45 11.08±7.42 12.87±7.06 15.52±10.07
Onset of dysphonia Missing 0 1 5 6

Sudden 1 22 76 60
Gradually 2 50 196 24
On and off 3 20 78 5
Since childhood 4 0 4 1
Other 5 6 7 28

Diurnal patterns Missing 0 3 0 3
Worse in the morning 1 7 85 7
Worse in the afternoon 2 18 87 19
Similar all day 3 40 86 67
Fluctuating 4 31 108 28

Occupational vocal demand Missing 0 3 1 5
Always 1 25 240 33
Frequent 2 24 94 42
Occasional 3 26 22 25
Minimal 4 21 9 19

weekly, and daily. Patients were instructed to self-rate their
voice quality using a visual analog scale (VAS) with scores
ranging from 0 (worst) to 10 (best) and fill out question-
naires with 10-item voice handicap index (VHI-10) and
reflux symptom index (RSI) [46–48].

B) Feature extraction
1) Acoustic signals
The following six steps must be performed to derive 13-
coefficient MFCCs from acoustic signals: pre-emphasis,
windowing, fast Fourier transform, Mel scale filter bank,
nonlinear transformation, and discrete cosine transform.
MFCCs frames were extracted from a window length of
16-millisecond and captured 8-millisecond overlap for time
shift.

2) Medical record
To simplify the input parameters, we encode each item
into digit numbers. For example, binary data (i.e. yes/no)
is recorded as 1/0. In ordinal data such as tobacco and alco-
hol consumption, we encode it as 0/1/2 (never/past/active)
or 0/1/2/3 (never/occasionally/weekly/daily), respectively.
Coding and definition of all the 34 input variables are pre-
sented in Table 3.

C) Typical combination methods
1) Feature-based combination
Feature-based combination is an intuitive approach to
learning from diverse information sources. The basic prin-
ciple is to concatenate heterogeneous features directly to
form a new higher dimensional feature, and then a classi-
fier is trained to perform classification with concatenated



4 chi-te wang, et al.

features as input. If we consider medical records as an indi-
vidual dynamic feature, the dimension of the combined
feature is (L + d), including d acoustic features and Lmed-
ical record features. Moreover, if features of acoustic signals
contain N frames, then medical records will be duplicated
N times and used in all frames. In accordance with the con-
cept of feature-based combination, we establish a one-stage
DNN (OSD) system. In OSD, acoustic features and medi-
cal records are represented by a sequence of MFCC+delta
vectors and digit numbers, respectively. We then derive the
concatenated feature by combining the MFCC+delta vec-
tors and the numerical digit. Finally, a DNN is used in OSD
to perform classification with concatenated features.

2) Model-based Combination
In this paper, the establishedmodel-based combination sys-
tem is referred to as DNNwith Linear Combination (DLC).
In DLC, acoustic signals and medical records are processed
by DNNs individually. A linear combination function is
then used as the fusion module to linearly combine the
outputs of the two DNNs. The weights of the linear com-
bination function are estimated based on the training data
to maximize classification accuracy.

D) Enhanced feature-based combination
algorithm
Although the implementation of feature-based combina-
tion is straightforward, the key drawback of OSD is not fully
considering the dynamic properties of different information
sources. In fact, acoustic waves are rather dynamic com-
pared with themedical record, creating difficulties inmodel
learning. To overcome this limitation, this study proposes
an enhanced feature-based combination algorithm, called
HGD. In HGD, the acoustic signals are first modeled by a
GMM, and then themeans of the GMMare concatenated to
form a supervector for feature combination instead of using
MFCC+delta in OSD.

The basic principle for the GMM-based supervector
is to represent a sequence of acoustic features with arbi-
trary length as a static long vector [49]. This technique
is a standard method and has been validated for speaker
recognition tasks [50]. GMM-based supervector extraction
involves two steps. First, onemust train theGMM-universal
background model (UBM) using a dedicated data set. The
training process in this step is performed in an unsuper-
vised manner and does not require classification labels.
Then, each utterance is used to adapt the GMM-UBM to
generate an utterance-specific GMM. Finally, a supervector
is formed by concatenating the mean vectors into a higher-
dimensional vector; for instance, by stacking d-dimensional
mean vectors of a M-component adapted GMM into a
M ∗ d-dimensional GMM-based supervector [51, 52].

Figure 1 shows the architecture of the proposed HGD
framework. In this framework, aGMM-UBM is first trained
based on the entire data set. Then, acoustic features for
each utterance were used to adjust the mean parameters of

the GMM-UBM. The adjusted mean parameters are con-
catenated to form a supervector. The size of a supervec-
tor is determined by the number of GMM-UBM. Then, a
DNN fuses the supervector andmedical records to perform
classification.

E) Enhanced model-based combination
algorithm
To further improve the performance of DLC, we proposed
an enhanced model-based combination algorithm referred
to as two-stage DNN (TSD). In contrast with DLC, another
deep learning model is used as the fusion module to com-
bine the outputs of the DNNs in order to characterize the
joint effects of separate modalities, namely, acoustic sig-
nals andmedical records in this study, more accurately. The
architecture of the TSD framework is shown in Fig. 2. It
can be divided into two stages. In the first stage, two DNNs
(referred to as first-stage DNNs) are used to process acous-
tic signals and medical records individually. Each of the
two first-stage DNNs generates a three-dimensional out-
put vector indicating the probability of three target voice
disorders. Unlike DLC, in which the fusion is a linear com-
bination, the fusion mechanism in TSD is an alternative
DNN (termed second-stage DNN). Note that the inputs
of the second-stage DNN are acoustic signals (26 dimen-
sions), medical records (34 dimensions), and the outputs
of the two first-stage DNNs with six-dimensional vectors
(3+3 dimensions). The second-stage DNN fuses outputs of
the first-stage DNNs, mean of acoustic signal, and medi-
cal records, and then performs classification. Additionally,
the architecture of all DNNs contains 300 neurons with
three hidden layers and having sigmoid function for the
activation function.

I I I . EXPER IMENTS AND RESULTS

A) Experimental setup
This study focuses on three typical voice disorders includ-
ing phonotraumatic lesions (i.e. vocal nodules, polyps, and
cysts), glottic neoplasm, and unilateral vocal paralysis. The
voice samples are recorded by asking the patients to pro-
nounce a sustained vowel (/a:/) for at least 3 s. During the
experimental processes, we randomly divided each class
of voice disorders into training (80) and testing (20)
sets. The performance was verified through five-fold cross-
validation. In addition to the 13 MFCCs, we added 13
delta features (the first derivative features of MFCCs) to
form 26 dimensional MFCCs+delta feature vectors. The
delta feature is obtained from the frames of MFCC over
time. Because MFCC is the static cepstral features, adding
dynamic information is widely used in many recognition
tasks [9, 53–55]. The cepstral variance normalization was
then applied to the MFCC(N)+delta feature vectors in such
a manner that the normalized feature vectors have zero
mean and unit variance.
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Fig. 1. The block diagram of the proposed HGD framework.

Fig. 2. The block diagram of the proposed TSD framework.

In this study, we used three performance indexes: overall
accuracy (ACC), sensitivity, and UAR. These indexes were
widely employed in the classification tasks. First, ACC is
the value of the difference between prediction and truth
in equation (1), where TP, TN, FP, and FN represent true
positive, true negative, false positive, and false negative,

respectively.

ACC = 100 × TN + TP
TN + TP + FN + FP

. (1)

Second, as shown in equations (2)(4), the sensitivity for each
disorder is also a common index for the classification task,
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Waveforms from voice samples of neoplasm (a), vocal palsy (b), and phonotrauma (c). Wide band spectrograms in voice samples of neoplasm (d), vocal
palsy (e), and phonotrauma (f).

where neo, pho, and pal stand, respectively, for neoplasm,
phonotrauma, and vocal palsy; unneo, unpho, and unpal
denote non-neoplasm, non-phonotrauma, and non-vocal
palsy, respectively.

SNneo = 100 × TPneo
TPneo + FNunneo

, (2)

SNpho = 100 × TPpho
TPpho + FNunpho

, (3)

SNpal = 100 × TPpal
TPpal + FNunpal

. (4)

Finally, UAR is an alternative index considering unbal-
anced data, as shown in equation (5), where K denotes the
number of classes (K = 3 in this study).

UAR = 100 × SNneo + SNpho + SNpal

K
. (5)

B) Experimental results
Figure 3 shows acoustic waves and spectrogram plots of
glottic neoplasm, phonotrauma, and vocal palsy voice sam-
ples. In the waveform plots, all samples had irregular diver-
sification in each period. Because of the loss of normal
muscle tone, voice samples from cases of vocal palsy usu-
ally demonstratemuch lower amplitude of volume (3b) than
others, with weak spectrum in high-frequency harmonics
(3e). Glottic neoplasm may invade the deeper structures
of the vocal folds, such as vocal ligaments of muscles. In
contrast, phonotraumatic lesions are usually confined to
subepithelial spaces, as they do not violate the original tis-
sue structure. Accordingly, we observed that the harmonic
structure of phonotraumatic samples is generally preserved

(3f), while cases of glottic neoplasm showed distorted har-
monics (3d). These differences are more prevalent in higher
frequency domain. However, owing to the limitations from
inter-subject variability, it remains difficult to categorize
the pathological voice simply by time-domain waves and
frequency-domain signals.

Additionally, we also plot the feature distributions to bet-
ter visualize the results via principle component analysis
(PCA). PCA is a widely used approach in which a linear
transformation is designed to compress the information
among features into the relatively lower dimensions [55–59].
Figures 4 and 5 show the distribution of the first and second
principal component among all data sets for acoustic sig-
nals and medical record, respectively. Figures 4(b) and 4(c)
are the joint distribution in two-dimension principal com-
ponent space of the first and second principal component
for acoustic signals MFCC, respectively. The input data set
for PCA is the 26-dimensional MFCCs of all training data.
The x- and y-axis in Fig. 4 represent the first and the second
principle comments (PC), respectively. The unit of PC is the
same as that in MFCC because each PC is, in fact, a linear
combination of all MFCCs. By reconstructing the covari-
ance matrix of all training data, the linear weights is deter-
mined by the corresponding eigenvalue, which quantifies
the information contributed by the corresponding MFCC
component. These figures show that the features of three
categories almost overlap in the scatter plot, while few neo-
plasm frames can be distinguished. Figures 4(a) and 4(d)
plot the histogram of individual components and show a
similar trend. That is, three kinds of voice disorders are
overlapped in most area, making the classification difficult
while using only two components. We follow the same pro-
cedure to plot the histogram of individual components and
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Fig. 4. Distribution of the first and second principal component for acoustic signals MFCC. (a) and (d) Are the histogram of individual components, while (b) and
(c) are the joint distribution in two-dimension principal component space (the first and second principal components are placed at different axes in (b) and (c)).

Fig. 5. Distribution of the first and second principal component for medical record. (a) and (d) Are the histogram of individual components, while (b) and (c) are
the joint distribution in two-dimension principal component space (the first and second principal components are placed at different axes in (b) and (c)).

the joint distribution for medical record, as shown in Fig. 5.
Note that the difference between Figs 5 and 4 is that the
MFCC feature is frame-based whereas the medical record
is individual-based, thus the samples are unequal. More
importantly, results show that the medical record seems
to has better distinguish ability among three voice disor-
ders. FromFig. 5(b) and 5(c), the overlapped region between
vocal palsy and phonotrauma is smaller than Fig. 4. Accord-
ingly, these additional plots supported our idea of including
medical records as an adjuvant features to differentiate three
categories of vocal disorders.

Table 4 reports three performance indexes of the OSD,
DLC, HGD, and TSD systems. Performance indexes for sys-
tems using only acoustic signals or medical records are also
listed as the baseline for comparison. From the table, we first
note that the system using medical records outperforms the

one using acoustic signals, with an accuracy improvement
of 4.62 (from 76.94 to 81.56) and a UAR improvement
of 9.40 (from 64.25 to 73.65), and the difference was sta-
tistical significant (p<0.001) (Tables 5 and 6). The results
confirm that the medical records can contribute more use-
ful information as compared with acoustic signals when
classifying multiple voice disorders.

Furthermore, the results in Table 4 demonstrate that
DLC, a typical multimodal learning system, outper-
forms systems using acoustic signals and medical records
alone. More specifically, DLC achieved significant accu-
racy improvements of 6.64 (from 76.94 to 83.58) and
UAR improvements of 9.83 (from 64.25 to 74.08), com-
paredwith systems using acoustic signals (p<0.001, Tables 5
and 6). We also noticed that DLC (model-based combi-
nation) outperforms OSD (feature-based combination) in
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Table 4. Performance comparison.

Neoplasm Phonotrauma Vocal Palsy

Sensitivity (Recall)
() () () Accuracy () UAR ()

Acoustic signals 63.00±17.89 95.36±4.39 34.40±20.12 76.94±6.71 64.25±11.04
Medical record 59.00±11.40 91.54±3.67 70.40±2.19 81.56±1.25 73.65±3.49
OSD 53.00±14.83 88.78±4.36 64.00±12.65 77.48±2.38 68.59±5.03
DLC 65.00±17.68 96.44±2.47 60.80±10.35 83.58±3.42 74.08±7.90
HGD 72.00±16.05 94.00±2.49 62.40±4.56 83.58±3.00 76.13±5.43
TSD 79.00±14.75 95.36±3.03 70.40±10.43 87.26±2.23 81.59±5.94

Table 5. P-value for accuracy (ACC).

ACC (P-value) Acoustic signals Medical record OSD DLC HGD TSD

Acoustic signals – 2.493 × 10−5 0.051 4.032 × 10−8 1.772 × 10−7 9.619 × 10−14

Medical record – – 0.008 0.028 0.031 1.713 × 10−8

OSD – – – 1.455 × 10−5 4.205 × 10−5 7.774 × 10−12

DLC – – – – 0.790 7.099 × 10−5

HGD – – – – – 1.294×10−3

Table 6. P-value for unweighted average recall (UAR).

UAR (P-value) Acoustic signals Medical record OSD DLC HGD TSD

Acoustic signals – 6.047 × 10−7 2.058 × 10−4 2.669 × 10−6 2.723 × 10−8 1.113 × 10−12

Medical record – – 0.100 0.571 0.272 2.053 × 10−4

OSD – – – 0.252 9.626×10−3 1.140 × 10−6

DLC – – – – 0.0984 2.197 × 10−5

HGD – – – – – 8.727 × 10−3

this task. When comparing to OSD, DLC yields a higher
accuracy of 6.10 (from 77.48 to 83.58) (p<0.001, Table 5).

The results suggest that a direct combination of a
dynamic signal source (acoustic feature sequence) and static
information (medical records) may be problematic in the
feature domain, and thus, the performance does not neces-
sarily improve compared with learning from an individual
source. In this case, the model-based combination is a more
suitable approach. The same trends have been reported in
previous multimodal learning works [45].

Table 4 also shows that the proposed HGD frame-
work outperforms OSD in regard to accuracy (p<0.001,
Table 5). Notably, when comparing with OSD and DLC,
TSD achieved significant improvements of accuracy and
UAR (p<0.001, Tables 5 and 6). Note thatOSDuses a simple
feature concatenation scheme andDLC uses a simplemodel
combination scheme to learn information from multiple
modalities. On the other hand, the proposed TSD processes
acoustic features and medical records using the first-stage
DNNs, whose outputs are fed to the second-stage DNN.
Specifically, the TSD jointly optimizes DNNs for feature
processing and for the fusion module for classification and
is thus able to achieve higher performance than OSD (opti-
mizing aDNN for the fusionmodule) andDLC (optimizing
DNNs for feature processing).

Finally, we note that TSD outperforms HGD, leading to
an accuracy improvement of 3.68 (from 83.58 to 87.26)

and a UAR improvement of 5.46 (from 76.13 to 81.59)
with a borderline statistical significance (Tables 5 and 6).
Note that HGD adopts a GMM-based supervector for a
more suitable combination of the information in acoustic
signals and medical data, and thus achieves better per-
formance than OSD and DLC. However, the GMM-based
supervector is an average representation of thewhole acous-
tic feature sequence. On the contrary, the TSD that jointly
optimizes first-stage DNNs (for feature processing) and the
second-stage DNN (for fusion) in order to generate optimal
classification results representing a better approach for this
pathological voice detection task.

From the results of Table 4, we can observe an interesting
diversity of interaction between disease categories and clas-
sification models. The four multimodal learning systems
and the systems using acoustic signals and medical records
alone perform similarly in phonotrauma, in which all the
sensitivities are around 90. The results suggest that when
individual classifiers can already yield satisfactory perfor-
mance, the multimodal learning generate only marginal
performance improvements. However, for glottic neoplasm,
although systems using only acoustic signals and medical
records do not perform well, the proposed HGD and TSD
can yield notable improvements of performance by combin-
ing acoustic signals andmedical records. TheTSD approach
achieves best performance among all results reported in
Table 4, confirming the advantages of the two-stage learning
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architecture, which jointly considers feature processing and
multimodality fusion in a unified framework.

I V . CONCLUS ION

This paper proposes two multimodal learning frameworks,
namely HGD and TSD, to efficiently exploit the comple-
mentary advantages of acoustic signals andmedical records.
The HGD framework transforms dynamic acoustic wave-
forms into a static supervector via a GMM; the supervector
is then combined with the medical records to form the
input vector for the DNN to perform classification. The
TSD framework has a two-stageDNNarchitecture to jointly
optimize the feature processing and the fusion module.
Experimental results from 589 samples of glottic neoplasm,
phonotraumatic lesions, and vocal paralysis demonstrated
that the proposed multimodal learning frameworks out-
perform systems using simply acoustic signals or medical
records for classifying voice disorders, and improves the
accuracy and UAR by 2.02–10.32 and 2.48–17.31, respec-
tively. The proposed frameworks also provide higher accu-
racy and UAR than typical feature-based and model-based
combination methods.

In the future, we plan to deploy the proposedmultimodal
learning frameworks to detect and predict voice disorders in
real clinical scenarios. A potential implementationwould be
via internet and cloud computation. In such environments,
acoustic signals may be distorted by environmental noises,
quality of recording devices, and channel mismatches. Fur-
thermore, patients provided information may not be as
complete as those gathered from medical facilities. More
robust and effective refinements of the proposed multi-
modal learning frameworks are required to predict diverse
categories of voice disorders with scarce training data and
low-computational costs.
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APPEND IX

In order to provide statistically objective results, we repeated
the experiments for five rounds and obtained a total of 25 val-
idation data sets and examined the performance between dif-
ferent models using Student’s t-tests. Bonferroni method was
applied to adjust the significant level of p value, as illustrated
below:

0.05 (original significant level of p value)/30 (numbers of
repeated statistical tests, Tables 5 and 6) = 0.00167

For easier interpretation, we defined p<0.001 as the
adjusted significance level.
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