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for adaptive loop filtering
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Recent progress in video compression is seemingly reaching its limits making it very hard to improve coding efficiency
significantly further. The adaptive loop filter (ALF) has been a topic of interest for many years. ALF reaches high
coding gains and has motivated many researchers over the past years to further improve the state-of-the-art algo-
rithms. The main idea of ALF is to apply a classification to partition the set of all sample locations into multiple
classes. After that, Wiener filters are calculated and applied for each class. Therefore, the performance of ALF essen-
tially relies on how its classification behaves. In this paper, we extensively analyze multiple feature-based classifica-
tions for ALF (MCALF) and extend the original MCALF by incorporating sample adaptive offset filtering. Further-
more, we derive new block-based classifications which can be applied in MCALF to reduce its complexity. Experimental
results show that our extended MCALF can further improve compression efficiency compared to the original MCALF
algorithm.
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1 . INTRODUCT ION

Existing video coding standards, e.g. H.264/AVC [1],
H.265/HEVC [2,3], or the currently developed versatile
video coding (VVC) standard [4], exhibit coding artifacts
due to block-based prediction and quantization [1–3]. These
artifacts occurmainly through loss of high frequency details
and manifest in discontinuities along block boundaries,
error information near sharp transitions, or a smoothing of
transitions, which correspond to blocking, ringing, or blur-
ring artifacts. In order to reduce their visibility and therefore
improve visual quality, in-loop filtering has emerged as a key
tool. In the currently deployed HEVC video standard, two
in-loop filters are included. The first one is the deblocking
filter [5–7]. Here, low-pass filters adaptively smooth bound-
ary samples in order to suppress blocking artifacts. The
second in-loop filter is the sample adaptive offset (SAO) [8]
which tries to compensate for the sample distortion by clas-
sifying each sample into distinct classes with corresponding
offset calculation for each class. The adaptive loop filter

1Video Coding & Analytics Department, Fraunhofer Heinrich Hertz Institute (HHI),
Berlin, Germany
2Image Communication Chair, Technical University of Berlin, Berlin, Germany
‡Johannes Erfurt and Wang-Q Lim are co-first authors.

Corresponding author:
Johannes Erfurt
Email: johannes.erfurt@hhi.fraunhofer.de

(ALF) [9,10] has been considered as a third in-loop filter
after the deblocking filter and SAO for HEVC – see Fig. 1. It
is currently discussed by the Joint Video Exploration Team
(JVET) in the context of developing the newVVC standard.
ALF has been adopted to the preliminary draft of VVC [4].
The main idea is to minimize the distortion between recon-
structed and original samples by calculating Wiener filters
at the encoder [11,12]. First, ALF applies a classification pro-
cess. Each sample location is classified into one of 25 classes.
Then for each classWiener filters are calculated, followed by
a filtering process.
In the past few years, several novel in-loop filters have

been investigated. Those are image prior models such as
the low rank-based in-loop filter model which estimates the
local noise distribution for coding noise removal [13] and
the adaptive clipping method where component-wise clip-
ping bounds are calculated in order to reduce the error gen-
erated by the clipping process [14]. Others are convolutional
neural network-based methods [15–20].
While the classification in ALF is derived mainly based

on the local edge information, there are other underly-
ing features such as textures. Therefore, instead of having
a single classification, combining multiple classifications
to incorporate various local image features simultaneously
can lead to a better classification. This would improve the
filtering process and eventually result in a higher coding
efficiency.
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Fig. 1. Encoder block diagram: unfiltered and filtered images Y1 and Y.

Multiple classifications for ALF (MCALF) based on this
approach have been recently introduced in [21]. In this
paper, we analyze MCALF and propose its extension to
further improve coding efficiency. There are three main
aspects of MCALF in this paper as follows. First, instead
of having a single classification, applying multiple ones can
lead to better adaptation to the local characteristics of the
input image. Second, it would be natural to ask whether
one can obtain an ideal classification for ALF. Such a clas-
sification is one which can classify all sample locations into
the set of classes so that the filtering process provides the
best approximation of the original image among all possi-
ble classifications. As this might be an infeasible task, we
propose to approximate such an ideal classificationwith rea-
sonable complexity. Finally, we extend the original MCALF
by incorporating SAO nonlinear filtering. For this, we apply
ALF with multiple classifications and SAO filtering simul-
taneously and introduce new block-based classifications for
this approach.
The remainder of the paper is structured as follows. In

Section 2, we briefly review the ALF algorithm currently
part of the working draft of VVC [4]. In Sections 3 and 4, we
review the original MCALF algorithm and propose several
classifications for MCALF. Then in Section 5, we intro-
duce our extended MCALF. In Section 6, simulation results
are shown and we derive new block-based classifications.
Finally, Section 7 concludes the paper.

2 . REV IEW OF ALF

We review the main three procedures of ALF. These are the
classification process, filter calculation, followed by the fil-
tering process. For a complete description of ALF, we refer
the reader to [9] and [10].

Fig. 2. Classification in ALF based on gradient calculations in vertical, hori-
zontal, and diagonal directions.

2.1. Laplace classification
A first step in ALF involves a classification Cl. Each sample
location (i, j) is classified into one of 25 classes C1, . . . , C25
which are sets of sample locations. A block-based filter
adaptation scheme is applied, all samples belonging to each
4× 4 local image block share the same class index [22]. For
this process, Laplacian and directional features are com-
puted, involving calculation of gradients in four directions
for the reconstructed luma samples – see Fig. 2.
Gradients for each sample location (i, j) in four direc-

tions can be calculated as follows:

gv(i, j) = ∣∣2 · Y(i, j) − Y(i − 1, j) − Y(i + 1, j)
∣∣ ,

gh(i, j) = ∣∣2 · Y(i, j) − Y(i, j − 1) − Y(i, j + 1)
∣∣

for the vertical and horizontal direction and

gd0(i, j) = ∣∣2 · Y(i, j) − Y(i − 1, j − 1) − Y(i + 1, j + 1)
∣∣ ,

gd1(i, j) = ∣∣2 · Y(i, j) − Y(i − 1, j + 1) − Y(i + 1, j − 1)
∣∣

for the two diagonal directions, where Y is a reconstructed
luma image after SAO is performed. First, for each 4× 4
block B, all of the gradients are calculated at the subsampled
positions within a 8× 8 local block B̃ containing B accord-
ing to subsampling rule in [23]. The activity is then given as
the sum of the vertical and horizontal gradients over B̃. This
value is quantized to yield five activity values. Second, the
dominant gradient direction within each block B is deter-
mined by comparing the directional gradients and addition-
ally the direction strength is determined, which give five
direction values. Both features together result in 25 classes.
For the chroma channels no classification is performed.

2.2. Filter calculation
For each class Cl, the corresponding Wiener filter Fl is esti-
mated for l ∈ {1, . . . , 25} by minimizing the mean square
error (MSE) between the original image and the filtered
reconstructed image associated with a class Cl. Therefore
the following optimization problem has to be solved:

Fl = argmin
F̃

‖(X − Y ∗ F̃) · χC�
‖2, (1)

where X is the original image and χC�
is the characteristic

function defined by

χC�
(i, j) =

{
1 if (i, j) ∈ C�

0 otherwise
. (2)
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Fig. 3. Symmetric diamond-shaped 7× 7 filter consisting of 13 distinct
coefficients c0, . . . , c12.

Fig. 4. Illustration of filtering process: each sample location is classified into
one of three classes and filtered by a 5× 5 diamond-shaped filter. All shadowed
samples affect the filtering process of the center location.

To solve this optimization task in (1), a linear system
of equations can be derived with its solution being the
optimal filter Fl. For a more detailed description of solv-
ing the optimization problem in (1), we refer the reader
to [9].
There is no classification applied for the chroma samples

and therefore only one filter is calculated for each chroma
channel.

2.3. Filtering process
Each Wiener filter Fl ∈ {1, . . . , 25} is obtained after solving
the optimization problem in (1) for a given classification
Cl and the resulting classes C1, . . . , C25. The filters Fl are
symmetric and diamond-shaped – see Fig. 3. In VTM-4.0,
they are 5× 5 for chroma and 7× 7 for the luma channel.
They are applied to the reconstructed image Y resulting in
a filtered image XCl as follows:

XCl =
L∑

�=1
χC�

· (Y ∗ Fl) (3)

where L= 25 in this case. Figure 4 shows this filtering pro-
cess.
After the classification Cl, a class merging algorithm

is applied to find the best grouping of classes C1, . . . , C25
by trying different versions of merging classes based
onthe rate-distortion-optimizationprocess. This gives the
merged classes C̃1, . . . , C̃L̃ for some L̃ with 1 ≤ L̃ ≤ 25. In
one extreme, all classes share one filter, when L̃ = 1; in
the other extreme, each class has its own filter, when
L̃ = 25.

2.4. Other classification methods for ALF
In addition to Laplace classification, there are other
classifications proposed during HEVC and its successor
VVC standardization process. In [24], subsampled Lapla-
cian classification was proposed to reduce its computational
complexity. Also, in [25], the authors introduced a novel
classification based on intra picture prediction mode and
CU depth without calculation of direction and Laplacian
features. Finally, a classificationmethod incorporatingmul-
tiple classifications has been proposed in [26], which is
similar to MCALF. We will provide some comparison test
results for this approach in Section 6.

3 . MULT IPLE FEATURE -BASED
CLASS I F ICAT IONS

In this section, we describe various classifications for ALF.
MCALF performs the same procedure as in ALF except for
the modified classification process.
The main idea of MCALF is to take multiple feature-

based classifications Cl1, . . . , ClM , instead of taking one spe-
cific classification as in ALF. Each classification Clm for
m ∈ {1, . . . ,M} provides a partition of the set of all sample
locations of the currently processed frame and maps each
sample location (i, j) to one of 25 classes C1, . . . , C25. The
partition into 25 classes is obtained by

C� = {(i, j) ∈ I : Cl(i, j) = �} for � = 1, . . . , 25, (4)

where I is the set of all sample locations in the input
image. Then the corresponding Wiener filters F1, . . . , F25
are applied to obtain the filtered reconstruction XClm in (3).
Each classification among M choices results in a different
reconstructed image and overhead that needs to be trans-
mitted to the decoder. For evaluating the RD cost, Jm is
calculated for each ofM classifications Clm,

Jm = Dm + λRm, i ∈ {1, . . . ,M} (5)

whereDm is a obtained distortion,Rm the rate depending on
a classification Clm, and λ ≥ 0 the Lagrangemultiplier. Note
that different overhead impacts the RD cost. For instance,
if the merging process after a classification with Clm̃, as
described in Subsection 2-2.3, results in a larger number of
Wiener filters than one with a classification Clm, it is very
likely thatDm̃ is smaller thanDm, while the rateRm̃ probably
exceeds Rm. For a smaller number of filters after merging,
one may expect that the corresponding distortion will be
smaller and the rate larger. A classification with the smallest
RD cost is chosen for the final classification, followed by the
filtering process – see Fig. 5.

3.1. Sample intensity based classification
The first classification ClI is the simplest one and simply
takes quantized sample values of the reconstructed luma
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Fig. 5. MCALF at the encoder: filtering is performed after classifications
Cl1, . . . ,ClM carrying out (3). Classification with the smallest cost in (5) is cho-
sen. After this RD decision, the corresponding classification and filtering are
performed with the best RD-performance classification Clι.

Fig. 6. Illustration of rank calculation of the center sample.

image Y as follows:

ClI(i, j) =
⌊

(K − 1)
2BD

Y(i, j)
⌋

(6)

whereBD is the input bit depth andK the number of classes.

3.2. Ranking-based classification
The ranking-based classification ClR ranks the sample of
interest among its neighbors,

ClR(i, j) =
∣∣∣{(k1, k2) : Y(i, j) > Y(k1, k2)

for |k1 − i| ≤ l, |k2 − j| ≤ h}
∣∣∣+ 1 (7)

with l and h specifying the size of neighborhood. Note
that when l=1 and h=1, ClR is given as a map ClR : I →
{1, . . . , 9} taking eight neighboring samples for Y(i, j). In
this case,ClR(i, j) simply ranks a sample valueY(i, j) in order
of its magnitude compared to its neighboring samples. For
instance, if ClR(i, j) = 1, all neighboring sample locations of
(i, j) have values greater than or equal toY(i, j). If ClR(i, j) =
9 then Y(i, j) has larger magnitude than its neighboring
sample values. An example is shown in Fig. 6. Here, the cen-
ter sample has five direct neighbors of smaller magnitudes
and is therefore mapped to class index 6.

3.3. Classification with two features
Natural images are usually governed by more than one spe-
cific underlying local feature. To capture those features, we
can apply a classification described by the product of two
distinct classifications Cl1 and Cl2 describing two distinct
local features,

Cl1 : I → {1, . . . ,K1} and Cl2 : I → {1, . . . ,K2}.

They can be joined together by a classification Cl, which is
the product of Cl1 and Cl2,

Cl(i, j) = (Cl1(i, j), Cl2(i, j)) ∈ {1, . . . ,K1} × {1, . . . ,K2}.
(8)

The constants K1 and K2 define the number of classes
K = K1 · K2. WhenK exceeds the desired number of classes
(for our experiments, we fix the number of classes for each
classification as 25), Cl(i, j) can be quantized to have the
intended number of classes K̄. If Cl(i, j) ∈ {1, . . . ,K}, then
we apply a modified classification C̄l,

C̄l(i, j) = round
(
Cl(i, j) · K̄

K

)
∈ {1, . . . , K̄}. (9)

The round-functionmaps the input value to the closest inte-
ger value. For instance, one can take Cl1 = ClI with K1 = 3
defined in (6) and Cl2 = ClR as in (7) with l=1, h= 1 which
gives K2 = 9. The product of ClI and ClR results in K = K1 ·
K2 = 27 classes. After quantization performed according to
(9), we obtain K̄ = 25 classes.

4 . CLASS I F ICAT IONS WITH
CONF IDENCE LEVEL

In the previous section, we proposed several classifications.
A variety of classifications give the encoder more flexibility
and it can choose the best one among the set of candidates.
This is a rather quantitative approach of improving the state-
of-the-art classification. As a second strategy, we propose a
rather qualitative approach. Instead of proposingmore clas-
sifications supporting different local features, we want to
approximate an ideal classification.

4.1. Ideal classification
For fixed positive integers n and L, let Clid be a classifi-
cation with its corresponding classes C id

1 , . . . , C id
L and n ×

n Wiener filters Fid
1 , . . . , F

id
L . Then, we call Clid an ideal

classification if

‖X − XClid‖2 ≤ ‖X − XCl‖2 (10)

for all possible classifications Cl with the corresponding
classes C1, . . . , CL and n × n Wiener filters F1, . . . , FL. XClid
and XCl are the filtered reconstructions according to (3).
Equation (10) implies that an ideal classification leads to a
reconstructed image XClid with the smallest MSE compared
with X among all reconstructions XCl. Please note that this
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definition does not incorporate themerging process and the
resulting rate. In fact, classes

C̃1 = {(i, j) ∈ I : Y(i, j) ≤ X(i, j)},
C̃2 = {(i, j) ∈ I : Y(i, j) > X(i, j)}

(11)

with L= 2 were introduced for ideal classes in [21]. In (11),
I is the set of all luma sample locations and X and Y are
original and reconstructed luma images respectively. Intu-
itively this partition into C̃1 and C̃2 is reasonable. In fact, one
can obtain a better approximation to X than Y by magnify-
ing reconstructed samples Y(i, j) for (i, j) belonging to C̃1
and demagnifying samples associated with C̃2. These sam-
ples have to be multiplied by a factor larger than 1 in the
former and by a factor smaller than 1 in latter case.

4.2. Approximation of an ideal classification
To find a classification which gives a partition into the
ideal classes C̃1 and C̃2 might be an infeasible task. Instead,
we want to approximate such a classification by utilizing
information from the original image which need to be
transmitted ultimately to the decoder.
Suppose we have a certain classification Cl : I →

{1, . . . , 9} which can be applied for a reconstructed image Y
at each sample location (i, j) ∈ I. Now, to approximate the
two ideal classes C̃1 and C̃2 with Cl, we construct an estimate
of those two classes, i.e. Ce

1 and Ce
2 as follows.

First, we apply a classification Cl to pre-classify each sam-
ple location (i, j) into the pre-classes Cpre

1 , . . . , Cpre
9 . For each

k ∈ {1, . . . , 9}, Cl(i, j) = k implies a sample location (i, j)
belongs to a class Cpre

k . Now we measure how much accu-
rately the classification Cl identifies sample locations in C̃1
or C̃2. For this, we define pk,1 and pk,2 by

pk,1 = |Cpre
k ∩ C̃1|
|Cpre

k | , pk,2 = |Cpre
k ∩ C̃2|
|Cpre

k | (12)

where |A| is the number of elements contained in a setA.We
call pk,1 and pk,2 confidence level. For a fixed positive constant
p ∈ (1/2, 1) and a given classification Cl, we now define a
map PCl : {1, . . . , 9} −→ {0, 1, 2} as follows:

PCl(k) =

⎧⎪⎨
⎪⎩
1 pk,1 > p
2 pk,2 > p
0 otherwise.

(13)

The confidence level calculation is illustrated in Fig. 7. Here,
a large part of Cpre

k intersect with the ideal class C̃2, which
leads to a high confidence level value pk,2 and ultimately sets
PCl(k) = 2 (if the constant p is reasonably high). We would
like to point out that the map PCl can be given as a vec-
tor PCl = (PCl(1), . . . ,PCl(9)) of length 9 and one can now
obtain Ce

� by

Ce
� = {(i, j) ∈ I : PCl(Cl(i, j)) = �} for � = 1, 2 (14)

using PCl and Cl. Note that Ce
� are obtained by collecting

sample locations (i, j) which can be classified into the ideal

Fig. 7. Illustration of confidence level calculation. The outer ellipse is the set
of all sample locations and divided into the ideal classes C̃1 and C̃2. The inner
ellipse represents the pre-class Cpre

k for k ∈ {1, . . . , 9}, which intersects with C̃1
and C̃2.

classes C̃� with sufficiently high confidence (higher than p)
by a given classification Cl. The vector PCl has to be encoded
into the bitstream.
Not all sample locations are classified by the classifica-

tion Cl into either Ce
1 or Ce

2. Sample locations (i, j) with
PCl(Cl(i, j)) = 0 have to be classified with a second classi-
fication C̃l, producing K̃ additional classes,

C� = {(i, j) /∈ Ce
1 ∪ Ce

2 : C̃l(i, j) = �} for � = 1, . . . , K̃.
(15)

This gives K̃ + 2 classes, namely Ce
1 , Ce

2, C1, . . . , CK̃ .

5 . EXTENDED MCALF

The main drawback of a classification with the confidence
level (13) to approximate the ideal classification (11) is that
it requires extra coding cost for (13) and two classifications
should be applied to construct classes Ce

� and C� in (14)
and (15) which would increase computational complexity.
To overcome this drawback, we first consider a classification
first introduced in [27], where it is used for SAO filtering. In
fact, this approach allows for approximating the ideal clas-
sification (11) without computing the confidence level (13).
Based on this, we then extend MCALF by incorporating
additional SAO filtering.
We first note that the ideal classification in (11) is given

by taking

Cid(i, j) = sgn(X(i, j) − Y(i, j)). (16)

The sign information in (16) cannot be obtained at the
decoder since original sample X(i, j) is not available. To
approximate (16)withoutX, we first letY1 be a reconstructed
image before in-loop filtering is applied – see Fig. 1. Then,
we take Y1(i, j) − Y(i, j) instead of X(i, j) − Y(i, j). From
this, we estimate the sign ofX(i, j) − Y(i, j) by sgn(Y1(i, j) −
Y(i, j)). Assume that

|Y1(i, j) − Y(i, j)| > T (17)
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for some sufficiently large threshold T>0 so that

|Y1(i, j) − Y(i, j)| ≥ |X(i, j) − Y1(i, j)|.
Then we have

sgn(Y1(i, j) − Y(i, j)) = sgn(X(i, j) − Y(i, j)).

Therefore, we can estimate the sign information Cid(i, j)
based on difference D = Y1 − Y when (17) is satisfied with
some relatively large T>0. From this, we now define

ClT(i, j) =
{
sgn(Y1(i, j) − Y(i, j)) |D(i, j)| > T
0 otherwise.

(18)

It should be noted that the estimate (18) would bemore reli-
able for reconstructed samples Y(i, j) satisfying (17) if we
are allowed to increase T. In fact, some experimental results
show ClT gives a better approximation for (11) for recon-
structed samples satisfying (17) while the number of those
samples decreases as we increase T. We refer the readers to
[27] for more details on this.
Next, we derive our extended MCALF using the classifi-

cation ClT we just described. Let Cl be a given classification
providing K classes forming a partition of I. We also define

D� = {(i, j) ∈ I : ClT(i, j) = �} (19)

for � = −1, 0, 1 and
Ck = {(i, j) ∈ I : Cl(i, j) = k} (20)

for k = 1, . . . ,K. For a fixed T>0, we now define a new in-
loop filter using two classifications ClT and Cl as follows:

X̂ =
1∑

�=−1
χD�

·
[ K∑

k=1
χCk · (Y ∗ Fk + Q(d�)

)]
(21)

In (21), we extend (3) by combining filtering by Wiener
filters Fk associated with classes Ck with SAO filtering by
offset values Q(d�) with classes D�. The offset values Q(d�)

are given as quantized values for d�. Each d� is chosen so
that the MSE between the original image X and a recon-
structed image by adding an offset value d to the sum of
filtered images with Fk over D� is minimized with respect
to d. This is given as

d� = argmin
d

∥∥∥∥∥
(
X −

K∑
k=1

χCk · (Y ∗ Fk + d
)) · χD�

∥∥∥∥∥
2
(22)

for � = −1, 0, 1.

6 . S IMULAT ION RESULTS AND
ANALYS IS

In this section, we provide test results for two in-loop fil-
tering algorithms based on our multiple classifications for
ALF. We call those two methods MCALF-1, our original

MCALF in [21], and its extension MCALF-2 with a new
reconstruction method (21) introduced in Section 5. We
compare those two methods to the ALF algorithm based
on VTM-4.0, the VVC test model (VTM) of version 4.0.
VTM-4.0 is the reference software to the working draft 4 of
the VVC standardization process [4,28]. Furthermore, we
compare MCALF-2 to the ALF algorithm incorporating a
different classification method in [26].

6.1. Extension of original MCALF
The first algorithm MCALF-1 incorporates five classifica-
tions. For our extension MCALF-2, we apply a new recon-
struction scheme (21) with three classifications consisting
of Laplace classification and two additional classifications,
which will be specified in the next section. We choose a
threshold parameter T = 2 for ClT to construct classesD� in
(21). This parameter is experimentally chosen.Alternatively,
it can be selected at the encoder so that the corresponding
RD cost is minimized with this selected threshold. In this
case, the selected threshold T should be transmitted to the
bitstream.

6.2. Experimental setup
For the results of our experimental evaluation, we integrate
ourMCALF algorithms and compare VTM-4.0+MCALF-
1 and VTM-4.0+MCALF-2 to VTM-4.0. Please note that
ALF is adopted into the reference software.We also compare
our MCALF approach to the ALF algorithm with the clas-
sification method in [26]. In [26], a classification method
employing three classifications has been proposed. Two of
the classifications are nearly identical to Laplace and sample
intensity based classifications while the third one classifies
samples based on similarity between neighboring samples.
For this comparison test, we integrate those three classifica-
tions into VTM-4.0 and call it ALF-2.
The coding efficiency is measured in terms of bit-rate

savings and is given in terms of Bjøntegaard delta (BD)
rate [29]. In the experiments, the total of 26 different
video sequences, covering different resolutions including
WQVGA, WVGA, 1080p, and 4K, are used. They build the
set of sequences of the common test conditions (CTC) for
VVC [30] The quantization parameterssettings are 22, 27, 32,
and 37. The run-time complexity is measured by the ratio
between the anchor and tested method.

6.2.1. MCALF-1
Five classifications are applied in MCALF-1 and all classifi-
cations provide a partition into K = 25 classes:

– Laplace classification which performs the classification
process in ALF, explained in Section 2-2.1.

– Sample intensity based classification ClI .
– Product of ranking-based and sample intensity based clas-
sifications ClR,I with

ClR,I(i, j) = (ClR(i, j), ClI(i, j))
∈ {1, . . . , 9} × {1, 2, 3}. (23)



extended multiple feature-based classifications for adaptive loop filtering 7

Table 1. Coding gains of MCALF-1 and MCALF-2 for RA configuration and percentage of each classification in MCALF-2.

MCALF-1 MCALF-2 MCALF-2

Resolution Sequences Y () U () V () Y () U () V () Laplace () ClI () ClR,I ()
A1 Tango −0.03 0.14 0.10 −0.15 0.20 0.23 78.63 10.00 11.37

FoodMarket −0.16 −0.15 −0.13 −0.27 −0.14 −0.16 71.83 2.70 25.47
Campfire −0.06 0.00 −0.08 −0.34 −1.51 −0.82 78.05 18.08 3.87

A2 CatRobot −0.36 −0.05 −0.26 −0.57 −0.33 −0.64 76.62 1.11 22.27
DaylightRoad −0.32 0.28 −0.03 −0.70 −0.48 −0.94 68.70 0.93 30.37
ParkRunning −0.33 0.03 0.00 −0.50 −0.69 −0.71 42.39 11.54 46.07

B MarketPlace −0.87 −0.31 −0.03 −1.07 −0.69 −0.08 48.00 21.42 30.58
RitualDance −0.36 0.09 0.03 −0.60 −0.30 −0.08 68.91 7.77 23.32
Cactus −0.01 −0.02 0.00 −0.17 −0.67 −0.53 93.49 2.01 4.51
BasketballDrive −0.09 0.04 −0.10 −0.47 −1.23 −1.11 88.38 4.17 7.44
BQTerrace −1.01 0.04 0.41 −1.43 −1.85 −1.47 43.15 27.86 28.98

C BasketballDrill −0.02 0.06 −0.04 −0.22 −1.18 −0.84 77.07 4.61 18.31
BQMall −0.24 −0.14 −0.03 −0.43 −1.10 −0.79 50.69 14.71 34.60
PartyScene −0.29 0.10 0.02 −0.49 −1.50 −1.55 25.32 31.38 43.30
RaceHorses −0.03 −0.09 −0.12 −0.15 −0.55 −0.36 66.78 10.99 22.23

Overall All −0.28 0.00 −0.02 −0.50 −0.80 −0.66 61.21 10.23 28.56
Encoding time () 102 101
Decoding time () 103 102

D BasketballPass −0.03 −0.12 −0.02 −0.25 −1.69 −1.09 76.17 7.83 15.99
BQSquare −0.86 0.92 0.47 −1.10 −0.74 −0.76 13.86 25.32 60.82
BlowingBubbles −0.05 0.00 −0.10 −0.25 −0.99 −1.71 49.96 11.95 38.09
RaceHorses 0.00 0.01 0.06 −0.18 −0.68 −0.76 92.42 1.97 5.62

Overall All −0.23 0.20 0.10 −0.44 −1.02 −1.02 56.73 13.97 29.30
Encoding time () 102 101
Decoding time () 101 97

F BasketballDrillText −0.92 0.17 0.14 −1.09 −1.14 −1.19 47.82 10.12 42.06
ArenaOfValor −0.29 0.13 0.02 −0.59 −0.91 −0.69 34.42 0.60 64.99
SlideEditing −1.10 −0.04 −0.05 −1.06 −0.88 −1.71 59.87 24.61 15.52
SlideShow −0.86 0.07 0.15 −0.97 −1.78 −2.17 18.52 24.61 56.86

Overall All −0.79 0.08 0.06 −0.93 −1.18 −1.44 56.48 16.75 26.77
Encoding time () 103 102
Decoding time () 106 102

ClR,I(i, j) is quantized to one of 25 distinct values.
– Classification with confidence level, using the classifica-
tion ClI to
determine

Ce
� = {(i, j) ∈ I : PClI (ClI(i, j)) = �} for � = 1, 2

and Laplace classification for the remaining 23 classes. For
this, instead of constructing 25 classes fromLaplace classi-
fication, three classes with low activity values are put into
one class, which gives 23 classes.

– Classification with confidence level, using ClR,I to deter-
mine

Ce
� = {(i, j) ∈ I : PClR,I (ClR,I(i, j)) = �} for � = 1, 2

and Laplace classification for the remaining 23 classes as
above.

6.2.2. MCALF-2
Laplace classification and two additional classifications are
applied to construct Ck in (20). For the two additional
classifications, we choose Cl in (20) as follows:
– Sample intensity based classification ClI .
– ClR,I is quantized to one of 25 distinct values.

Both classifications provide 25 classes forming a parti-
tion of I. We then apply (21) with one of three classifications
selected for Cl in (20).

6.3. Evaluation of simulation results
Tables 1 and 2 show the results for random access (RA)
and low delay B (LDB) configurations respectively. It is
evident that RD performance is improved for both mul-
tiple classification algorithms MCALF-1 and MCALF-2.
In particular, MCALF-2 algorithm increases coding effi-
ciency up to 1.43 for RA configuration. It should be also
noted that MCALF-2 consistently outperforms MCALF-
1 for all test video sequences except for one of screen
content sequences, SlideEditing. The last three columns
inTable 1 show how often each classification in MCALF-
2 is selected for each test video sequence. This shows
how each of classifications performs compared to others
with respect to RD performance depending on test video
sequences.
Furthermore, Tables 3 and 4 show the comparison

results between ALF-2 and MCALF-2 for RA and LDB.
It is clear that MCALF-2 consistently outperforms ALF-
2 with the classification method in [26] for all test video
sequences.



8 johannes erfurt et al.

Table 2. Coding gains of MCALF-1 and MCALF-2 for LDB configuration.

MCALF-1 MCALF-2

Resolution Y () U () V () EncT () DecT () Y () U () V () EncT () DecT ()

B −0.76 −0.20 −0.13 101 102 −1.08 −0.24 −0.02 101 102
C −0.29 0.27 0.06 101 101 −0.47 0.32 0.23 100 98
E −0.79 −0.38 −0.01 105 103 −1.10 −0.06 −0.29 102 100
Overall −0.61 −0.09 −0.04 102 102 −0.88 −0.16 −0.35 101 100
D −0.31 0.38 −0.05 102 101 −0.53 0.32 −0.61 100 98
F −1.66 −0.37 0.72 103 104 −1.73 −0.41 −0.24 102 103

Table 3. Coding gains of ALF-2 and MCALF-2 for RA configuration.

ALF-2 MCALF-2

Resolution Y () U () V () EncT () DecT () Y () U () V () EncT () DecT ()

A1 −0.08 −0.01 −0.01 101 104 −0.25 −0.49 −0.25 101 101
A2 −0.24 0.11 0.06 101 110 −0.59 −0.50 −0.76 100 106
B −0.38 −0.06 −0.04 102 105 −0.75 −0.95 −0.65 101 103
C −0.10 −0.07 −0.12 102 104 −0.32 −1.08 −0.89 101 98
Overall −0.22 −0.02 −0.07 102 105 −0.50 −0.80 −0.66 101 102
D −0.16 0.09 0.06 102 104 −0.44 −1.02 −1.02 101 97
F −0.57 0.02 −0.02 103 107 −0.93 −1.18 −1.44 102 102

Table 4. Coding gains of ALF-2 and MCALF-2 for LDB configuration.

ALF-2 MCALF-2

Resolution Y () U () V () EncT () DecT () Y () U () V () EncT () DecT ()

B −0.58 −0.31 −0.45 102 107 −1.08 −0.24 −0.02 101 102
C −0.18 0.39 0.06 100 102 −0.47 0.32 0.23 100 98
E −0.50 0.22 −0.49 103 102 −1.10 −0.06 −0.29 102 100
Overall −0.43 0.06 −0.29 102 104 −0.88 −0.16 −0.35 101 100
D −0.21 0.20 −0.57 101 101 −0.53 0.32 −0.61 100 98
F −1.35 −0.12 −0.14 103 107 −1.73 −0.41 −0.24 102 103

6.4. Discussion of complexity/implementation
aspects
Having multiple classifications in general does not notably
increase the complexity as each of classifications consid-
ered in this paper is comparable with Laplace classification
in terms of complexity. For instance, the ranking-based
classification ClR(i, j) requires eight comparisons and eight
additions for each (i, j) ∈ I. Therefore the total number of
operations for ClR,I is comparable with Laplace classification
with 176/16 additions and 64/16 comparisons for each sam-
ple location (i, j) ∈ I. We also note that ClI is less complex
than ClR,I .
For Laplace classification, 4× 4 block-based classifica-

tion is recently adopted,which significantly reduces its com-
plexity. One can also modify sample-based classifications
ClI and ClR,I used in MCALF-2 so that resulting classifi-
cations are applied for each non-overlapping 4× 4 block.
For this, we first define 4× 4 block B(i, j) for (i, j) ∈ I as
follows:

B(i, j) = {(i + �1, j + �2) : 0 ≤ �1, �2 ≤ 3}

For each block B(i, j), an average sample value over B(i, j) is
given as

Y(B(i, j)) = 1
16

∑
(�1 ,�2)∈B(i,j)

Y(�1, �2). (24)

Then we define 4× 4 block-based classifications for ClI and
ClR,I by simply replacing Y(i, j) and Y(k1, k2) by Y(B(i, j))
and Y(B(k1, k2)) in (6) and (7). Finally, we apply (21) with
those 4× 4 block-based classifications instead of ClR,I and
ClI . This reduces its complexity compared toMCALF-2 and
gives −0.37 (Y), −0.86 (U), −0.74 (V) coding gains
on average for RA over 15 video sequences in classes A1, A2,
B,and C.
There are two main issues for implementing MCALF-2.

First, the classification ClT in (18) requires extra memory
to store a whole reconstructed image Y1. One remedy for
this would be to take the difference between two images
Y and Ŷ , a reconstructed image obtained by applying fil-
tering with Wiener filters Fk to Y, instead of Y1 − Y in
(18). This approach can be then extended to take neighbor-
ing sample values of Y(i, j) − Ŷ(i, j) with some weights for
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(i, j) ∈ I as suggested in [27], which can be further inves-
tigated for future work. Second, line buffer issue is always
the key for any coding tool design. In particular, the size of
the line buffer is determined by the vertical size of the fil-
ter employed in ALF. For this, one can further explore an
approach [31] to derive ALF filter sets with reduced vertical
size.

7 . CONCLUS ION

In this paper, we studied multiple classification algorithms
forALF and extended the original MCALF calledMCALF-1
by applying adaptive loop filter and SAO filter simulta-
neously. Based on this, we developed a novel algorithm
MCALF-2 and new block-based classifications. Both algo-
rithms MCALF-1 and MCALF-2 were tested for RA and
LDB configurations on the CTC data set consisting of 26
video sequences. It shows that MCALF-2 consistently out-
performs MCALF-1 for all sequences except for one screen
content sequence and a bit-rate reduction of more than
1 compared to the state-of-the-art ALF algorithm can be
achieved.
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