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Deep-learning-based macro-pixel synthesis and
lossless coding of light field images
ionut schiopu and adrian munteanu

This paper proposes a novel approach for lossless coding of light field (LF) images based on a macro-pixel (MP) synthesis tech-
nique which synthesizes the entire LF image in one step. The reference views used in the synthesis process are selected based on
four different view configurations and define the reference LF image. This image is stored as an array of reference MPs which
collect one pixel from each reference view, being losslessly encoded as a base layer. A first contribution focuses on a novel network
design for view synthesis which synthesizes the entire LF image as an array of synthesized MPs. A second contribution proposes
a network model for coding which computes the MP prediction used for lossless encoding of the remaining views as an enhance-
ment layer. Synthesis results show an average distortion of 29.82 dB based on four reference views and up to 36.19 dB based on
25 reference views. Compression results show an average improvement of 29.9 over the traditional lossless image codecs and
9.1 over the state-of-the-art.
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I . I NTRODUCT ION

Technological advances in camera sensor technologies
made possible the introduction of commercial plenoptic
cameras on the global market at reasonable prices, open-
ing the possibility of integrating such cameras in numerous
applications from different domains. Light field (LF) images
provide both spatial and angular information by making
use of microlens arrays and high-resolution image sensors
to capture 4D LF data. The specific nature of the plenop-
tic image calls for specific lossless coding method designs
for LF image applications, e.g., depth estimation of 4D LFs,
view synthesis for LF cameras, and medical imaging to
name a few.
The traditional codecs for lossless image coding, such

as JPEG-LS [1] and CALIC [2], follow a predictive coding
paradigma applied to a small causal neighborhood, and do
not take advantage of the specific nature of the plenoptic
image. The current state-of-the-art codec for lossless image
coding, Free Lossless Image Format (FLIF) [3], was devel-
oped based on modern coding techniques and shows sig-
nificant performance improvement compared to traditional
codecs especially when employed for LF-image coding.
One way of representing the LF image is to use the so-

called macro-pixels (MPs), where each MP corresponds to
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the image data of size N × N collected by a microlens. The
LF image is stored as an array of MPs, denoted here by
lenslet image. Another way is to use an N × N array of
LF views, also known as sub-aperture images, where each
view selects one pixel from each MP. LF-image coding was
the topic of different grand challenges in international con-
ferences and symposiums where different approaches were
proposed based on one of these representations for lossy
and lossless coding applications.
In the view synthesis domain, several approaches were

proposed for LF image synthesis based onmachine learning
(ML) tools. The LF images are first preprocessed by heav-
ily cropping the N × N array of views and the proposed
methods are applied only to the array of middle views, rep-
resenting around one-quarter of the captured LF image. The
corner views are used as reference views and the remaining
in-between views are usually synthesized one at a time.
In our prior work, we have investigated the potential

offered by ML tools in lossless coding applications. In [4],
we proposed the first deep-learning-based pixel-wise pre-
diction method for coding ultra-high resolution images. In
[5], an improved method is proposed by employing a deep-
learning-based dual predictionmethod. In [6], we proposed
the first deep-learning-based MP-wise prediction method
for LF-image coding. In this paper, we propose a deep-
learning-basedmethod which synthesizes the entireN × N
array of LF image views, in one step, based on a small sub-
set of efficiently selected reference views. Furthermore, we
propose a deep-learning-based method for lossless coding
of LF images using the synthesized LF image, which further
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advances over our findings in [6]. The CALIC-based ref-
erence codec employed in [4] for pixel-wise coding of the
prediction errors was extended in [6] to MP-wise coding,
and it is employed here for the proposed method which
makes use of a novel and more complex neural network
architecture.
In summary, the novel contributions of this paper are as

follows:

(1) an efficient deep-learning-based lossless codec for LF
images;

(2) a novel deep-learning-based MP synthesis method for
synthesizing in one step the entire LF image captured by
the image sensor;

(3) an efficient deep-learning-based MP prediction based
on the prior information provided by the synthesized
image;

(4) efficient view configurations for reference view selection
for MP synthesis and lossless coding of LF images;

(5) a novel causal neighborhood based on the MP struc-
ture for the CALIC binary mode employed in the basic
reference codec [6].

The remainder of this paper is organized as follows. Section
II outlines the state-of-the-art methods in the view synthe-
sis and LF-image coding domains. Section III describes the
proposed method for lossless coding of LF images based on
a MP synthesis technique. Section IV presents the exper-
imental validation and performance analysis of this work.
Finally, section V draws the conclusions.

I I . STATE -OF -THE -ART

The traditional state-of-the-art codecs for lossless image
coding were designed to follow a predictive coding
paradigm whereby the value of the current pixel is pre-
dicted using a linear combination of the values in the small
causal neighborhood of the current pixel. JPEG-LS [1] is
one of the most popular lossless codecs which operates
on a three-pixel causal neighborhood to predict the cur-
rent pixel. CALIC [2] is one of the most efficient lossless
codecs which operates on a six-pixel causal neighborhood
and applies a complex context modeling scheme to pre-
dict the current pixel. In a recent work, the FLIF codec [3]
was proposed by Sneyers andWuille for lossless image cod-
ing applications which achieves an average improvement of
14 [7] compared to WebP [8]. FLIF is based on the Meta-
Adaptive Near-zero Integer Arithmetic Coding technique
which offers an improved performance when dealing with
LF images.
In the lossless coding domain, different approaches were

proposed for encoding the data extracted from different
parts of the LF processing pipeline. In [9], a method based
on a predictive coding approach is proposed for rawplenop-
tic image compression. In [10], the method encodes the LF
image as a set of views using a sparse modeling predictor
guided by a disparity-based image segmentation. In [11],

the authors proposed a context modeling method for com-
pressing each view based on one reference view. In [12],
the authors study the impact of the reversible color trans-
formations and of alternative data arrangements applied to
different codecs.
The data rate of LFs is a challenging aspect for camera

devices, especially for capturing LF videos. In the lossy com-
pression domain, LF coding is an important topic which
triggered a lot of interest in the compression community
and in standardization bodies such as JPEG [30] andMPEG
[31]. Several solutions were proposed by modifying the
HEVC standard [13] to take into account the specific nature
of the plenoptic image [14–18]. In [19], the authors pro-
pose a method for scalable lossy-to-lossless coding based
on depth information. The method encodes a set of ref-
erence views by employing the standard codec, e.g., JPEG
2000 [29], and a set of dependent views based on sparse
prediction computed based on the reference set and the geo-
metrical information from depth map images. Moreover,
the LF compression topicwaswell studied in several compe-
titions or special sessions at international conferenceswhere
many approaches were proposed. The current state-of-the-
art method was proposed in [20], where dedicated intra-
coding methods based on dictionary learning, directional
prediction, and optimized linear prediction were proposed
to ensure a high coding efficiency.
In the view synthesis domain, several solutions are pro-

posed based onML tools. In [21], a learning-based approach
is proposed to synthesize each LF image view from a sparse
set of reference views. The method employs a disparity
estimation network, a warping algorithm, and a color pre-
diction network to synthesize a single view in the LF image.
In [22], an end-to-end deep-learning-based view synthesis
method is proposed based on a system of 2D convolutions
applied to stacked epipolar plane images and of 3D convo-
lutions for detail-restoration. In [23], the authors propose
a lossy compression scheme based on depth image-based
view synthesis technique, where four reference views are
compressed by HEVC and used to reconstruct a cropped
version of the LF image. For all these methods, the raw LF
images captured by a Lytro Illum camera were preprocessed
by Lytro Power Tools Beta software (not available anymore)
to obtain LF images represented as an array of 14× 14 views,
with a 541× 376 view resolution. The LF images are then
heavily cropped and only the middle 7× 7 or 8× 8 array
of LF views are representing the captured LF image. One
may note that the cropped LF image stores only around one-
quarter of the captured LF image, i.e., (7/14)2 or (8/14)2.
In this paper, the raw LF images captured by a Lytro Illum

camera are preprocessed by Dansereau’sMATLABToolbox
[24] to obtain LF images represented as an array of 15× 15
views, with a 625× 434 view resolution. This paper tack-
les themore complex problems ofMP synthesis and lossless
coding of LF images applied to the entire LF image without
cropping it. The goal of the proposedMP synthesis method
is to provide valuable prior information for the proposed
MP prediction method used by the MP-wise lossless image
codec.
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I I I . PROPOSED METHOD

The raw LF images are preprocessed by the MATLAB
Toolbox [24] to obtain a 5-dimensional data structure
denoted by LF(x, y, k, �, c), where (x, y) selects a spe-
cific light ray propagation angle stored by a MP in an
N × N array, (k, �) corresponds to the location of a spe-
cific MP in the camera macrolens array of size Nmr ×
Nmc, and c is the primary color, c = 1, 2, . . . , Nch. For
the LF images acquired by Lytro Illum cameras, the cap-
tured LF matrix is of size N × N × Nmr × Nmc × Nch =
15× 15× 434× 625× 3. Let us denote Mk,�,c as the cur-
rent MP found at the position (k, �) in the microlens
matrix, Mk,�,c = LF(x, y, k, �, c), where x = 1, 2, . . . , N,
y = 1, 2, . . . , N, and c = 1, 2, . . . , Nch. Since the proposed
method is applied in turn for each color channel c, we sim-
plify the notations by dropping the color index and refer to
Mk,�,c asMk,�. The LF image is stored using the lenslet image
structure [6], denoted by LL, which represents the LF image
as an array of MPs. The LLmatrix is set as follows:

LL =

⎛
⎜⎜⎜⎝

M1,1 M1,2 · · · M1,Nmc

M2,1 M2,2 · · · M2,Nmc

...
... · · · ...

MNmr ,1 MNmr ,2 · · · MNmr ,Nmc

⎞
⎟⎟⎟⎠ , (1)

where LL is of size (N · Nmr) × (N · Nmc) × Nch.
The proposed method is depicted in Fig. 1 and contains

three main stages:

(B1) lossless coding of reference views;
(B2) MP synthesis based on reference views;
(B3) lossless coding of remaining views based on

synthesized image.

Section A presents the selection of reference views.
Section B describes the method employed for lossless cod-
ing of reference views. Section C describes the proposed
MP synthesis method. Section D describes the proposed
method for lossless coding of remaining views. Section E
describes the proposed neural network design. Section F
presents an overview of the proposed method.

A) Reference view selection
In this paper, the problems ofMP synthesis and lossless cod-
ing of LF images are studied by varying from small to large

Fig. 1. The proposed method.

the number of reference views selected for view synthe-
sis. Four view configurations are employed for selecting an
increasing squared number of reference views. Since theMP
structure has a squared size, the configurations are carefully
designed to have a symmetric shape.
Figure 2(B1) depicts the proposed view configurations

of size f × f , f = 2, 3, 4, 5, each used to select a specific
set of f 2 reference views from the array of 15× 15 views,
i.e., by selecting f 2 pixels from each MP. The selected views
are stored using equation (1) as a reference LF image based
on the corresponding RMPs of size f × f . Let us denote
Rf
k,� as the RMP extracted from Mk,� based on the config-
uration f × f . The top-left part of Fig. 2(B1) depicts the
case of the 2× 2 configuration where each RMP stores
the array of 2× 2 pixels corresponding to the set of views
S2 = {(4, 4), (4, 12), (12, 4), (12, 12)}. Hence, R2k,� is set
using S2 as follows:

R2k,� =
(
Mk,�(4, 4) Mk,�(4, 12)
Mk,�(12, 4) Mk,�(12, 12)

)
. (2)

The 2× 2 configuration was proposed to study the MP
synthesis performance when the synthesized LF image is
generated based on a minimum number of reference views,
and the coding performancewhen the synthesized LF image
is affected by high distortion. While the 5× 5 configuration
was proposed to study theMP synthesis performance when
the synthesized LF image is generated based on a large num-
ber of reference views, and the coding performance when
the synthesized LF image is affected by low distortion. The
four proposed view configurations were found optimal after
complex experiments.

B) Lossless coding of reference views
In this paper, the selected reference views are encoded loss-
less in the first stage as a base layer. The corresponding
reference LF image is encoded by employing the pixel-wise
REP-CNN method [5] using network models trained for
each color matrix.
The tests showed that the set of reference views is too

small for an MP-wise entropy codec, such as the reference
codec proposed in [6], to take advantage of theMP structure
specific to LF images and to offer a consistent improve-
ment over the REP-CNN method [5]. Similar results are
obtained by employing either REP-CNN [5] or MP-CNN
[6]. Moreover, the base layer has a small weight in the total
bitrate.

C) Macro-pixel synthesis
In the second stage, the proposed deep-learning-based MP
synthesis method is employed to synthesize the entire LF
image based on the selected reference views. The novelty of
this paper is that the entire set of views captured by the LF
image is synthesized in one step.
In this paper, the patch for synthesis is formed by collect-

ing an array of 30× 30 pixels from the reference LF image.
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Fig. 2. (B1) The four view configurations used to form the reference macro-pixel (RMP): the 2× 2 configuration selects RMPs of size 2× 2, the 3× 3 configuration
selects RMPs of size 3× 3, the 4× 4 configuration selects RMPs of size 4× 4, the 5× 5 configuration selects RMPs of size 5× 5. (B2) The structure of the patch
for synthesis of size 30× 30. In the case of 2× 2 configuration, the patch selects an array of 15× 15 RMPs around the current MP position. (B3) The structure of
the patch for coding of size 30× 60 for the case of 2× 2 configuration. The patch collects six MPs in the causal neighborhood and two synthesized macro-pixels
(SMPs) in the non-causal neighborhood of the current MP position marked with a red square. Blue denotes the position of the reference view pixels in the MP.
White denotes the position of the synthesized view pixels in the MP. Gray denotes the already encoded pixel positions.

The patch collects the RMPs found in the close neighbor-
hood of the current MP position as an array of nR × nR =
30/f × 30/f RMPs, which collects a set of RMPs found at a
maximum of pf = �nR/f � RMP positions from the current
RMP, Rf

k,�, as follows:

{Rf
k−i, �−j}i, j=−pf ,−pf + 1,...,0,1,...,pf . (3)

Figure 2(B2) depicts the case of the 2× 2 configuration
where the patch for synthesis collects the neighboringRMPs
found at a maximum of p2 = 7 positions, and generates an
array of nR × nR = 15× 15 RMPs.
If nR = 2n, then the patch for synthesis collects the

RMPs found between the n top-left RMP positions and

the n− 1 bottom-right RMP positions. For the 4× 4 con-
figuration, the patch for synthesis collects only the central
part of the RMPs found at the edge of the 8× 8 array
of RMPs.
The proposed neural network described in Section E is

employed to compute the synthesized LF image. Note that
the synthesized LF image is stored similarly in a lenslet
structure using equation (1) and based on the correspond-
ing SMPs of size 15× 15, denoted by Sfk,�, where (k, �) is the
MP’s position in the matrix of microlenses, and f × f is the
selected reference view configuration. Therefore, for each
Mk,� and a reference view configuration f × f , the method
generates a corresponding (Rf

k,�, Sfk,�) pair.
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D) Lossless coding of remaining views
In the third stage, the proposed deep-learning-based
method for lossless coding based on the synthesized LF
image is employed to encode the fine-details of the LF image
corresponding to the synthesized view positions.
The proposed deep-learning-based MP prediction

method takes advantage of the prior information found
in the non-causal neighborhood of the current MP posi-
tion in the synthesize LF image and provides an improved
MP prediction compared to our previous work from [6].
The MP-CNN model [6] cannot be employed for MP syn-
thesis due to the specific design of forming the patch
based on six MP from the causal neighborhood stored as a
MP volume.
In this paper, the patch for coding depicted in Fig. 2(B3)

is formed by collecting an array of 30× 60 pixels from eight
MPs selected as follows:

(i) the six MPs found in the causal neighborhood of
the current MP: on the n (Northern), w (Western),
nw, ne, ww, and nww MP positions in the LF image,
i.e., Mk−1,�, Mk,�−1, Mk−1,�−1, Mk−1,�+1, Mk,�−2, and
Mk−1,�−2;

(ii) the two SMPs found in the non-causal neighborhood
of the current MP: on the current MP position and e
(Eastern) MP position in the synthesized LF image, i.e.,
Sfk,� and S

f
k,�+1.

The MPs found outside the image edge are filled with
zeros. The proposed neural network architecture described
in Section E is employed to compute theMPprediction used
for lossless coding.
In our prior work [6], we proposed a basic reference

codec built based on the CALIC [2] architecture and
designed for lossless coding of LF images. The reference
codec uses a MP-wise coding strategy and it is employed
also here for encoding based on the propose MP prediction
the remaining views as the enhancement layer.
In this paper, the reference codec from [6] was further

adapted to take advantage of the specific LF structure by
employing a novel causal neighborhood for generating the
modeling context in the CALIC binary mode.
In the CALIC architecture [2], before employing the pre-

dictive coding scheme via context modeling of prediction
errors, the authors proposed to check if the current pixel
values can be encoded based on the neighboring pixel val-
ues using a simple binary mode routine rather than based
on prediction errors. The CALIC binary mode [2] consists
in first collecting six pixels in the following causal neigh-
borhood Mk,�(x − 1, y), Mk,�(x, y − 1), Mk,�(x − 1, y − 1),
Mk,�(x − 1, y + 1),Mk,�(x − 2, y), andMk,�(x, y − 2) of the
current position Mk,�(x, y), depicted by purple squares in
Fig. 3, and then checking if it has no more than two dif-
ferent values, denoted by I1 and I2. If true, then the binary
mode is triggered, otherwise the predictive coding scheme
is employed. In the binarymode, the current value, denoted
I, is encoded by a symbol s set as follows: s = 0, if I = I1;

Fig. 3. The proposed neighborhood for generating the binary mode context
in the basic reference codec [6]. Blue denotes the position of the reference
view pixels in the MP. White denotes the position of the synthesized view
pixels in the MP. Gray denotes the already encoded pixel positions. The red
square denotes the current pixel position. The purple squares denote the CALIC
binary mode context. The orange squares denote the proposed binary mode
context.

s = 1, if I = I2; and s = 2, otherwise. Symbol s is encoded
using a binary pattern generated based on the positions of I1
and I2 in the causal neighborhood, resulting in 32 modeling
contexts [2].
In this paper, we propose the use of the following causal

neighborhood in the binary mode routine: Mk−1,�(x, y),
Mk,�−1(x, y), Mk−1,�−1(x, y), Mk−1,�+1(x, y), Mk−2,�(x, y),
Mk,�−2(x, y), andMk−2,�−1(x, y), depicted by orange squares
in Fig. 3. One may note that the proposed neighborhood
selects the pixels found on the same current position, (x, y),
in the neighboring MPs, rather than in the local neighbor-
hood of the currentMP,Mk,�. Sincewe propose a seven pixel
neighborhood, 64 modeling contexts are obtained. One can
note that by increasing the number of pixels in the causal
neighborhood from 6 to 7, the number of cases when the
binary mode can be triggered is decreased since the con-
straint of finding nomore than two different values becomes
harder to satisfy and the proposed method will relay more
on the proposed prediction.
The proposed change is applied only when all the pixels

in the neighborhood are available. Our tests have showed
that the proposed neighborhood has an opposite effect
when employing it in the predictive coding scheme. In this
case the coding contexts are not divers enough and the
codding error is decoupled from the local neighborhood.
The reference codecwas adapted to skip the coding of the

pixels corresponding to the RMPs already encoded in base
layer. For each configuration depicted in Fig. 2(B1) a binary
mask is used to signal the skipped positions in the current
MP, marked with blue squares in Fig. 3.
One may note that a deep-learning-based algorithm is

employed at each stage of the proposed lossless coding
method. Figure 1 shows that the total bitrate of the com-
pressed LF image is obtained by concatenating the base
layer, corresponding to the encoded reference views, and
the enhancement layer, corresponding to the fine-details
encoded for the synthesized view positions for lossless
reconstruction.
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(a)

(b) (c) (d)

Fig. 4. (a) The proposed network design.When switch K is set to the (B2) Synthesis branch, theMP Syntheses based on Convolutional Neural Network (MPS-CNN)
model is obtained. When switch K is set to the (B3) Coding branch, the Prediction using SMPs based on Convolutional Neural Network (PSMP-CNN) model
is obtained. (b) The layer structure of the Convolution Block (CB). (c) The layer structure of the Deconvolution Block (DB). (d) The layer structure of the
Convolution-based Processing Block (CPB) built based on the Residual Learning paradigma.

E) Proposed network design
In this paper, we propose a novel neural network design
which follows a multi-resolution feature extraction
paradigm. The proposed architecture is depicted in Fig. 4(a)
and it is inspired from theU-net architecture [25] (designed
for biomedical image segmentation) and from the Resid-
ual Learning paradigma [26] (designed for training time
reduction).
The network is built based on the following types of

blocks of layers:

(a) The Convolution Block (CB) is depicted in Fig. 4(b) and
contains the following sequence of layers: one convo-
lution layer with a 3× 3 window, N filters, and stride
s = (s1, s2); followed by a Batch Normalization (BN)
layer and a RELU activation layer.

(b) The Deconvolution Block (DB) is depicted in Fig. 4(c)
and contains the following sequence of layers: one
deconvolution layer with a 3× 3 window, N filters, and
stride s = (s1, s2); followed by a BN layer and a RELU
activation layer. Note that in proposed architecture, in
the second DC block denoted by DC_2, an extra crop-
ping layer is inserted after the deconvolution layer to
remove the first line and column of the input patch and
to generate an output patch having theMP size of 15× 15.

(c) The Convolution-based Processing Block (CPB) is
depicted in Fig. 4(d) and contains the equivalent of three
CB blocks, where the first CB is used to decrease the
resolution by setting the stride s and the other two CB
blocks are used to design a modified version of the
Residual Learning building block [26].

One may note that, in this paper, we adopt the strategy of
inserting a BN layer between a convolution layer and an
activation layer. In the CPB block, the residual is added
before applying the BN and RELU activation layers. For all

convolution layers the input patch is padded in such a way
that the output patch has the same size as the input.
The proposed network is employed for both MP synthe-

sis and MP prediction. Since the patches for synthesis and
coding have a different size, they are first processed by two
separate branches:

(i) when switch K is set to the (B2) Synthesis branch, the
MP Syntheses based on Convolutional Neural Network
(MPS-CNN) is obtained;

(ii) when switch K is set to the (B3) Coding branch, the Pre-
diction using Synthesized MPs based on Convolutional
Neural Network (PSMP-CNN) is obtained.

The synthesis branch is depicted in the top-left corner of
Fig. 4(a) and is processing the 30× 30 synthesis patch based
on two CPB blocks: CPB_S1 with 32 filters, and CPB_S2
with 64 filters and stride s = (2, 2). The coding branch is
depicted in the middle-left part of Fig. 4(a) and is process-
ing the 30× 60 coding patch based on three CPB blocks:
CPB_C1 with 32 filters, CPB_C2 with 64 filters and stride
s = (2, 2), CPB_C3with 64 filters and stride s = (1, 2). Both
branches are processing the patch from initial resolution
down to 15× 15 resolution. The remaining structure is using
the U-net multi-resolution paradigma for further process-
ing the patches at three resolutions: 15× 15, 8× 8, and
4× 4. In the proposed design, the last CB block contains
only one filter so that it can output theMP prediction of the
current MP.
One may note that the number of filters of CPB blocks

is increasing up to 256 for the 4× 4 resolution. The num-
ber of filters in the DB blocks is set as half the number
of input channels. The concatenation layers are concate-
nating an equal number of activation maps after a CPB
block is processing the current and lower resolutions. The
total number of parameters of MPS-CNN and PSMP-CNN
models is around 3million. The stochastic gradient descend
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Fig. 5. The workflow of the proposed method.

optimizer is used with the Nesterov momentum activated,
and the momentum parameter set to 0.9.
In this paper, the training procedure employs the mean

square error (MSE) loss function. Let �MPS−CNN be the set
of all learned parameters of theMPS-CNNmodel, Xi the ith
patch for synthesis in the training set, and Yi the currently
predicted MP. Let F(·) be the function which processes Xi
using �MPS−CNN to compute the MP prediction as Ŷi =
F(�MPS−CNN , Xi). The loss function can be formulated as
follows:

L(�MPS−CNN) = 1
NP

NP∑
i=1

||vec(Yi) − vec(Ŷi)||2, (4)

where NP is the size of the training set. Similarly, equation
(4) can be formulated for the PSMP-CNNmodel.

F) Overview
Theworkflow of the proposedmethod is presented in Fig. 5.
The proposed method extends our previous work on MP-
wise coding [6]. The novel contributions of this paper
compared to [6] can be summarized as follows:

(1) The proposed method takes advantage of the MP syn-
thesis technique and generates a synthesized LF image
using steps B1 and B2 of the algorithm.

(2) The patch for coding in [6] is a volume of size N ×
N × 6 which collects six neighboring MPs, while the
proposed patch for coding is a matrix of size 2N × 4N
which collects six neighboring MPs and two neighbor-
ing SMPs.

(3) The two models are completely different. MP-CNN [6]
uses a sequence of 3D convolutions to process the patch,
while PSMP-CNN was inspired from the Unet architec-
ture to process the patches at different resolutions, and
it is based on 2D convolutions.

(4) The reference codec from [6] was further adapted to
take advantage of the MP structure by introducing a
MP-based causal neighborhood for the CALIC binary
mode.

(5) The compression results presented in Section IV below
show that the proposed method offers an average
improvement of 12.5 over our MP-CNN of [6].

The proposed method can be adapted to other LF struc-
tures. A conventional LF dataset obtained with a multi-
camera setup can be re-mapped to an MP data structure by
appropriate re-ordering of light rays. In general, for an MP
structure of N × M pixels, one can generate the patch for
synthesis of size 2N × 2M, and a similar patch for coding
of size 2N × 4M. No other changes are necessary for the
proposed network design or the MP-wise entropy codec.
A similar strategy for selecting the reference views can be
derived.

I V . EXPER IMENTAL EVALUAT ION

The experimental evaluation is carried out on the EPFL
dataset [27], which contains 118 lenslet images. The images
are captured in the RGB colormap with the Lytro Illum B01
camera with a 10-bit representation. After preprocessing it
using the MATLAB Toolbox [24] a 16-bit representation is
obtained, available as MATLAB files in [28]. In our tests
only the first 8 bits representation of the images is used.
After rearranging using equation (1) the 5-dimensional LF
structure of each LF image, having 15× 15× 625× 434× 3
size, the 3-dimensional lenslet structure, LL, of size 9375×
6510× 3 is obtained.
The datasetwas divided into theTraining Set of 10 images

and Test Set of 108 images. In this paper, we set the Train-
ing Set as in [6] and train our models on the same 10 LF
images. For each image in the Training Set, 200 000 patches
are randomly selected for synthesis and 200 000 patches
for coding. Therefore, NP = 2 000 000 patches for synthe-
sis are used to train each MPS-CNN model, and NP =
2 000 000 patches for coding are used to train each PSMP-
CNN model. For each view configuration, one MPS-CNN
model and onePSMP-CNNmodel are trained for each color
channel, during 32 epochs, and using a batch size of 500
patches; all the trained models are available online [32].
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Fig. 6. Pseudo-colored images of the mean absolute error computed over the color channels for one view in the LF images. The mean absolute errors with more
than 4-bit representation (i.e., larger than 15) are replaced by the escape symbol 16. The top-to-bottom rows show the synthesized view (7, 7) for each of the four
view configurations: 2× 2, 3× 3, 4× 4, and respectively 5× 5.

Since the reference LF image is encoded using the REP-
CNN method [5], one REP-CNN model was trained for
each color channel. Hence, in this paper, a total number
of 36 models were trained for the proposed experimental
setup.
In our work, we use the following training procedure:

a 90–10 ratio for splitting the training samples into
training−validation data; if we denote the learning rate at
epoch i as ηi, then ηi+1 = (fd)�i/ns� · ηi, ∀i = 1, 2, . . . , 32,
where fd = 0.2 is the decay rate, ns = 5 is the decay step,
and η1 = 5× 10−4 is the learning rate at the first epoch. The
training procedure is similar to [5,6].

A) Macro-pixel synthesis results
Figure 6 shows the synthesis results for three LF images
in the dataset. The pseudo-colored images show the mean
absolute error over the three color channels corresponding
to the randomly selected view (7, 7) in the LF image. The
distribution of the residual error was truncated for absolute
errors represented on more than 4 bits (i.e., larger than 15)

by replacing them with the escape symbol 16. One can note
that the shades of blue corresponding to absolute mean
errors represented on 1–2 bits are the dominant colors of
the pseudo-colored images shown in Fig. 6.
Figure 7(a) shows the results for each LF image in the

dataset, where the distortion is measured using the PSNR
metric computed between the original image, LL, and the
synthesized image, L̂L, as follows:

PSNR = 20 · log10
(
255√
MSE

)
, (5)

MSE = 1
NLL

N·Nmr∑
i=1

N·Nmc∑
j=1

Nch∑
c=1

||L̂L(i, j, c) − LL(i, j, c)||2, (6)

NLL = (N · Nmr) × (N · Nmc) × Nch = 9375× 6510× 3.
Figure 7(b) and Table 1 show the average rate-distortion

results over the Test Set of 108 images for one-step MP syn-
thesis, where the bitrate is computed as bits per channel
(bpc). Moreover, the table shows the average weight of the
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Fig. 7. Evaluation of the one-step synthesis results of the macro-pixel synthesis. (a) Synthesis results for each image in the Test Set. (b) Rate-distortion results for
the Test Set. (c) Rate-distortion results for the Red and white building image. (d) Rate-distortion results for the Sophie and Vincent 2 image.

Table 1. Lossless compression results of RMP and one-step synthesis results of SMP

Stage Type Method Avg. 2× 2 Config. 3× 3 Config. 4× 4 Config. 5× 5 Config.
B1 Lossless REP-CNN [5] bpc 0.0091 0.0199 0.0357 0.0561

coding pBR 2.30 5.14 9.44 15.40
B2 Synthesis MPS-CNN PSNR 29.82 dB 31.68 dB 34.15 dB 36.19 dB

base layer in the total image bitrate, denoted pBR, computed
as the ration between the base layer bitrate and the total
bitrate. One may note that MPS-CNN achieves an aver-
age performance of 29.82 dB when only 4/225 = 1.77 of
the views are selected as reference views and are encoded
in 2.3 of the total bitrate, while an average performance
of 36.19 dB is achieved when 25/225 = 11.11 of views are
encoded in 15.40 of total bitrate. An improvement of

around 2 dB increase is achieved with each increment of
side f of the f × f view configurations.
Figures 7(c) and 7(d) show the rate-distortion results for

two LF images from the Test Set. One may note that the
image’s content plays an important role in view synthe-
sis applications and that MPS-CNN can achieve results of
around 36.5 dB distortion base on only four reference views,
and up to 43 dB distortion based on 25 reference views.

Fig. 8. Lossless compression results.
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Table 2. Lossless compression results of for the Test Set (108 images)

CPU GPU

Avg. JPEG 2000 HEVC JPEG-LS CALIC CMS FLIF MP-CNN PredNN REPCNN MPSC-CNN with configuration:
[29] [13] [1] [2] [11] [3] [6] [4] [5] 2× 2 3× 3 4× 4 5× 5
(M1) (M2) (M3) (M4) (M5) (M6) (M7) (M8) (M9) (M10) (M11) (M12) (M13)

bpc 4.567 4.321 3.786 3.671 3.458 3.085 3.180 3.063 2.913 3.078 2.994 2.930 2.827
RC 1.615 1.528 1.339 1.299 1.223 1.091 1.125 1.083 1.030 1.089 1.059 1.036 1.000

B) Lossless compression results
The proposed codec is denoted by MP Synthesis and Cod-
ing based on Convolutional Neural Network (MPSC-CNN)
and encodes the LF images as follows:

(B1) REP-CNN [5] is employed to encode lossless the refer-
ence views;

(B2) MPS-CNN is employed to synthesize the LF image;
(B3) PSMP-CNN is employed to compute the MP predic-

tion based on the synthesized image, and the MP-
wise CALIC-based Reference codec [6] is employed
to encode lossless the residual errors of the remaining
views.

The performance of the following methods is compared:

(M1) the JPEG 2000 codec [29] based on the OpenJPEG
implementation [33], the active reference software for
JPEG 2000 [34], where the code runs with the “−r 1”
parameter for a lossless compression setting;

(M2) the HEVC video codec [13] with all intra configura-
tion; HEVC encodes the pseudo-video-sequence cre-
ated using the spiral stacking scan pattern [10,12]; the
fast x265 library [35] is used with the veryslow preset
and the lossless parameter;

(M3) the JPEG-LS codec [1];
(M4) the CALIC codec [2] based on the authors implemen-

tation available online [36];
(M5) the CMS method [11] designed to encode 193 views

out of the 225 views, where the remaining views are
encoded using CALIC [2];

(M6) the FLIF codec [3] based on the implementation avail-
able online [7];

(M7) the MP-CNN method [6], our preliminary work on
MP-wise prediction, where the models are trained
based on patches selected from the same training set;

(M8) the PredNNmethod [4], the first paper on pixel-wise
CNN-based prediction, where the model is trained
based on patches collected from the same training
set; for each LF image more than 183 million patches
are processed, one for each pixel and for each color
matrix;

(M9) the REP-CNN method [5], the first deep-learning-
based dual prediction method for pixel-wise predic-
tion based on a similar training process as M8;

(M10) the proposed MPSC-CNN codec employed for the
2× 2 configuration of reference views;

(M11) the proposedMPSC-CNNcodec employed for the 3×
3 configuration of reference views;

(M12) the proposed MPSC-CNN codec employed for the
4× 4 configuration of reference views;

(M13) the proposedMPSC-CNNcodec employed for the 5×
5 configuration of reference views.

Figure 8 shows the lossless compression results for each
image in the dataset using the Relative Compression (RC)
metric which is used to compare the compression results of
amethodMX relative to our proposedmethodM13. The RC
result for a method MX is computed as follows:

RCMX = BitrateMX
BitrateM13

. (7)

Table 2 shows the average results for the Test Set. Method
M13, the proposed method based on the 5× 5 configura-
tion, achieves the following average performance over the
set of test images:

(i) 29.9 improvement compared to CALIC [2], a tradi-
tional lossless image codec;

(ii) 12.5 improvement compared to our previousmethod
[6];

(iii) 9.1 improvement compared to FLIF [3], the current
state-of-the-art lossless image codec; and

(iv) 3 improvement compared to REP-CNN [5].

From the complexity perspective, the proposed method
requires the inference of two patches when encoding one
MP. TheMP-CNNmodel [6] requires the inference of a sin-
gle patch when encoding one MP, however, the inference
time of a 3D convolution is higher than of a 2D convolution.
The two deep-learning-based pixel-wise predictionmodels,
PredNN [4] and REP-CNN [5], require the inference of 225
patches when encoding one MP.

V . CONCLUS IONS

The paper proposed a novel approach for MP synthesis
and lossless coding of LF image. Four view configura-
tions are selecting an increasing number of reference views.
The MPS-CNN model is employed for MP synthesis. The
PSMP-CNNmodel is employed for MP prediction for cod-
ing. The MPSC-CNN codec employs the two models for
lossless coding.
MPS-CNN is able to synthesize in one step the entire LF

image captured by the image sensor (all 152 views) based
on a small subset of reference views (22, 32, 42, 52). While
the current state-of-the-art methods are employed only to
the middle LF image views (72 or 82), representing around



deep-learning-based macro-pixel synthesis and lossless coding of light-field images 11

one-quarter of the image, and the views are usually syn-
thesized each one at a time. The synthesized LF image
provides valuable prior information used to improve the
MP prediction for lossless coding applications.
The proposedMPSC-CNN codec based on the LF image

synthesized using 52 reference views outperforms the tradi-
tional codecswith an average improvement of 29.9 and the
most recent state-of-the-art codec with an average improve-
ment of 9.1.
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