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industrial technology advances

Toward human-centric deep video
understanding

wenjun zeng

People are the very heart of our daily work and life. As we strive to leverage artificial intelligence to empower every person on
the planet to achieve more, we need to understand people far better than we can today. Human–computer interaction plays
a significant role in human-machine hybrid intelligence, and human understanding becomes a critical step in addressing the
tremendous challenges of video understanding. In this paper, we share our views on why and how to use a human centric
approach to address the challenging video understanding problems. We discuss human-centric vision tasks and their status,
highlighting the challenges and how our understanding of human brain functions can be leveraged to effectively address some of
the challenges. We show that semantic models, view-invariant models, and spatial-temporal visual attention mechanisms are
important building blocks. We also discuss the future perspectives of video understanding.
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I . I NTRODUCT ION

Artificial intelligence (AI) is the buzz word in the technol-
ogy world today. In the past few years, the machine has
beaten humans in many ways – facial recognition, image
recognition, IQ test, gaming, conversational speech recog-
nition, reading comprehension, language translation, just to
name a few.

All these breakthroughs are attributed to three pillars
of technological innovations. The first is the availability of
the big data, e.g. thousands of hours of annotated speech,
and tens of millions of labeled images. The second foun-
dation is the availability of huge computing resources, such
as GPU cards and cloud server clusters. On top of these
two, we have witnessed the significant progress in advanced
machine learning, such as deep learning and reinforcement
learning. We are indeed in a golden age of AI.

A) Deep learning has changed the landscape
of image understanding
Research estimates that 80–85 of our perception, learn-
ing, cognition, and activities are mediated through vision
[1]. This signifies the importance of the role that visual
intelligence plays in AI.

Deep learning is the engine for AI, and it has changed the
landscape of image understanding. Figure 1 shows the error
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rate performance of the winners of the well-known Ima-
geNet classification competitions over the years. Since 2012,
convolutional neural network (CNN)-based approaches
have been widely adopted, and the winning systems used
increasingly deeper networks. In 2015, Microsoft Research
Asia announced a system that beat the human perfor-
mance and won the competition with a 152-layer network
called deep residual network which makes it easier to train
deeper networks with shortcut connections between layers
[2]. What an amazing progress in a short 4 years, from a
system that was far from practical, to a system that beat
human performance. This demonstrates the power of deep
learning.

Similarly, significant improvements have been achieved
using deep learning for object detection and semantic seg-
mentation. We are getting a lot closer to landing computer
vision technologies to practice.

B) Video understanding is challenging
Typically, if there is a significant technological develop-
ment, the image goes first, the video will follow. In fact,
there is a huge market for intelligent video analytics in both
the enterprise and consumer domains. In addition to tra-
ditional public surveillance market, there have been many
emerging applications, e.g. in business intelligence, home
security, autonomous driving, and storytelling.

In general, videos are much harder to analyze than
images. The variety of contents in the video is exponentially
larger, making fine-grained vision tasks extremely difficult.
There is a huge demand for storage, computing power, and
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Fig. 1. Performance of the winners of the ImageNet classification competitions
over the years.

bandwidth. In some scenarios, real-time processing is a
requirement. The labeling for video is particularly costly. In
some scenarios, there is a lack of training data. For example,
it is more difficult to make surveillance video data avail-
able for research, partly due to the privacy issue. In some
other cases, positive samples are scarce. These are all the
challenges that video understanding faces, making it very
difficult to land the video analytics technologies to practice.

Given the challenges in making video understanding
technologies practical, we believe it is important to take a
human-centric approach to focus on the features that are
most critical for bringing the technologies to the market.

I I . HUMAN-CENTR IC : WHY
AND HOW?

People are the very heart of our daily life and work. In order
to serve people better, we need to better understand peo-
ple, their surroundings, and their relationships: who they
are, what they are wearing, what they are doing and saying,
how they are feeling, what their intentions are, who they are
talking to, among others. Just as people are constantly try-
ing to understand themselves and other people, machines
also need powerful tools to help them understand people
through multi-modality sensory data in today’s societies
that are becoming more and more intelligent.

Not surprisingly, people are the main subjects in most
videos, and human–computer interaction plays a signifi-
cant role in human-machine hybrid intelligence that is likely
to dominate in practice in the foreseeable future. There-
fore, human understanding becomes a critical step in video
understanding. In fact, one of the earliest successful applica-
tions of computer vision is about human, i.e. the widespread
deployment of face recognition. By extension, it is likely
that the next breakthrough could come fromgeneral human
understanding technologies. Therefore, it makes a lot of
sense to take a human-centric approach for video under-
standing. By “human-centric”, we mean both focusing on
the tasks of understanding humans in video and leveraging
what we have understood about how human brain works
in the algorithm designs, although what we can do for the
latter is still very limited.

After all, the initial goal of AI was to mimic how the
human brain works. We need to understand human in
general frommultiple perspectives, including biological sci-
ence, neural science, cognitive science, behavior science,
and social science, etc. For video understanding, deep learn-
ing is a powerful tool that has been shown to have great
promise. It is important to understand how the human
brain works and then leverage that in the design of deep
learning systems. In fact, the human brain’s attentionmech-
anism has been successfully applied to neural network
designs [3]. Human reasons based on the knowledge they
acquire. We are seeing more and more efforts in integrating
a knowledge-driven approach with a data-driven approach
in deep learning system design [4–6], as will be elaborated
on in Section IV.

We will discuss human-centric vision tasks and their sta-
tus next, while highlighting the challenges and how our
limited understanding of human brain functions (e.g. atten-
tion mechanisms, semantic models, knowledge-based rea-
soning) can be leveraged to effectively address some of the
challenges.

I I I . HUMAN-CENTR IC V IS ION
TASKS

Human understanding in the video is about the detection
and recognition of humans, their attributes, and their activ-
ities. Significant progress has been made for many impor-
tant human-centric vision tasks. We provide an overview of
these technologies in the following.

A) People tracking
Visual object tracking is one of the fundamental problems
in video analysis and understanding. Given the bounding
box of a target object in the first frame of a video, a tracker is
expected to locate the target object in all subsequent frames.
Single object tracking can be typically considered a joint
detection and tracking problem as it is essentially the detec-
tion of the same target object in every subsequent frame.
The greatest challenge is to fulfill the simultaneous, but
somewhat conflicting requirements on robustness and dis-
crimination power [7]. The robustness requires a tracker not
to lose tracking when the appearance of the target changes
due to illumination, motion, view angle, or object deforma-
tion. Meanwhile, a tracker is expected to have the capability
to discriminate the target object from a cluttered back-
ground or similar surrounding objects. Both requirements
traditionally need to be handled through online training to
achieve the adaptability.

Since 2015, more and more works based on CNN have
emerged. While deep features introduce the speed limita-
tion to online training, their strong representational power
opens-up a possibility to completely remove online train-
ing. The pioneering work along this line is SiamFC [8].
SiamFC employs offline-trained Siamese CNNs to extract
features, and then uses a simple cross-correlation layer to
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Fig. 2. Accuracy-speed trade-off of top-performing trackers on the OTB-100
benchmark. The speed axis is logarithmic. Reproduced from Fig. 8 of [7].
Please refer to [7] for the notations of different trackers. “Ours” refers to the
SPM-Tracker [7].

perform a dense and efficient sliding-window-based search.
As a result, SiamFC can operate at 86fps on GPU. There are
a great number of follow-upworks, such as SA-Siam [9] and
SiamRPN [10]. SA-Siam adopts a two-branch network to
encode images into two embedding spaces, one for semantic
similarity (robustness) and the other for appearance simi-
larity (discriminativeness). SiamRPN consists of a Siamese
subnetwork for feature extraction and a region proposal
subnetwork for similarity matching and box regression.

While most object tracking works use a single-stage
design, a two-stage SiamFC-based network is proposed in
[7], aiming to address both the robustness and discrim-
inativeness requirements. The two stages are the coarse
matching stage (i.e. a proposal stage) which focuses on
enhancing the robustness, and the fine matching stage
which focuses on improving the discrimination power
by replacing the cross-correlation layer with a more
powerful distance learning subnetwork. The resulting
tracker achieves superior performance on major bench-
mark datasets, with an impressive inference speed of 120fps
on an NVIDIA P100 GPU. Figure 2 shows an accuracy-
speed trade-off of top-performing trackers on the OTB-100
benchmark [11]. It can be observed that significant progress
has been made for single-object tracking in the past few
years. These can be readily applied to single-person track-
ing.

In many practical scenarios, it is required to track mul-
tiple people simultaneously. It is generally not efficient to
treat multiple-person tracking as multiple separate single-
person tracking tasks. Recent works onmulti-person track-
ing focus on the tracking-by-detection approach, i.e. detect-
ing objects (of the same target category, i.e. person) using
a general object/person detector in individual frames and
then linking detections across frames. These include var-
ious strategies such as importance sampling and particle
filtering for state propagation in a Bayesian framework [12],
linking short tracks over a long duration, e.g. using the
Hungarian algorithm for the optimal assignment [13], and

greedy Dynamic Programming in which trajectories are
estimated one after another [14]. To improve robustness
to wrong identity assignment, recent research has focused
on linking detections over a larger time duration using
various optimization schemes. One common formulation
to address multi-person tracking is based on constrained
flow optimization which can be solved using the k-shortest
paths algorithm [15]. Graph-based minimum cost multi-
cut formulation has also been proposed [16, 17]. Note that
the tracking-by-detection approach separates tracking from
detection, therefore may not be the most efficient approach.
For example, a general object detector may miss detect-
ing some object instances in some frames, which otherwise
could be tracked if a single-object tracker is used for that
specific object instance. We believe more efforts should be
made to investigate the approach of joint detection and
tracking, which has been extensively studied for single-
object tracking, for joint multiple-object/people tracking.
The spatial and temporal relationships between multiple
objects/people should be better exploited. There is also a
trade-off between complexity and accuracy that should be
optimized. Tracking over a long period of time is typi-
cally very challenging. Long-term tracking usually results
in intermediate short-term tracklets, and requires link-
ing/matching tracklets over time, e.g. through object re-
identification (re-ID) techniques.

While general object tracking can be readily applied to
people tracking, there are dedicated tracking technologies
designed for people tracking. For example, a detector can
be designed specifically for people to handle occlusion and
body deformation [18]. Aminimumcost-liftedmulticut for-
mulationwas proposed in [19] to introduce additional edges
in the graph to incorporate long-range person re-ID infor-
mation into the tracking formulation. To effectively match
hypotheses over longer temporal gaps, new deep archi-
tectures for re-ID of people are developed, where holistic
deep feature representations and extracted body pose lay-
out are combined. More discussion about person re-ID will
be presented in Section III.C.

B) Human pose estimation
Human pose estimation determines the pixel locations of
key joints of the human body. It is a key step toward under-
standing people. It has widespread applications such as
human action recognition, motion analysis, activity analy-
sis, and human–computer interaction. Despite many years
of research with significant progress made recently, pose
estimation remains a very challenging task, mainly due
to the large variations in body postures, shapes, capturing
views, scales, complex inter-dependency of parts, appear-
ances, quality of images, etc.

The pictorial structure [20] is an early work that defines
the deformable configurations by spring-like connections
between pairs of parts to model complex joint relations.
Subsequent works [21, 22] extend this idea to CNNs. Many
recent works use CNNs to learn feature representations and
obtain the locations of the 2D joints or the scoremaps of the
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2D joints [23–25]. Some methods directly employ learned
feature representations to regress the 2D joint positions [23],
while a popular way of a joint detection is to estimate a
score map for each 2D joint based on fully CNN [24–26].
To efficiently detect the 2D poses of multiple people, [26]
uses Part Affinity Fields to learn to associate body parts
with individuals in the image. The architecture encodes
global context, allowing a greedy bottom-up parsing step
that maintains high accuracy while achieving real-time per-
formance, irrespective of the number of people in the image.
A two-stage normalization scheme, i.e. human body nor-
malization followed by limb normalization, is presented
in [27] to make the distribution of the relative joint loca-
tions compact, resulting in easier learning of convolutional
spatial models and more accurate pose estimation.

In addition to 2D pose estimation discussed above, there
have been recent efforts to estimate relative 3D poses from
monocular images [28–30], mostly using regression meth-
ods. It is shown in [30] that a simple integral operation
(replacing the “taking-maximum” operation by “taking-
expectation”) can relate and unify the heat map repre-
sentation and joint regression, taking advantages of their
individual merits to further improve the performance.

Another practically more important task is to estimate
absolute 3D human poses from multiple calibrated cam-
eras [31]. Many earlier works [32] follow the pipeline of first
locating the 2D joints in each camera view and then trian-
gulating them to 3D [31]. The 3D pose estimation accuracy
heavily depends on the accuracy of the 2D joint estimations.
In [33], a cross-view feature fusion approach to fuse the
multi-view features in order to achievemore robust 2D pose
estimation for each view, especially for the occluded joints,
is presented. A Recursive Pictorial StructureModel (RPSM)
is then presented to estimate 3D poses from multi-view 2D
poses. This work sets a new state-of-the-art on multi-view
human pose estimation on the benchmark H36M dataset
[34], outperforming prior works (e.g. [35]) by a large mar-
gin (a 50 reduction of the average joint estimation error).
This makes high accuracy motion capture without motion
sensors or markers very close to reality, and is expected
to enable many applications such as low-cost athlete body
motion analysis, human tracking and action recognition in
retail scenarios, etc.

C) Person re-identification
Person re-ID aims tomatch a specific person acrossmultiple
camera views or in different occasions from the same cam-
era view. It facilitates many important applications, such as
cross-camera tracking [36] and the long-term people track-
ing discussed in Section III.A. This task is very challenging
due to large variations of person pose and viewpoint, imper-
fect person detection, cluttered background, occlusion, and
lighting differences, etc. Many of these factors result in spa-
tial misalignment of two matching human bodies, making
it one of the key challenges in re-ID.

In recent years, many efforts have been made to alleviate
these problems [37–39]. For example, to make the learned

features focus on some local details, some works make a
straightforward partition of the person image into a few
fixed rigid parts (e.g. horizontal stripes) and learn detailed
local features [37, 40, 41]. Such partition however cannot
align well with the human body parts. Some other works
have attempted to use the pose to help localize body parts
for learning part-aligned features [38, 42, 43]. This, how-
ever, is a very coarse alignment. Even for the same type
of parts, there is still spatial misalignment within the parts
between images, where the human semantics are different
for the same spatial positions. It becomes critical to design
an architecture that enables the efficient learning of densely
semantically aligned features for re-ID.

A densely semantically aligned person re-ID framework
is proposed in [44], which enables fine-grained seman-
tic alignment and explores the semantically aligned fea-
ture learning. It performs dense semantic alignment of the
human body on a canonical space to address the mis-
alignment challenges, where dense (i.e. pixel-wise) semantic
pose estimation [45] is leveraged. To address the poten-
tial dense pose estimation errors (i.e. robustness issue)
and the challenges in handling non-overlapping areas
between two matching persons, a powerful joint learn-
ing framework is developed to guide the feature learning
of one main stream using another (densely semantically
aligned, but noisy) stream. State-of-the art performance is
achieved on the benchmark datasets. Along the same line,
a more elegant framework is proposed in [46] that uses an
encoder–decoder architecture to guide the feature learning
such that the learned features for re-ID is capable of recon-
structing, through the decoder, a 3D full body texture image
in a canonical semantic space. The learned features used
for re-ID are thus view- and pose-invariant. The decoder is
used only for model training, without increasing the infer-
ence complexity. This approach nicely addresses the issue of
visible body inconsistency betweenmatching images, which
is not well-addressed in [44].

D) Human action recognition
Ultimately, we would like to understand the human activi-
ties in the video. Human action recognition thus is a very
important but challenging task. There are a large variety
of actions, with large or subtle differences. It is therefore
important to be able to leverage some attention mecha-
nisms, just like the human brain does, to focus on what
really characterize a particular action to differentiate it from
other actions. View variation (e.g. among videos taken of
the same action) is another significant challenge, which
demands view-invariant approaches.

There have been RGB-based approaches [47–53],
skeleton-based approaches [54–57], and their combina-
tions [58] for human action recognition. RGB-based
approaches have the advantage of taking into account
the appearance information and the context (e.g. back-
ground and other objects around humans), but have diffi-
culty differentiating some fine-grained actions (e.g. human
poses/motions). Skeleton-based approaches can focus on
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Fig. 3. Spatial-temporal attention network. Both attention networks use a
one-layer LSTM network.

fine-grained actions of the human body, but lose the context
information (e.g. interacting objects). Combining the RGB
information and pose information would often provide the
best performance [58].

We focus on skeleton-based approaches here. Earlier
neurophysiological study shows that human can recognize
action by motions of just a few key points [59]. In fact, the
skeleton can be considered as a high-level abstract represen-
tation of the human body, and it reflects some sort of human
brain attention. Since there is a sequence of skeleton joint
sets over time in the video, one can use a recurrent neural
network such as Long Short-Term Memory (LSTM) net-
work [60] to model the temporal dynamics of the joints for
different actions. Co-occurrence patterns of joint features
are learnt using an end-to-end regularized LSTM network
for human action recognition [55]. Based on the observation
that for different actions, the importance levels of different
joints are different, both a spatial attentionmodel and a tem-
poral attentionmodel are used to highlight what really char-
acterize a particular action instance [56]. Figure 3 shows the
network architecture. The single-layer LSTM-based spatial
attention model assigns different weights to joints of the
same frame before applying a baseline action classification
network. The single-layer LSTM-based temporal attention
model generates a temporal weighting curve to pool action
prediction outputs at different time instances. Significant
accuracy improvements (up to 6 absolute gains over base-
line on a benchmark dataset) have been achieved, signify-
ing the importance of developing attention mechanisms in
vision tasks.

As mentioned above, a significant challenge for video
analysis is view variation, i.e. visual representations of the
same event captured from different views would look very
different. The human brain has the capability to recognize
that they are the same event. We would like the machine to
be able to do that as well. A view adaptation sub-network is
proposed in [57] to address the view-invariant property, by
adaptively transforming the input 3D skeleton sequence to a
more consistent virtual view before an LSTM-based classi-
fication network is applied. Through end-to-end training,
this view adaptation sub-network allows the main action
classification network to “see” only skeleton sequences of

Fig. 4. Illustration of a retail intelligence scenario where multiple cameras
are deployed, 3D space is reconstructed, people are detected and tracked, and
heatmap (in purple) is generated.

consistent views, disregard their original views. This effec-
tively addresses the view variation problem, resulting in
a powerful action classification network that can focus its
attention on the action details, as opposed to visual content
variation resulting from view variation.

E) Integration
While it is critical to develop individual human-centric
vision tasks for video understanding, it is also important
to look at them from a system perspective, and under-
stand how to integrate those building blocks, and how they
compensate each other.

Depending on the application scenarios, a practical sys-
tem may integrate some or all of the building blocks. For
example, for a workplace safety scenario, people detec-
tion and tracking may be sufficient to detect if there is
any human activity outside a safety zone. In a more com-
plex retail intelligence scenario where multiple cameras are
deployed (see Fig. 4), one may need to detect and track the
customers, based on face, body, skeleton, or a combination.
Long-term tracking may be necessary and is typically chal-
lenging, especially across different cameras, in which case
person re-ID becomes critical to link estimated short-term
tracklets. With people tracking, heatmap can be created
to reflect where in the store customers go/stay most. If
more detailed activities of the customers are of interest, one
may want to also identify the actions (e.g. picking up an
item) of the customers, e.g. by leveraging the estimated pose
sequence, or a combination of pose and RGB data. For effi-
cient integration of the building blocks, a mask-RCNN [61]
like architecture with a multi-task setting that shares the
feature extraction backbone network could be used.

For real-time interactive applications such as video con-
ferencing, the real-time requirement is likely the most
significant challenge for many vision tasks. For example,
foreground/human body segmentation and background
blurring are desirable features to remove background dis-
tractions or provide privacy protection. In this case, there is
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a stringent requirement on the neural network model size
(e.g. in the order of 100K bytes) and speed (in the order of
ms per frame). Significant efforts need to be devoted to the
model size reduction and speed optimization.

I V . FUTURE PERSPECT IVES

Understanding human in the video is a critical step for video
understanding. There has been tremendous progress in the
development of human understanding technologies in the
past few years, thanks to the rapid advance of deep learn-
ing technologies. The development, however, has mostly
focused on individual component vision tasks that are spa-
tially or temporally local, such as detection of individual
objects or actions. There is little work on understanding
the relationship between individual entities, such as object
relationships, and causal relations between actions/events.
This is partly due to the difficulty in acquiring exponen-
tially increasing amount of labeled data required by current
deep learning technologies for complex tasks spanning over
larger spatial regions and temporal durations. To address
such difficulty, existing human knowledge should be lever-
aged and incorporated into the learning systems to effi-
ciently learn about semantic relationships, while reducing
the dependency on data-driven deep learning approaches.
It is exciting to see that some initial efforts have been made
along this line, where human knowledge is incorporated,
e.g. in the form of graph convolutional network (GCN),
an efficient variant of CNNs which operates directly on
graphs [4], to help significantly improve the performance
of video understanding [4–6]. For example, building upon
GCN to transfer knowledge obtained from familiar classes
to describe the unfamiliar class, [5] uses both semantic
embeddings and the categorical relationships derived from
a learned knowledge graph to predict the visual classifiers
for unfamiliar classes. A Symbolic Graph Reasoning (SGR)
layer, injected between convolution layers, is proposed in
[6] to perform reasoning over a group of symbolic nodes
whose outputs explicitly represent different properties of
each semantic entity in a prior knowledge graph.

The development of semi-supervised learning or unsu-
pervised learning technologies is also critical in alleviating
the requirement on the amount of labeled training data, ulti-
mately making it closer to mimicking how the human brain
works. For example, recently unsupervised pre-training of
deep Bidirectional Encoder Representations from Trans-
formers (BERT), that is able to leverage the abundance of
un-labelled data, shows a promising direction for language
modeling [62] and joint visual-linguistic modeling [63].
The pre-trained BERT model can be finetuned with just
one additional output layer to create state-of-the-art models
for a wide range of downstream tasks, without substantial
task-specific architecture modifications.

Although some aspects of human brain functions such
as attention mechanisms have been well exploited in deep
learning, it is still a long way to go in understanding

better how human brain works before additional break-
throughs can be achieved in visual understanding. How-
ever, a human centric mindset, which includes both focus-
ing on the human understanding tasks in video and leverag-
ing our understanding of how the human brain works, will
put us on the right track in developing video understanding
technologies.

Although significant progress in research has been made
for visual understanding, its landing in practice has been
relatively slow. Industrial powerhouses and start-ups are
rushing to push the technologies to the markets in dif-
ferent vertical domains, such as the Microsoft Cogni-
tive Services (https://azure.microsoft.com/en-us/services/
cognitive-services/). Face recognition is arguably the most
successful (human understanding) vision technology that
has found its widespread applications in practice. We are
seeingmore andmore emerging real-world application sce-
narios such as retail intelligence, eldercare, workplace safety,
and public security. Human understanding is a common
core requirement in these scenarios, and we expect that the
technologies will be mature in the near future to enable
these application scenarios.
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