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A two-stage approach for passive sound source
localization based on the SRP-PHAT algorithm
m.a. awad-alla,1 ahmed hamdy,2 farid a. tolbah,1 moatasem a. shahin3 and
m.a. abdelaziz1

This paper presents a different approach to tackle the Sound Source Localization (SSL) problem apply on a compact microphone
array that can be mounted on top of a small moving robot in an indoor environment. Sound source localization approaches can
be categorized into the three main categories; Time Difference of Arrival (TDOA), high-resolution subspace-basedmethods, and
steered beamformer-basedmethods. Eachmethod has its limitations according to the search or application requirements. Steered
beamformer-based method will be used in this paper because it has proven to be robust to ambient noise and reverberation to a
certain extent. The most successful and used algorithm of this method is the SRP-PHAT algorithm. The main limitation of SRP-
PHAT algorithm is the computational burden resulting from the search process, this limitation comes from searching among all
possible candidate locations in the searching space for the location that maximizes a certain function. The aim of this paper is
to develop a computationally viable approach to find the coordinate location of a sound source with acceptable accuracy. The
proposed approach comprises two stages: the first stage contracts the search space by estimating the Direction of Arrival (DoA)
vector from the time difference of arrival with an addition of reasonable error coefficient around the vector to make sure that
the sound source locates inside the estimated region, the second stage is to apply the SRP-PHAT algorithm to search only in this
contracted region for the source location. The AV16.3 corpus was used to evaluate the proposed approach, extensive experiments
have been carried out to verify the reliability of the approach. The results showed that the proposed approach was successful in
obtaining good results compared to the conventional SRP-PHAT algorithm.
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I . I NTRODUCT ION

Sound Source Localization (SSL) is an important part of a
robot’s auditory system. It is used by autonomous robots to
locate a target based on acoustic signals gathered by micro-
phones, this can help when other robot’s systems, such as
the vision system, are impaired, this can be due to bad light-
ing conditions or other reasons. The SSL system on the
robot must locate the acoustic target with accuracy even if
the acoustic signals are noisy, in addition, it must be able to
work in a diverse environment. The robot auditory system
is expected to be small enough to fit on the robot and to
be economical, such constraints make it difficult to achieve
the SSL requirements regarding its accuracy and robustness.
The motivation of this work is to develop a robust, accu-
rate, computationally non-intensive SSL system that can be
used on a mobile robot to find the coordinates of a speech
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source in an indoor environment using a small microphone
array.

SSL approaches can be categorized into three main
categories [1]: approaches based on Time Difference of
Arrival (TDOA), approaches based on high-resolution
spectral calculations, and approaches based on maximizing
a beamformer.

TDOA approaches are usually two-step approaches that
involve the estimation of TDOAs between the signals of
pairs of microphones as the first step, then mapping these
TDOAs to an acoustic source location using geometrical
relations. TDOA-based locators are widely used in localiza-
tion applications because of their simplicity in implementa-
tion and their low computational burden, but such locators
relymainly on the accuracy of theTDOAestimation; a small
error in TDOA estimates can lead to significant error in the
location estimation.

Several efforts have been done and reported in the
literature in order to overcome the limitations of the
TDOA-based locators such as [2–10] which focused on
increasing the robustness of the locator to ambient noise
and reverberation. However, it is very difficult to obtain,
using computationally viable algorithms, accurate acoustic
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Fig. 1. Proposed localization scheme.

Fig. 2. Search boundary in the xy plane.

location especially when small size microphone arrays are
used.

The second category is the MUSIC-based locators. The
MUSIC algorithm is a high-resolution spectral analysis
algorithm that has been extensively used, and its deriva-
tives [11–14], in speaker localization tasks. Originally it was
intended for narrowband signals, but several modifications
have extended their use to wideband signals such as those
of audio signals. This class of algorithms, although having
high resolution, suffer from the very high computational
load. Even though there exists some efforts to reduce this
computational burden, still all MUSIC-based algorithms
need eigenvalue or singular value decompositions which
are computationally extensive operations [15]. This com-
putational limitations limit the use of such algorithms in
commercial compact microphone arrays.

The beamforming-based methods search among possi-
ble candidate locations for the location that maximizes a
certain function. The most successful and used algorithm
in this category is the SRP-PHAT algorithm which finds
the location that maximizes the SRP-PHAT function [16].
This algorithm has proven to be robust to ambient noise
and reverberation to a certain extent. The main limita-
tion of algorithms in this category is the computational
burden resulting from the search process. The works of
[17–23] are some of the efforts in the literature to improve
the computational burden of the SRP-PHAT algorithm;
however, they involve iterative optimization or statistical
algorithms which can be complicated to implement. There

Fig. 3. Localization system’s geometry.

Table 1. Microphone locations of AV16.3 first array.

Microphone no. X(m) Y(m)

m1 −0.1 0.4
m2 −0.07071 0.32929
m3 0 0.3
m4 0.07071 0.32929
m5 0.1 0.1
m6 0.07071 0.47071
m7 0 0.5
m8 −0.07071 0.47071

Table 2. Algorithm input parameters.

N r(m) σ1(rad) Window Length (mSec)  overlap

1000 3 0.1 100 50

are other limitations to the SRP-PHAT algorithm other
than its computational burden that can affect the localiza-
tion estimate and its resolution. High levels of noise and
reverberation can lead to an unsatisfactory location esti-
mates; moreover, discrete calculations involved in calcu-
lating the SRP-PHAT function can lead to a wrong loca-
tion estimate; a wrong location can have slightly higher
or similar SRP-PHAT value compared to that of the true
location. The source of such errors is due to discrete cal-
culations resulting from: low sampling frequency, using the
FFT algorithm inGCC-PHATestimation and interpolation,
[24–27] addressed these limitations.

In this paper, a two-stage mixed near-field/far-field
approach is adopted. First, the far-field model is adopted
to estimate the Direction of Arrival (DoA) of the acous-
tic source in the closed form, then an uncertainty bound is
applied to this DoA to form, along with a predefined search
radius, a search region. The SRP-PHAT algorithm is applied
on this contracted search region to extract the coordinates
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Table 3. Variance of the RMSE.

σ 2 × 10−3

Segments

Locations 4.97 20.5 5.96 13.6 11.7 4.6 5.23 8.08 11.5 23.1
30.4 24.2 38.2 26.7 36.9 63.3 31.7 28.8 13.9 16.5
50.3 47.2 46.3 41.9 35 52 41.4 37.7 44.8 61.1
30.5 7.31 36.3 30.4 32.2 12.5 18.1 39.5 62.9 32.4
3.57 0.833 15.1 32.7 44.2 43.6 48.4 1.47 5.42 31.7
10.9 10.5 13.2 9.84 11.7 15.2 7.44 10.4 32.1 4.04
22.8 39.3 42 22.2 23.2 21.4 37.7 31.6 43.6 17.7
22.2 28.3 19.9 19.1 9.89 16.1 15.9 5.66 6.88 47
31.6 28.9 18.2 16.7 8.83 40.8 26.9 32.7 10.9 −
30.6 7.06 33.9 45.5 34.7 107 24.2 28.5 38.7 33.3
34.1 264 65.6 50.2 21 42.2 39.6 44.8 84.4 12.6
24.1 53.3 56.5 50.1 35.1 41.7 43.6 28.1 30.4 61.9
7.78 70.4 86.6 33.7 8.52 8.54 9.53 19.6 43.5 20.3
18.3 18.5 14.1 23.7 8.93 16.7 24.3 22.8 30.2 17.7
65 48.6 42.7 36.5 30.9 29.8 27.1 36.5 31.6 48.3
58.7 37 68.5 88.7 83.6 56.2 53.3 93.8 68.3 94.6

Fig. 4. Results for location 1.

of the acoustic location. This approach has several merits:
the search region is contracted to a smaller one with a very
high degree of confidence that the acoustic source lies in it,
this speeds up the SRP-PHAT search. Moreover, it would be
highly unlikely that in the contracted search region would

exist several maxima; therefore, the peak power found in
that region would be that of the true source location. The
main contribution of this work is finding a simple and effec-
tive way to contract the search region of the SRP-PHAT
algorithm. This would make the already robust SRP-PHAT

Fig. 5. Results for location 2.
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Fig. 6. Results for location 3.

Fig. 7. Results for location 4.

algorithm faster, hence, can be easily implemented. More-
over, since the search region is contracted, this could pro-
vide higher resolution in the estimated location. Finally, the
region contraction process is carried out in one step in the
closed form as opposed to similar approaches mentioned in
the literature survey.

This paper is organized as follows: after this introduc-
tion, Section 2 details the proposed approach and explains
the two stages of the algorithm. The results are then showed
and analyzed in Section 3. Finally, Section 4 concludes this
paper.

I I . PROPOSED LOCAL IZAT ION
APPROACH

A two-stage approach to the acoustic localization problem
is suggested. The aim is to minimize the search area for
the SRP-PHAT algorithm and increase the reliability and
accuracy of the localization system especially when using
low-cost compact microphone arrays. The search area is
minimized by estimating the DoA of the acoustic location

and then forming a boundary around this estimated DoA
according to the confidence level of this estimation along
with the range of the microphone array. This can signifi-
cantly reduce the number of maxima in the function since a
majority of the original area has been eliminated as a possi-
bility that the acoustic source originated from it. Therefore,
the maximum found by the SRP-PHAT algorithm in this
minimized area is most likely to be the only dominant peak
and hence represents the true location; moreover, this is
done in just one step, as the DoA can be estimated in the
closed form, unlike optimization algorithms that can spend
several iterations to find the peak, that if they did not get
stuck in a local maxima. Figure 1 shows the idea of the
localization approach.

The DoA obtained from subsection A, in the closed
form, is an estimate of the true DoA, this is due to several
reasons, such as:

• The TDOAs are inaccurate.
• The equations from the previous section are derived based
on the far-field assumption; therefore, the closer the sound
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Fig. 8. Results for location 5.

Fig. 9. Results for location 6.

source is to the microphone array the more the error will
be in the DoA estimate.

• Microphone array geometry can affect the DoA estimate.
• Low sampling frequency and discrete calculations.

Lets assume that the DoA estimate is contaminated with
a zero-mean Gaussian noise ε with a standard deviation σ .
The standard deviation is dependent on the inaccuracies in

the systemmentioned above and hence can be estimated by
analyzing the system’s errors or through experiments on the
localization system.

θ̂ = θ − ε1 (1)

φ̂ = φ − ε2 (2)

Fig. 10. Results for location 7.
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Fig. 11. Results for location 8.

Fig. 12. Results for location 9.

where φ̂ and θ̂ are the true azimuth and elevation angles,
respectively. φ and θ are the estimated azimuth and
elevation angles, respectively, obtained from subsection
A. By sampling N1 points from the normal distribution
N1(0, σ 2

1 ) and N2 points from N2(0, σ 2
2 ), where σ1 and

σ2 are the standard deviations representing the errors in
the azimuth and elevation, respectively, N1 × N2 permuta-
tions of “possible” azimuth and elevation angles are formed.
Applying these angles to equation 3 assuming N3 points
of r ∈ [0, rmax], where rmax is the acoustic range of the

Fig. 13. Results for location 10.
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Fig. 14. Results for location 11.

Fig. 15. Results for location 12.

microphone array, a point cloud of N1 × N2 × N3 xyz
points is produced. Figure 2 shows an example of the search
boundary produced from equation 3 in the 2D plane.⎡

⎣x
y
z

⎤
⎦ = r ×

⎡
⎣sin(θ) cos(φ)sin(θ) sin(φ)

cos(θ)

⎤
⎦ (3)

A) DoA in the closed form
Consider a microphone array consisting of M microphone
elements each at location m(mx,my,mz) arranged in the
xyz plane in any arbitrary geometry as shown in Fig. 3,
it is required to estimate the direction vector −→u pointing
at the acoustic source X. The DoA can be estimated from

Fig. 16. Results for location 13.
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Fig. 17. Results for location 14.

Fig. 18. Results for location 15.

the TDOA between pairs of microphones, where there exist
M(M − 1)/2 pairs of microphones.Let −→u be a unit direc-
tion vector pointing at the direction of the sound source:

−→u =
⎡
⎣cos(θ) cos(φ)cos(θ) sin(φ)

sin(θ)

⎤
⎦ =

⎡
⎣ux
uy
uz

⎤
⎦ (4)

where φ is the azimuth and θ is the elevation.

The relationship between this direction vector and the
TDOAs can be defined:

τij(φ, θ) =
−→u · (−→mi − −→mj)

c
(5)

=
⎡
⎣cos(θ) cos(φ)cos(θ) sin(φ)

sin(θ)

⎤
⎦ ·

⎛
⎝

⎡
⎣xi
yi
zi

⎤
⎦ −

⎡
⎣xj
yj
zj

⎤
⎦

⎞
⎠ · 1

c
(6)

Fig. 19. Results for location 16.
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let

S =
⎛
⎝

⎡
⎣xi
yi
zi

⎤
⎦ −

⎡
⎣xj
yj
zj

⎤
⎦

⎞
⎠

T

and cτij = d.

Rearranging equation 6:

d = S−→u (7)

Equation 7 is an over-determined equation because there
are M(M − 1)/2 and only three variables; therefore,
equation 7 can be solved in the closed-form using a simple
least squares solution.

−→u = −S+d = −(STS)−1STd (8)

where S+ is the pseudoinverse of S.
After calculating the direction vector−→u the azimuth and

elevation angles can be easily calculated:

φ = a tan 2
(
uy
ux

)
(9)

θ = sin−1(uz) (10)

Using the a tan 2 function in equation 9 allows for an effi-
cient way to find theta in the [−π ,π] range provided that
the microphone array has its elements distributed in the
xy plane. In [28], they assumed that the elevation angle is
equal to zero (for microphone array with all its elements in
the xy plane) and estimated cos(θ) = 1 and hence estimated
the azimuth directly from the relations: φ = cos−1(ux) or
φ = sin−1(uy). It was found that when assuming that the
elevation is zero (which is not necessarily the case) the pre-
vious two relations will not yield the same azimuth angle,
this is because the elevation angle greatly influence the
azimuth estimate. Using equation 9 provides better estimate
of azimuth since no assumptions aremade that the elevation
is zero, but rather the elevation term cos(θ)will cancel each
other.

The derivations of the previous equations can be found
at [28,29].

B) The SRP-PHAT algorithm
The SteeredResponse Power (SRP) algorithm is a beamformer-
based algorithm that searches for the location that maxi-
mizes the SRP function among a set of candidate locations.
The Phase Transform (PHAT) weighting function has been
extensively used in literature and has been shown to work
well in real environments, it provides robustness against
noise and reverberation. The SRP-PHAT algorithms com-
bines the benefits of the SRP beamformer and the robust-
ness of the PHAT weighting function, making it one of
the most used algorithms for the acoustic localization task.
The work of [30] showed that the SRP function is equiva-
lent to summing all possible GCC combinations; therefore,
the SRP-PHAT function can be written in terms of the

Generalized Cross Correlation (GCC) as:

PPHAT(X̄) =
M(M−1)/2∑

ij

GCC − PHAT(τij(X̄))

i = 1 : M, j = 2 : M, j > i (11)

whereM is the number of microphones in the array. τij(X̄)
is the theoretical time delay between the signal received at
microphone i and that at microphone j given the spatial
location X̄ and is calculated from the geometrical formula,
given the spatial locations of the microphones m̄ = [x, y, z]
and the speed of sound c:

τij(X̄) =
∥∥X̄ − m̄i

∥∥ − ∥∥X̄ − m̄j
∥∥

c
(12)

and GCC − PHAT(τij(X̄)) is the value of the GCC-PHAT
function at the theoretical time delay τij(X̄). The GCC-
PHAT function can be computed in the frequency domain
as:

GCC − PHATij(ω) = ψPHAT(ω)Si(ω)S∗
j (ω) (13)

In equation 13, Si(ω) and Sj(ω) are the acoustic signals in the
frequency domain computed by applying the Fast Fourier
Transform (FFT) to the time domain signals si(τ ) and sj(τ )
recorded from microphones i and j, respectively. ∗ is the
conjugate operator. ψPHAT is the PHAT weighting function,
it is defined as the magnitude of the Cross Power Spectrum
between the twomicrophones signals and can be written as:

ψPHAT = 1
|Si(ω)S∗

j (ω)|
(14)

Substituting 14 into 13 and converting to the time domain:

GCC − PHATij = F−1

[
Si(ω)S∗

j (ω)

|Si(ω)S∗
j (ω)|

]
(15)

where F−1 is the Inverse Fourier Transform.
Finally, a grid of candidate locations X̄ is formed and

used to evaluate the SRP function in equation 11. The can-
didate location that produces the highest “Power” is said to
be the location of the sound source.

X̄ = argmax(PPHAT(X̄)) (16)

Finding X̄ that maximizes the SRP-PHAT function in the
previous equation is a computationally intense problem.
The function has several local maxima and a fine grid has
to be formed and searched over to get reliable results. In
order to alleviate the computational burden of the grid
search, optimization-based techniques have been adopted
and reported in the literature; however, there is no guaran-
tee that these algorithms would find the global maximum
of the function; moreover, due to factors such as excessive
noise and reverberation or due to discrete calculations and
interpolations involved in calculating the SRP-PHAT func-
tion, the global maximum of the function can deviate from
the true location considerably.
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I I I . RESULTS

In order to evaluate the proposed approach, the “Audio
Visual AV16.3” corpus was used [31]. The audio corpus of
the AV16.3 is recorded in a meeting room context by means
of two 0.1m radius Uniform Circular Arrays (UCA) with
eight-microphone elements each at a sampling frequency
of 16 kHz. Table 1 shows the xyz locations of the first of the
two arrays, the reference point is the middle point between
the two arrays. The two UCAs are at plane Z= 0. The
audio corpus consists of eight annotated sequences in a vari-
ety of situations, for this work sequence “seq01-1p-0000” is
used. It was recorded for the purpose of SSL evaluation,
the recording spans over 217 s for a single speaker at 16 dif-
ferent locations, static at each location and recording 10–11
segments at each location.

In the proposed approach the user is required to input
only minimal settings namely: the number of points N =
N1N2N3 which will be used to fill the boundary area/volume
(for 2D or 3D), the maximum range of the microphone
array r and the standard deviations σ1 and σ2 that represent
the error in the estimated azimuth and elevation, in addi-
tion to the frame window length and percentage overlap if
required.

For the experiments presented here these settings are
shown in Table 2. Since the microphones in the UCA of the
AV16.3 corpus are distributed along the x and y axes only
(z= 0), it is impossible to calculate the elevation part of the
DoA vector; therefore, the boundary area is formed using
the azimuth only hence forming a 2D area represented by a
triangle as shown in Fig. 2, setting θ = 0 in equation 3, x and
y are calculated from x = rcos(φ) and y = rsin(φ) and the z
component is appended as uniform randomvalues covering
from the floor to the ceiling of the room z ∈ U(zmin, zmax).
The z component was added this way and was not ignored
because experiments showed that it had significant effect on
the overall localization results. InTable 2,N is the totalnum-
ber of points that are distributed in the boundary volume;
the distribution around the azimuth is a Gaussianwith stan-
dard deviation σ1 while the z values follow a uniform distri-
bution from the floor to the ceiling of the room and has the
same lengthN and was appended to the x and y values. The
window used for the Fourier analysis is a Hanning window.

The measure used for the evaluation of the proposed
approach is the Root Mean Square Error (RMSE) between
the estimated location and the ground truth available in the
AV16.3 corpus.

Since the proposed approach uses random numbers to
fill in the search boundary, it is expected that this approach
would result in different results at each run; therefore, each
experiment at each location was run 1000 times and the
RMSE of each run was recorded and the variance of these
n= 1000 runs was calculated and reported to show that the
proposed approach has a low variance, i.e. will give con-
sistent results at each run. Moreover, the minimum and
maximum as well as the mean of these 1000 runs were
reported and compared to the results of the conventional
SRP-PHAT algorithm.

As mentioned, the results from the proposed approach
were compared to those of the conventional SRP-PHAT
algorithm. The settings of the SRP-PHAT algorithm were
the same as our proposed approached, i.e. the same win-
dow and overlap. A mesh-grid of 125 000 points in 3D was
formed and fed to the SRP-PHAT algorithm for the search
process, no optimizations were used in this search pro-
cess. The conference room of the AV16.3 audio corpus was
8.2m × 3.6m × 2.4m, hence the mesh-grid was formed by
taking 50 linearly spaced points along the x, y, and z axes
creating a 50 × 50 × 50 grid.

The variance resulted from the experiments on all 16
locations and 10 segments for each location is reported in
Table 3. From the table it is clear that the proposed approach
has low variance.

Figures 4–19 show the results for each of the 16 loca-
tions separately. Each figure compares the minimum, max-
imum, and mean RMSE of the proposed approach to that
of the conventional SRP-PHAT algorithm. As it is clear
from the graphs that the proposed approach yields lower
RMSE results, in the majority of cases, than the conven-
tional SRP-PHAT algorithm, even when comparing the
maximum RMSE value. In locations 8,9,12,13,14, and 16 in
Figs 11, 12, 15,16, 17, and 19, it was noticed that the RMSE of
the SRP-PHAT algorithm was in some segments lower than
the maximum RMSE of the proposed approach, this can
be attributed to the low number of points of the proposed
approach as compared to the high number of points used for
the SRP-PHAT algorithm, this and the value of σ can affect
the results; if σ is unrealistically small, i.e. has an overop-
timistic, a search boundary can be formed where the true
source location point lies on the boundaries or even outside
the search area, and because of the Gaussian assumption,
the points near the edge of the boundary are less represented
than those around the mean DoA.

I V . CONCLUS ION

This paper presented a robust approach for the SSL prob-
lem. The proposed approach was developed with the aim to
work with compact microphone arrays at low sampling fre-
quencies and low computational burden, hence making it
suitable to be used with small mobile robots. The proposed
approach is based on a mixed far-field/near-field model,
where as a first step, the DoA vector is estimated in the
closed form using the far-fieldmodel, then, a search bound-
ary is formed based on theDoAvector, the expected error in
the DoA estimates and the microphone array range, finally,
based on the near-field model, this boundary is searched
using the conventional SRP-PHAT algorithm to find the
source location. The AV16.3 corpus was used to evaluate
the proposed approach, extensive experiments have been
carried out to verify the reliability of the approach. The
results showed that the proposed approach was success-
ful in obtaining good results compared to the conventional
SRP-PHAT algorithm eventhough only 1000 points were
used for the search process as opposed to 125 000 used by
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the SRP-PHAT algorithm. Minimum user input is required
to run the algorithm, namely, the number of points to
fill the search boundary, the microphone array range and
the expected error in the DoA estimation. Obviously, by
increasing the number of points in the search boundary, the
resolution will increase but so will the number of functional
evaluations and hence the computational burden, but it was
shown that even while using small number of points, good
results can be obtained. The expected error in the DoA esti-
mation σ1 and σ2 depends on factors related to the micro-
phone array system as well as factors related to the envi-
ronment. The number of microphone elements in the array,
their types, and the array’s geometry are some of the fac-
tors that affect the DoA estimation; moreover, factors such
as the sampling frequency anddiscrete calculations andoth-
ers contribute to this error and hence affect the values of σ1
and σ2. In addition, noise and reverberation and other envi-
ronmental factors obviously affect σ1 and σ2 and cannot be
easily predicted. All these factors make the calculation of σ1
and σ2 rather a difficult task. In this work, σ1 was figured
by observing some experiments and figuring out the DoA
error of each experiment. Finally, it should be mentioned
that in the experiments carried out in this paper, no efforts
have been done to improve the SNR of the signals except
for a simple second-order band pass filter (300Hz–6 kHz)
and this was applied to the proposed approach and to the
SRP-PHAT algorithm. It is expected that using some further
denoising techniques would further improve the results;
moreover, it is possible to use some optimization techniques
to search for the peak power in the search boundary instead
of performing a point by point search.
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