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Spectral-spatial feature extraction and
supervised classification by MF-KELM
classifier on hyperspectral imagery
wenting shang,1 zebin wu,1,2,3 yang xu,1 yan zhang3 and zhihui wei1

The kernel extreme learning machine (KELM) is more robust and has a faster learning speed when compared with the tradi-
tional neural networks, and thus it is increasingly gaining attention in hyperspectral image (HSI) classification. Although the
Gaussian radial basis function kernel widely used in KELM has achieved promising classification performance in supervised
HSI classification, it does not consider the underlying data structure of HSIs. In this paper, we propose a novel spectral-spatial
KELM method (termed as MF-KELM) by incorporating the mean filtering kernel into the KELM model, which can properly
compute the mean value of the spatial neighboring pixels in the kernel space. Considering that in the situation of limited training
samples the classification result is very noisy, the spatial bilateral filtering information on spectral band-subsets is introduced to
improve the accuracy. Experiment results show that our method outperforms other kernel functions based on KELM in terms
of classification accuracy and visual comparison.
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I . I NTRODUCT ION

Hyperspectral imaging sensors are able to capture afflu-
ent spectral information across continuous narrow bands.
Where the detailed spectral information makes it possi-
ble to accurately discriminate materials of interest. More-
over, [1–4] indicate the fine spatial resolution of the sensors
enables the analysis of small spatial structures in the image.
Therefore, the rich spatial and spectral characteristics bring
wide applications of hyperspectral image (HSI), one of the
most popular research directions is the supervised HSI
classification.
Extreme learning machine (ELM) has been widely used

in supervised HSI classification [5] due to its high effi-
ciency and fast learning speed. ELM [6–8] is a single hidden
layer feed-forward neural network with the input weights
and biases randomly generated without tedious and time-
consuming parameter iterative tuning. Therefore, it main-
tains the advantage of remarkable training efficiency.
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In order to improve the classification accuracy of ELM,
the kernel function is used into the ELM model by replac-
ing the activation function, which is termed as kernel ELM
(KELM) [9]. The advantages of the KELM function in
this algorithm are that the kernel functions used in this
algorithm do not need to satisfy Mercer’s theorem, and it
can also overcome the shortage of random initialization
about the input weights and biases, specifically, KELM is
robust to the parameters learning [10]. It is well known
that both of the Gaussian radial basis function (RBF) ker-
nel and composite kernel (CK) [5] applied on KELM have
achieved promising classification performance in HSI clas-
sification [5, 11]. However, the RBF [12] only describes the
spectral similarity of the pixels without considering the spa-
tial similarity between the neighbor pixels, and the CK by
combining spatial and spectral information that also has
its limitations. The [13] suggested a suitable kernel should
learn all high-order similarities between neighboring sam-
ples directly, and then reflect the data lie in complex mani-
folds. Keeping these points in view, in this paper, an efficient
KELM algorithm is proposed, which integrates spectral-
spatial information bymean filtering (MF) kernel for super-
vised HSI classification. MF kernel not only computes the
spectral similarity but also considers the spatial similarity by
averaging the spatial neighboring pixels of the central pixel.
Furthermore, we observe that the KELM with MF kernel
shows superior performance, and significantly reduces the
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computational complexity compared with other methods
[14, 15] simultaneously.
Nevertheless, considering that in the situation of lim-

ited training samples, the classification result of MF based
on KLEM is very noisy, where the existence of noise in
HSI not only degrades the image quality but also reduces
the performance. Therefore, it is very critical to propose
an effective preprocessing algorithm for HSI noise reduc-
tion. The given neighborhood spectral bands always have
highly similar spatial and structural characteristics in the
context of the HSI. To date, a number of theories have
proposed to improveHSI classification performance by tak-
ing into spatial and spectral information. Literature [16]
introduced 3DGabor filters to extract spectral-spatial infor-
mation from HSI data, and these filters can be used to
generate a set of features that captures specific orienta-
tion, scale, and wavelength-dependent properties of an HSI
region. In [17], Lu and Li presented a gradient-guided sparse
representation method by jointly sparse-coding the similar
image patches in neighborhood spectral bands of the HSI.
In order to improve the classification performance, a novel
multiple kernel learning (MKL) algorithm is introduced by
integrating multiple types (i.e. multistructure morpholog-
ical profiles (MPs), multiattribute MPs) of spectral-spatial
features with the guidance of an ideal kernel [18]. What is
more, in [19], Gu et al. proposed a multistructure-element
non-linear MKL, in which the multiple structure elements
are employed to generate extended MPs to present spatial-
spectral information. Li et al. integrated EMAPs with spec-
tral information to formulate the CK for HSI classification
[20]. In [21], the bilateral filtering exploited on each band-
subset to incorporate the spectral signature in the spa-
tial neighborhood. The above methods demonstrate the
efficiency to incorporate the spectral and spatial features
instead of one single feature. Therefore, in this paper, we
utilize the bilateral filtering on the spectral-adaptive band-
subsets to exploit their spectral-spatial information. Due to
the fact that the high structural similarity spectral bands
have continuous spectral characteristics in each band sub-
set, then, the spectral-adaptive band-subsets partition [17]
is introduced to gather the highly similar spectral and dis-
card theweak similar ones. The traditional filtering enforces
closeness by weighting the pixel values with coefficients
that decrease with distance named domain filter. However,
in [22], noise values that corrupt these nearby pixels are
mutually less correlated than the signal values, so noise is
averaged away while signal is preserved. It also defined a
non-linear range filtering that depends on image intensity
or color to average image values with weights that decay
with dissimilarity, then, it combines domain filtering with
range filtering and denotes it as bilateral filtering, the bilat-
eral filtering smooths each band-subset while preserves the
edge information of it. Therewith, we merge the band-
subsets together and form a new 3D data cube, where the
newly formed cube serves as the input of the MF-KELM
classifier.
To tackle the above issues, this paper makes two contri-

butions, summarized as follows:

(1) The proposedMF-KELMmethod applies theMF kernel
to replace the ordinary kernel with the consideration
of the underlying data spatial structure as well as the
spectral structure.

(2) The proposed Bilateral MF-KELMmethod, which com-
bines the bilateral filtering and MF-KELM, utilizes
the bilateral filtering preprocessing on each spectral-
adaptive band-subset in terms of smoothing the image
and with the edge information preserved.

The rest of the paper is organized as follows. In Section II,
we introduce the MF-KELM classifier for the supervised
HSI classification. Part A is a detailed description of the
KELM model. Part B is the introduction of the MF kernel.
Part C introduces a preprocessing method named bilateral
filtering on spectral-adaptive band-subsets. Section III is the
experiments and analysis, where we use our statics to prove
the efficiency of our proposed method, and compare with
some state-of-the-art HSI classification methods based on
KELM. Section IV gives a summary of our work.

I I . HYPERSPECTRAL IMAGE
CLASS I F ICAT ION BASED ON
MEAN F I LTER ING KERNEL
EXTREME LEARN ING MACH INE

A) Kernel extreme learning machine
ELM [9] is a random generation single-hidden layer feed-
forward neural network. KELM is the evolution of ELM,
which utilizes the mapping kernel function to replace
the hidden layer of ELM. It shows a better performance
compared with other methods.
Given N different training samples{xi, zi}Ni=1, where xi =

[xi1, xi2, . . . , xiD] ∈ R
D,D stands for the number of the spec-

tral bands or dimensionality of the HSI, L is the number
of the classes, N represents the number of training sam-
ples. The row vector zi = [zi1, . . .zik. . . , ziL]∈ R

L determines
which class the sample belongs to, we define zik ∈ {0, 1} and
1≤ k≤ L. If zik = 1 and any other elements of zi are zero, the
sample belongs to the kth class. The output function of the
ELM having P hidden neurons defined as follows:

f (xi) =
P∑
j=1

βj · G(ωj · xi + bj) = zi, i = 1, 2, . . . ,N (1)

where G(·) represents a non-linear activation function
(e.g. RBF), ωj ∈ R

D is the input weight vector connecting
the jth hidden neuron and input neurons, βj ∈ R

L is the
output weight vector connecting thejth hidden neuron and
the output neurons, and bj is the bias of the jth hidden neu-
ron. ωj · xi denotes the inner product of ωj and xi. With N
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samples, equation (1) can be briefly written as

H · β = Z (2)

H(ω1, . . . ,ωP, b1, . . . , bP, . . . , x1, . . . , xN)

=

⎡
⎢⎣
G(x1)
...

G(xN)

⎤
⎥⎦

=

⎡
⎢⎣
G(ω1 · x1 + b1) · · · G(ωP · x1 + bP)

...
. . .

...
G(ω1 · xN + b1) · · · G(ωP · xN + bP)

⎤
⎥⎦

N×P

where

β =

⎡
⎢⎢⎢⎣

β1
β2
...

βP

⎤
⎥⎥⎥⎦

P×L

,Z =

⎡
⎢⎢⎢⎣
z1
z2
...
zL

⎤
⎥⎥⎥⎦

N×L

.

Equation (2) can be written as

β = H†Z, (3)

whereH† is the Moore–Penrose generalized inverse ofH. It
can be transformed into the form likeH† = HT(HHT)−1. In
order to achieve more stability and generalized inverse clas-
sification result, a positive value ρ−1 is added to the diagonal
elements of HHT . Therefore, the output function of ELM
classifier is expressed as follows

f (xi) = G(xi)β = G(xi)HT
(
I
ρ

+ HHT
)−1

Z, (4)

where Z∈ R
N×L is the training samples label set, similar

to SVM, ELM can be generalized to kernel ELM using a
kernel trick. The activation function can be replaced by a
kernel function; the output function of KELM is expressed
as below

f (xi) = G(xi)HT
(
I
ρ

+ HHT
)−1

Z

=

⎡
⎢⎣
KMF(xi, x1)

...
KMF(xi, xN)

⎤
⎥⎦

T(
I
ρ

+ KMF

)−1
Z

= K(xi)MF

(
I
ρ

+ KMF

)−1
Z

(5)

where KMF = [KMF(xq, xt)]Nq,t=1, K(xi)MF=[KMF(xi, x1), . . . ,
KMF(xi, xN)].
Note that the label of the test sample is determined by

the index of the output node with the largest value. The
traditional RBF kernel function is replaced by MF kernel
in KELM, and we observe an excellent generation result by
doing this.

B) Hyperspectral image classification based
on mean filtering kernel extreme learning
machine
Although the RBF kernel used in KELM has achieved
promising classification performance, it does not consider
the underlying data structure of HSI. In order to reflect data
relations in a kernel, we adopt the MF kernel [9] and incor-
porate it into the KELM, and the MF kernel computes the
mean value of the spatial neighboring pixels in the kernel
space to estimate the central pixel.
Given xm ∈ �∗, m= 1, 2, . . . , ω2, and �* represents the

spatial window,ω is the size of the window, and x is the cen-
ter pixel. Let us denote φ(xm) as the image of xm under the
map φ. Then, the MF can be represented as follows

MF(φ(x)) = 1
ω2

ω2∑
m=1

φ(xm). (6)

In order to describe the similarity between different
pixels, we define the function like

KMF(xi, xj) = 〈
MF(φ(xi)),MF(φ(xj))

〉
=
〈
1

ω2

ω2∑
m=1

φ(xmi ),
1

ω2

ω2∑
n=1

φ(xnj )

〉

= 1
ω4

ω2∑
m=1

ω2∑
n=1
K(xmi , x

n
j ).

(7)

Algorithm 1. MF-KELM
Input: the training samples setX = [x1, x2, . . . , xN], the test
samples set Y= [y1, y2, . . . , yM], window size ω, a positive
value ρ, number of classes L.

1. Compute the kernel Kpq pixel by pixel in training sam-
ples based on equation (7). Then the kernel matrix of
training samples KMF ∈ R

N×N consists of all Kpq, p= 1,
. . . , N, q= 1, . . . , N.

2. Compute the kernelKsr pixel by pixel among all samples
based on equation (7). Then the kernel matrix K∗

MF ∈
R

M×N of test samples consists of all Ksr , r= 1, . . . , N,
s= 1, . . . ,M.

3. Calculate the output of test samplesY based on equation
(5).

4. According to the output of step 3 to achieve the classifi-
cation prediction: label(y) = arg

t=1,...,L
max ft .

Output: the estimated label of Y.

Where xi and xj represent the two different pixels, respec-
tively.
Algorithm 1 describes the combination of the MF and

KELMmethods, and we named it MF-KELM.
Image denoising is an image preprocessing work, which

has been widely used in the field of HSI processing and
has shown a good performance. The following part C is the
introduction of bilateral filtering for HSI denoising based
on MF-KELM.
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Fig. 1. The flowchart of the proposed Bilateral MF-KELMmethod.

C) Spectral band-subsets-wise Bilateral
MF-KELMmethod
Considering the highly similar structural characteristics
of neighborhood spectral bands in HSI, which is urgent
to exploit the redundant structural information in terms
of a better structure characteristics preservation. In this
case, based on the structural similarity index metric [23],
the spectral-adaptive band-subsets partition [17] method is
introduced as follow.
Let I= [I1, I2, . . . , ID]T represents an HSI cube, where

Ii ∈ R
P×Q is i th band of HSI. Then, we measure the struc-

tural similarity between spectral bands Ii and Ii+1 as shown
in the following:

SSIM(Ii, Ii+1) = (2μIiμIi+1 + C1)(2σIi ,Ii+1 + C2)
(μ2Ii + μ2Ii+1 + C1)(σ 2Ii + σ 2Ii+1 + C2)

, (8)

where μIi(μIi+1) and σIi(σIi+1) represent the mean value and
the standard deviation of Ii(Ii+1), respectively, here, C1 and
C2 are constants. When applying equation (8) on adjacent
spectral bands, a correlation curveC would generate, where
C(i)= SSIM(Ii, Ii+1). Shen et al. [15] suggest the continuous
spectral bands with high structural similarity correspond to
relatively stable trend, while obvious drops existing in curve
C demonstrate the adjacent spectral bands havemuch lower
structural similarity. Thus, we according to the detection of
sharp drops inC to achieve the band-subset partition. Let us
define the band-subset as Sq, where Sq contains Bq spectral
bands with the size of P×Q.
The bilateral filtering [22] defined as the combination of

the range and domain filtering, which combines the nearby
image values in a non-linear way, and preserves image fea-
tures with a smooth image while preserving edges. Since the
homogeneous regions are commonly contained byHSI, [15]
argues that for each pixel in a band-subset Sq, its neighbor-
ing pixels will likely share similar spectral characteristics or

have the same class membership. Furthermore, the bilateral
filtering, which has the ability to influence both the spa-
tial distance and spectral dissimilarity relative to the center
pixel, need to extend the general form to the vector form
[21].We denote Sq(a, b) as a pixel of Sq, where a and b are the
spatial positions of Sq, we adopt the same bilateral filtering
definition as provided in [22]:

S̃q(a, b) =
∑

(x,y)∈�(a,b) Sq(x, y) · w(x, y; a, b)∑
(x,y)∈�(a,b) w(x, y; a, b)

, (9)

where Sq(x, y) stands for the neighboring pixel of Sq(a, b)
within a spatial search window. A a× b matrix neighbor-
hood �(a, b) is centered on the target pixel. The weight
w(x,y; a, b) can be calculated as

w(x, y; a, b) = exp
(∥∥Sq(x, y) − Sq(a, b)

∥∥2
2

2σ 2r

)

× exp
(

‖x − a‖22 + ∥∥y − b
∥∥2
2

2σ 2d

)
, (10)

σ r andσ d are the filter parameters and adaptive correspond-
ing to different Sq.
After exploiting the spectral-spatial average information

of each band-subset Sq via bilateral filtering, we merge all
the band-subsets into a new three-dimensional data cube,
and the cube will act as robust spectral signatures for the
input of MF-KELM classifier to predict the final classifica-
tion results. Figure 1 shows the flowchart of the proposed
Bilateral MF-KELM method. Algorithm 2 is the complete
description of Bilateral MF-KELM.

I I I . EXPER IMENTS AND ANALYS IS

In this section, we use the Indian Pines dataset to evalu-
ate the performance of the proposed method. Indian pines
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Fig. 2. Indian Pines image. (a) Ground truth; (b) KSVM (OA= 74.21); (c) KELM (OA= 86.92); (d) CK-KELM (OA= 94.96); (e) Bilateral-KELM
(OA= 97.29); (f) MF-KELM (OA= 98.52); (g) Bilateral MF-KELM (OA= 98.91).

Fig. 3. The classification accuracy for different window sizes ω of Indian Pines in Bilateral MF-KELMmethod.
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Table 1. Classification accuracy () for Indian Pines image on the test set.

Class Train Test KSVM KELM CK-KELM Bilateral-KELM MF-KELM Bilateral MF-KELM

Alfalfa 6 48 43.13 72.22 91.67 93.75 100 100
Corn-no till 144 1290 83.43 82.50 95.12 95.89 98.84 98.22
Corn-min till 84 750 75.79 79.02 93.73 98.27 97.07 97.60
Corn 24 210 67.52 72.65 91.43 93.33 98.57 100
Grass/pasture 50 447 93.24 92.35 91.50 97.99 95.75 99.11
Grass/tree 75 672 95.68 96.65 96.13 97.17 98.96 99.85
Grass/pasture-mowed 3 23 36.96 92.31 78.26 91.30 95.65 100
Hay-windrowed 49 440 99.00 98.98 100 99.77 100 100
Oats 2 18 2.78 70.00 38.89 77.78 94.44 50.00
Soybeans-no till 97 871 76.76 85.95 94.26 96.67 97.01 98.85
Soybeans-min till 247 2221 87.87 88.90 96.40 98.69 99.14 99.50
Soybeans-clean till 62 552 85.51 80.60 94.75 91.30 95.83 99.46
Wheat 22 190 97.79 99.06 94.74 90.53 98.42 100
Woods 130 1164 96.93 94.44 95.88 99.48 100 99.83
Big-grass-tree-drives 38 342 57.37 56.84 91.23 99.71 99.71 99.42
Stone-stell towers 10 85 87.53 91.58 87.06 95.19 77.65 77.65
Overall accuracy () 74.21 86.92 94.96 97.29 98.52 98.91
Average accuracy () 85.68 84.63 84.64 94.81 98.39 98.75
κ 0.758 0.859 0.943 0.974 0.980 0.985
Time (s) (Feature Extraction) – – – 47.22 – 47.22
Time (s) (Classification) 0.823 0.435 0.656 0.423 0.843 0.725

dataset was collected by theAVIRIS sensor overNorthwest-
ern Indiana, and it is an agriculture/forestry landscape with
spectrally similar classes and high in-class spectral vari-
ability. Figure 2(a) shows the ground truth of Indian Pines
dataset. The size of this image is 145× 145. A total of 20
water absorption and noisy bands (104–108, 150–163, and
220) were removed from the original 220 bands. It contains
16 classes, and 10 of pixels per class randomly selected
as the training dataset. In order to evaluate the extensibil-
ity and effectiveness of our proposed Bilateral MF-KELM
method, we compare it with KSVM [19], KELM [9], CK-
KELM, Bilateral-KELM [15], and MF-KLEM [10] on the
Indian Pines

Algorithm 2. Bilateral MF-KELM
Input: the HSI data cube I, the training samples set X =
[x1, x2, . . . , xN], the test samples setY = [y1, y2, . . . , yM],C1,
C2, window sizeω, a positive value ρ, number of classes L.

1. Partition the spectral-adaptive band-subsets of HSI, and
apply the bilateral filtering to each band-subset, merge
them into a new 3D cube data. The above steps depend
on equations (8), (9), and equation (10).

2. According to step 1, the new training setX∗ and new test
set Y∗ are obtained.

3. Take X∗ and Y∗ as the input of algorithm 1, then, get the
final classification result of the test dataset Y∗.

Output: the estimated label of Y.

We adopt the overall accuracy (OA), average accuracy
(AA), and the κ coefficient of agreement (k) to measure
the classification accuracies, and we also use the Running
Time(s) to measure the computational cost, including the
Feature Extraction Time(s) and Classification Time(s). All
experiments were carried out using MATLAB on an Intel
Xeon 2.4.00-GHz machine with 32 GB of RAM.

MF kernel is sensitive to the window size ω. Figure 3
shows the sensitivity of the MF kernel-based method Bilat-
eral MF-KELM to the window size. With the increase of
ω, the classification accuracy also increases gradually, but
the OA saturates for ω = 11. As ω continues to grow, the
decreasing performance suggests that the neighboring rela-
tions would be oversmooth. For the preprocessing method,
the filter parameters value of σ r and σ d are determined by
cross-validation. We set the window size of the bilateral fil-
ter that depends on the structure of different scenes to be
9× 9. In Table 1, the OA of Bilateral MF-KELM method
is 98.91, which is 24.7, 11.99, 3.95, 1.62, and 0.39 higher
than the KSVM, KELM, CK-KELM, Bilateral-KELM, and
MF-KLEM, respectively. Figures 2(a)–2(g) illustrate the
classification maps of the methods mentioned above, it
is obvious that the proposed Bilateral MF-KELM method
outperforms other compared methods. In addition, the
Bilateral MF-KELM mainly contains two steps: the Feature
Extraction and the MF-KELM, here, the time complexity
of them areO(PQD|�(a, b)|2) andO(ω4DN2+N3), respec-
tively, where |�(a, b)| represents the number of pixels in
the neighborhood, then, the whole cost is O(PQD|�(a,
b)|2+ ω4DN2+N3). The traditional KELM time complex-
ity isO(DN2+N3). It is worth to note that a higher value of
ω indicates a higher computation in Bilateral MF-KELM.
Therefore, it is suitable to select a much smaller ω value
while achieving a good performance.

I V . CONCLUS ION

In this paper, we proposed a novel spectral-spatial Bilateral
MF-KELM method of HSI classification, where we incor-
porate the MF kernel into the KELM model by replacing
the original RBF kernel. MF-KELM captures not only the
spectral similarity of pixels, but also the spatial similarity
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of a central pixel by averaging its spatially neighboring pix-
els in the kernel space. Moreover, in order to overcome the
drawback thatMF-KELM is unable to eliminate noise effec-
tively, we apply bilateral filtering on each band-subset to
reduce the image noise for the HSI preprocessing. By com-
paring the Bilateral KELM with other different HSI super-
vised classification methods, obvious visual and numerical
merit can be demonstrated in real data experiments.
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