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An analysis of speaker dependent models in
replay detection
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Most research on replay detection has focused on developing a stand-alone countermeasure that runs independently of a speaker
verification system by training a single spoofed model and a single genuine model for all speakers. In this paper, we explore the
potential benefits of adapting the back-end of a spoofing detection system towards the claimed target speaker. Specifically, we
characterize and quantify speaker variability by comparing speaker-dependent and speaker-independent (SI) models of feature
distributions for both genuine and spoofed speech. Following this, we develop an approach for implementing speaker-dependent
spoofing detection using aGaussianmixturemodel (GMM) back-end, where both the genuine and spoofedmodels are adapted to
the claimed speaker. Finally, we also develop and evaluate a speaker-specific neural network-based spoofing detection system in
addition to the GMM based back-end. Evaluations of the proposed approaches on replay corpora BTAS2016 and ASVspoof2017
v2.0 reveal that the proposed speaker-dependent spoofing detection outperforms equivalent SI replay detection baselines on
both datasets. Our experimental results show that the use of speaker-specific genuine models leads to a significant improvement
(around 4 in terms of equal error rate (EER)) as previously shown and the addition of speaker-specific spoofed models adds a
small improvement on top (less than 1 in terms of EER).
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I . I NTRODUCT ION

Automatic speaker verification (ASV) is the process of ver-
ifying a speaker’s identity based on their voice [1]. The
remote nature of ASV systems makes them highly vul-
nerable to spoofing attacks, which aim to mimic the valid
claimants. Spoofing attacks are a serious threat, where an
attack could lead to a severe loss to credibility and signifi-
cant financial costs.
Spoofing attacks, which can target a system before or

after the microphone sensor, and are referred to as physical
attacks and logical attacks, respectively [1]. Logical attacks
need system-level access and are somewhat less of a threat
and are not the main focus of this paper.
Spoofing attacks can be broadly divided into one of four

different categories: impersonation, replay, speech synthe-
sis, and voice conversion. Among them, replay attacks are
known to be the simplest attack type and can be easily
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initiated compared to the other three types [1]. Moreover,
state-of-the-art ASV systems have been shown to be highly
vulnerable to replay attacks [2].
Anti-spoofing countermeasures can either be stan-

dalone, in which case they work independently of an ASV
system, or integrated, in which case they try to make the
ASV system itself more robust to the spoofing attack. The
integrated approach allows the use of shared sub-systems
(i.e., front end, modeling techniques, etc.), which could be
computationally efficient, while a standalone approach can
operate independently without modifying the ASV system
and also allows the use of different front-ends and model-
ing techniques. More importantly, an integrated approach
allows for more information to be brought to bear on the
spoofing detection problem (and possibly the ASV problem
as well). In particular, an integrated approach can make use
of prior knowledge about the claimed speaker’s characteris-
tics, which would be available to the ASV system, to detect
potential spoofing attacks [3].
Few studies have investigated the integrated approach

for speech synthesis, voice conversion, and replay spoofed
speech [4–7]. In [4], this is achieved by introducing an
additional common spoofed model into an ASV system
and in [5, 6], i-vectors and a probabilistic linear discrimi-
nation analysis (PLDA) back-end are used to formulate a
joint spoofing detection, and ASV system. The study on
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Fig. 1. Summary of principal components of a spoofing detection system. Here VAD block is often optional.

integrated spoofing detection with the use of shared single
front-end for ASV and replay detection with score fusion
has been reported [7].
A standalone replay detection system typically consists

of a front-end and a back-end classifier to identify whether
a given utterance is genuine or spoofed and the key compo-
nents of a spoofing detection system are shown in Fig. 1. The
most commonly employed front-ends in spoofing detec-
tion systems are typically based on spectral features, such
as spectral centroid magnitude coefficient [8], constant-Q
cepstral coefficient (CQCC) [9], single frequency filter cep-
stral coefficient [10], linear prediction cepstral coefficients,
inverse-Mel cepstral coefficients [11], rectangular filter cep-
stral coefficients [8], scattering coefficients [11], spectral
slope features [12], cochlear features [13, 14], and voice
source features [15, 16]. Among them, uniform linear fre-
quency filters have shown to be superior in capturing the
replay artefacts than the human auditory inspiredMel scale
and constant-Q scale filters [8].
In addition, a number of phase-based front ends, such as

instantaneous frequency features [15, 17], frequency mod-
ulation [18], modified group delay (MGD) [19], and rel-
ative phase shift have also been investigated [19]. Finally,
it can be observed from the literature that long-term
features, such as long-term spectral statistics [20], fre-
quency domain linear prediction features [21], and state-
of-the-art spectro-temporal modulation features (STMF)
[22] have also been successfully used in replay detection
systems.
Among the classifiers that have been investigated, such

as Gaussian mixture models (GMMs), support vector
machines, PLDA, and random forest [23], GMM classifier
remains the dominant back-end in replay detection [24].
Additionally, several variants of neural network architec-
tures have also been investigated for use as the front-end
[25, 26], the back-end [27, 28], and in an end-to-end [29]
manner. Attention mechanisms [29, 30] and residual net-
works [31] have shown the most promise for replay detec-
tion because they help to emphasize salient regions of the

input and help the network to generalize well for the small
amount of training data.
All the feature sets employed in spoofing detection

also exhibit variability due to a number of other fac-
tors, such as acoustic variability (including channel effects),
speaker variability, phonetic variability, etc. These sources
of unwanted variability can subsequently lead to less effec-
tive models and reduce the accuracy of spoofing detec-
tion systems. To mitigate this, the unwanted variability can
either be incorporated into the models or can be normal-
ized. This is supported by recent work whereby the use of
cepstral mean variance normalization (CMVN) improved
the reliability of spoofing detection across the diverse vari-
ations in replay attacks [8, 24]. However, in our previous
work, we have shown that the cepstral mean and vari-
ance have replay related information [20]. A less explored
approach is the incorporation of this variability into the
back-end models. Authors have studied the consequences
of the phonetic variability in the spoofing detection system
andproposed a framework to incorporate the phonetic vari-
ability into the system, which is showed highly beneficial
[32] to the replay detection task.
The authors have previously demonstrated that incor-

porating speaker variability into the back-end in the form
of speaker-specific genuine speech models with spectral
feature front-ends, is highly effective and can significantly
improve spoofing detection performance [3].
In this paper, we address the natural follow on question

of whether further improvements in spoofing detection can
be obtained by making both genuine and spoofed models
speaker-specific. Specifically, this study is motivated by the
observation that when the genuine model (of the feature
distribution) is specific to the target speaker, it has less vari-
ability. Subsequently, if the variability in the spoofed model
is also reduced, by making it speaker specific, can further
improvements in spoofing detection be obtained?
In order to answer this question, here we: (a) attempt

to quantify speaker variability; (b) investigate if speaker
variability affects genuine and spoofed models differently;
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(c) compare the discriminability of speaker-specific distri-
butions of genuine and spoofed speech features and the
corresponding speaker-independent (SI) distributions; and
(d) quantify the improvement in spoofing detection per-
formance for spectral and non-spectral feature front-ends,
when incorporating speaker specific-spoofed models, one
relying on a generative and another one on discriminative
paradigm.
Finally, we also attempt to address the limitation that

speaker specific spoofed data may not be available during
system development by investigating the use of simulated
spoofed data for training speaker specific models.
The rest of the paper is organized as follows: In section II,

an analysis of speaker variability is provided. Then the
two proposed speaker-dependent spoofing detection sys-
tems using the GMM and neural network back-ends are
explained in sections III and IV, respectively. Section V
describes the database preparation and section VI provides
the details of front-end features. The key experiment set-
tings and evaluation techniques are explained in sectionVII
and the results and discussions are given in section VIII.

I I . ANALYS IS OF SPEAKER
VAR IAB I L I TY

The analyses of speaker variability presented in this section
aimed to address the following: (a) Is speaker variability
present in both genuine and spoof class models?; (b) Does
speaker variability affect the genuine and spoofed models
differently?; and (c) Are speaker-specific distributions of
genuine and spoofed speech easier to distinguish than their
corresponding SI distributions?

A) Visualizing the speaker variability in the
feature space
Initially, we visualize the distribution of features from both
genuine and spoofed speech corresponding to multiple
speakers by projecting the feature space onto a 2-D plane
(refer Fig. 2) via t-SNE. Based on this, we can observe dis-
tinct clustering of the features corresponding to different
speakers in both genuine and spoofed speech indicating
that speaker variability is a significant factor in both. More-
over, it is interesting to observe that the speaker clusters
are somewhatmore distinct in genuine speech features than
in spoofed speech features suggesting that genuine speech
models may be more affected by speaker variability.
The above visualization just shows a very abstract idea

about speaker variability. To quantify the speaker variability,
we should analyze the differences in probabilistic distri-
butions over the feature space, which captures the differ-
ences in the acoustic characteristics of different speakers in
genuine and spoofed classes.

B) Quantifying the speaker variability
While the above visualization (Fig. 2) provides a clear indi-
cation that speaker variability affects both genuine and
spoofed speech, it makes no attempt to quantify the degree
of variability. In order to do so, we now model the underly-
ing feature distributions for each speaker and estimate the
differences between these distributions. Specifically, given
the joint distribution P(x, y|spk) of features x and class y
for each speaker spk, it can be expected that the differences
in the speech characteristics between two speakers, spk = i
and spk = j will correspond to the differences between the

Fig. 2. Feature space (STMF) projected onto 2-D via t-SNE indicates the presence of clusters corresponding to speakers in both genuine and spoofed speech from
the ASVspoof2017 v2.0 corpus. The same markers are used for corresponding speakers in genuine and spoofed classes.
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distributionsPi = P(x|spk = i) andPj = P(x|spk = j). For
example, if speaker variability is a significant confounding
factor for a model, we would expect that the differences
between the distributions corresponding to any two tar-
get speakers to be greater than the differences between
the distribution of a target speaker, P(x|spk) and the SI
distribution, P(x).
In this work, the differences between distributions are

estimated as the Kullback–Leibler (KL) divergence between
the corresponding GMMs. KL divergence is generally used
to measure the distance between two probabilistic models,
(P1,P2). Given a D-dimensional feature vector, XεR

D, the
KL divergence is of P2 from P1 is defined as [33]:

KL(P1,P2) =
∫
X
P1(X) ln

(P1(X)

P2(X)

)
dX (1)

As KL(P1,P2) is an asymmetric divergence measure, i.e.,
KL(P1,P2) �= KL(P2,P1), a symmetric KL divergence,
SKL, is defined as [33]:

SKL(P1,P2) = 1
2
(KL(P1,P2) + KL(P2,P1)) (2)

A Monte Carlo approximation-based symmetric KL diver-
gence [34] is used to measure the distance between two
probability distributions. Average inter-speaker KL diver-
gence (between a target speaker’s distribution and all other
target speakers’ distributions) of a speaker is estimated
to measure the separation between speaker distributions,
P(x|spk). The average inter-speaker KL divergence, IKL, for
each speaker, i, is given as follows:

IKL(i) = 1
Nspk − 1

Nspk∑
j=1

SKL(Pi,Pj); i �= j (3)

where Nspk is the total number of claimed speakers.
SKL(Pi,Pj) is the KL divergence between ith and jth speaker
distributions as shown in equation 2. In addition to that, the
KL divergence between a target speaker’s feature distribu-
tion and the SI distribution, UKL, is then given by:

UKL(i) = SKL(P(x|spk = i),P(x)) (4)

where i is a speaker and P(x) is the SI distribution and
P(x|spk = i) is ith speaker distribution.
All the feature distributions are modeled as four mix-

ture GMMs of the STMF space for this analysis. Target
speaker’s feature distributions are then estimated via Maxi-
mum a Posteriori (MAP) adaptation from SI distributions.
Genuine and spoofed speaker distributions and SI distribu-
tions are trained separately with genuine and spoofed data,
respectively.
The average inter-speaker KL divergences (IKL as in

equation (3)) and the KL divergence between a target
speaker’s feature distribution and the SI distribution (UKL
as in equation (4)), for multiple speakers, are compared
in Fig. 3 for both genuine and spoofed classes, separately.

Fig. 3. Symmetric KL divergence for speaker-dependent distributions and SI
distributions of probability distributions for all speakers in (a) genuine class and
(b) spoofed class. This is used to quantify the difference between different speak-
ers as well as the difference between speaker-specific and SI models (speaker
variability). The STMF are used as the front-end in this analysis carried out on
the ASVspoof2017 v2.0 corpus.

Additionally, the mean values of both measures across all
considered speakers also drawn in Fig. 3. This comparison
was carried out on the ASVspoof2017 v2.0 speaker-specific
enrolment set (refer to section IV for details about the
database and the enrolment set). From Fig. 3, it can be
seen that the average inter-speaker KL divergence between
one speaker and all other speakers (IKL) is greater than
the one between that speaker and SI distributions (UKL),
for both genuine and spoofed classes, which indicates that
there is clear separation between probability distributions
corresponding to different target speakers.
Also, genuine and spoofed classes showed different

degrees of speaker variability. Specifically, (1) KL between
genuine speaker distribution versus genuine SI distribu-
tion is higher than spoofed speaker distribution versus
spoofed SI distribution for each corresponding speaker
(refer Figs. 3(a) and 3(b), UKL‘s and mean of UKL); (2)
inter-speaker KL divergences of genuine classes are greater
than inter-speaker KL divergences of spoofed classes (refer
Figs. 3(a) and (b), IKL‘s andmean of IKL). Thus, the implica-
tion of this observation can be interpreted as spoofed class
containing less speaker variability than genuine which is in
line with our feature space visualization.

C) Analysis of speaker-specific information in
the features
In addition to quantifying the degree of speaker variabil-
ity based on models of the feature distributions of target
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Table 1. Speaker identification accuracies on genuine speech and
replayed speech evaluated on ASVspoof2017 v2.0 using a GMM-UBM

speaker identification system.

Features Genuine () Replay ()

STMF 94.67 37.33
CQCC 99.67 58.67

speakers, we also quantify it in terms of how well speaker
identification can be carried out. Specifically, we build sim-
ple GMM-based speaker identification systems on both
genuine speech as well as replayed speech and use the
speaker identification accuracy as an indicator of the level
of speaker variability.
The speaker identification systems, for both genuine and

replayed speech, were set up as 512 and 4 mixture GMM-
universal background model (UBM) systems using both
CQCC and STMF front-ends, respectively. The accuracies
of these systems are reported in terms of identification rates
(ratio of number correctly identified to total number of test
utterances) and estimated on held out test sets compris-
ing 20 utterances per speaker each, for genuine speech and
spoofed (replayed) speech. There were a total of 15 speak-
ers in the test set, which corresponds to a chance accuracy
of ∼6.6. From the results reported in Table 1, it can be
seen that for both genuine speech and replayed speech,
the speaker identification rate is significantly higher than
chance indicating that a high level of speaker variability
is present in the features. It is also interesting to note that
the speaker identification rate on genuine speech is much
higher than replayed speech.

D) Analysis of model separation: genuine
versus spoofed classes
Even though the analyses in the previous three sections
strongly suggest that both genuine and spoofed speech is
greatly affected by speaker variability, it does not directly
imply that the use of target speakers’ genuine and spoof dis-
tributions will lead to better spoofing detection. In order
to discern this, we now quantify the ability to discrimi-
nate between genuine and spoofed speech with both target
speaker’s distributions and SI distributions.
It should be noted that a set of GMMs that perform well

as a classifier will have a large degree of mutual dissimi-
larity and consequently a large KL value when compared
with a set of GMMs that are more similar to each other. To
analyze the discriminability three KL divergence measures
are estimated. (1) KL divergence between genuine SI distri-
bution (genuine SI) and spoofed SI distribution (spoofed
SI), DUKL, is given by:

DUKL = SKL(P(x|y = G),P(x|y = S)) (5)

where features x and class ywith two classes genuine, G and
spoofed, S; (2) the spoofed SI and each of the genuine tar-
get speaker’s distributions (genuine speaker models), D1KL,

(a)

(b)

Fig. 4. Comparison of KL divergence between genuine and spoofed models of:
(a) STMF and (b) CQCC features for both SI distributions and speaker-depen-
dent distributions on the ASVspoof2017 v2.0 corpus. This is used to quantify
the discriminability between genuine and spoofed speech (for each speaker) and
compare between speaker-specific and speaker-independent models.

as follows:

D1KL(i) = SKL(P(x|y = G, spk = i),P(x|y = S)) (6)

where features x and class y of genuine, G for ith speaker, spk
and spoofed, S; (3) each of the genuine speaker models and
each of the spoofed speaker models, D2KL, is given by:

D2KL(i) = SKL(P(x|y = G, spk = i),P(x|y = S, spk = i))
(7)

where features x and class y of genuine, G and spoofed, S
for ith speaker, spk. These three KLmeasures, such asDUKL,
D1KL, and D2KL are compared in Fig. 4 for two different
features, such as CQCC and STMF.
As observed in Fig. 4, both D1KL and D2KL constantly

show higher KL than DUKL for both CQCC and STMF fea-
tures. Also the difference between D2KL and D1KL is not
considerably higher than that betweenDUKL andD1KL. This
might be due to the scarcity of speaker-related informa-
tion in the spoofed class over the genuine class which is
in line with the observation from Fig. 3. Taken together,
the results shown in Table 1 and Fig. 4, we can notice that
short-term CQCC have rich speaker-related information
than long-term STMF.
The analysis of this section concurs with the observa-

tions made in the case of feature distributions and further
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support that the speaker variability is a significant con-
founding factor and make use of these speaker-dependent
distributions for spoofing detection will be beneficial. Thus,
we proposed a framework based on the fact that the use
of claimed speaker genuine and/or spoofed models extin-
guishes speaker variability and leads to better discrimina-
tion between genuine and spoofed classes.

I I I . PROPOSED SPEAKER
DEPENDENT SPOOF ING
DETECT ION – GMM BACKEND

Current replay detection systems typically employ a “gen-
uine” speech model and a “spoofed” speech model that is
common across all test utterances and independent of the
claimed target speaker (refer Fig. 5(a)). Such SI models of
genuine and spoofed speech would always be affected by
speaker variability, since theywould be trained on data from
multiple speakers. In this section, we introduce a GMM
back-end for spoofing detection that employs speaker-
dependent genuine and spoofing models that are specific to
each claimed target speaker.

(a)

(b)

(c)

Fig. 5. An overview of SI and speaker-dependent GMM-based spoofing detec-
tion systems: (a) SI genuine and spoofed models; (b) speaker-dependent gen-
uine models and SI spoofed models; and (c) both genuine and spoofed models
are speaker-dependent. Here FE & MT refer the process of feature extraction
and model training.

In the context of replay detection for ASV, the test utter-
ance is always accompanied by a claimed speaker identity
and a genuine speech model specific to the claimed speaker
will not be affected by any speaker variability. Moreover,
enrolment data used to generate speaker models for the
ASV system can also be utilized to train speaker dependent
models of genuine speech for spoofing detection. In our
preliminary study [3], we demonstrated the advantage of
incorporating speaker specific information by adopting this
approach (refer Fig. 5(b)), whereby instead of the common
genuine model (G), we employ claimed speaker dependent
genuine speaker models (GA). In this approach, initially,
a UBM for genuine speech is trained on genuine speech
from multiple speakers, using the EM algorithm. Subse-
quently, claimed speaker dependent genuine models are
adapted from genuine UBM using the enrolment data via
MAP adaptation.
Here we propose the use of speaker dependent spoofed

speech models in addition to speaker dependent gen-
uine models (refer Fig. 5(c)). Specifically, two background
GMMs are initially trained on genuine speech and spoofed
speech frommultiple speakers, using the EMalgorithm, and
are referred to as the genuine universal background model
(G) and spoof universal background model (S), respec-
tively. Following this, claimed target speaker-dependent
models are adapted from the corresponding UBMs using
the relevant genuine and spoofed enrolment data via MAP
adaptation. During the test phase, the log-likelihood ratios
between the claimed speaker models for genuine and spoof
speech are used for classification.

I V . PROPOSED SPEAKER
DEPENDENT DEEP NEURAL
NETWORK BACKEND

GMM based back-ends for spoofing detection have thus
far demonstrated good performance and provided a prin-
cipled method for speaker adaptation. However, in other
speech processing tasks, deep learning-based systems have
also been shown to be highly effective back-ends that can be
adapted to target speakers [35]. In this section, we explore
the efficacy of adapting the final layers of a DNN back-end
for speaker-dependent spoofing detection.
Similar to the training of the GMM back-end, we train

the deep neural network (DNN) back-end in two stages. Ini-
tially, we train a SI DNN back-end to distinguish between
genuine and spoofed speech trained on data from multiple
speakers. This SI back-end is then “adapted” to each target
speaker by retraining the final two layers of the DNN using
only genuine and spoofed data corresponding to that target
speaker (refer Fig. 6).

V . DATABASES AND DATA
PREPARAT ION

We evaluate our system on two datasets that are widely
employed in studies of spoofing detection systems, namely,
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Fig. 6. Speaker-dependent DNN back-ends are obtained by retraining the final
layers of a SI DNN back-end.

the ASVspoof2017 v2.0 dataset [24] and the BTAS2016
dataset [36]. However, in both datasets the training, devel-
opment, and evaluation partitions are non-overlapping in
terms of the speakers. This does not reflect conditions under
which real ASV systems would operate where data from all
target speaker would be present in the training set. Specifi-
cally, ASV systemswill be developed using a certain amount
of enrolment data from each target speaker. Consequently,
we repartition both datasets as shown in Fig. 7 and use a
small portion of the evaluation partition as enrolment data

Fig. 7. Schematic diagram showing the repartitioning of the evaluation set into
enrolment and test sets for both the ASVspoof2017 v2.0 and BTAS2016 corpora.
Training and development partitions are not modified.

and keep the rest of the evaluation partition as a held-out
“test set.” We have strived to keep the this held out test set
as similar as possible to the original evaluation set in terms
of replay configurations (RCs) and conditions.

A) ASVspoof2017 (V2.0) corpus
The evaluation partition of the ASVspoof2017 v2.0 cor-
pora comprises genuine speech corresponding to multi-
ple utterances of 10 passphrases from 24 speakers (same
10 passphrases across all speakers). In addition, replayed
versions of these utterances under 57 different replay con-
ditions (combination of recording device, environmental
acoustic channel, and playback device) from 17 of the 24
speakers are also part of the evaluation partition. In addi-
tion, these 57 RCs are marginalized as low, medium, and
high threats in terms of recording, environment, and play-
back conditions [24].
As noted in Fig. 8, replayed speech was not available

for seven speakers. Consequently, we only use the remain-
ing 17 speakers in our evaluation. When repartitioning this
evaluation set (of 17 speakers) into enrolment and test sets,
we select one utterance corresponding to each passphrase
as the “genuine enrolment set.” The remaining genuine
utterances are incorporated into the held out “test set.”
Of the 57 RCs present in the evaluation partition, only

seven overlap with the train and dev sets. Consequently,
we include the spoofed data corresponding to these seven
replay conditions into the “spoofed enrolment set” and
retain the data corresponding to the remaining 50 unseen
RCs (unseen in terms of training the spoofing detection
models) in the held-out, “test set.” The number of utter-
ances in the enrolment and test sets is highlighted in Table 2.

B) BTAS 2016 corpus
BTAS 2016, a text-independent database, contains gen-
uine and different kinds of spoofing attacks where genuine,
speech synthesis and voice conversion speech samples were
recorded and played back using high-quality devices [36].
We have only used “replay subset” of BTAS for our exper-
iments which comprises replayed versions of the genuine
speech utterances as in [37]. The number of utterances for
each of the train, development and evaluation partitions is
presented in Table 3 and information about speaker data
given in Fig. 9. Unknown RCs are present in the evalu-
ation partition to make the spoofing detection task more
challenging.
Similar to ASVspoof2017 v2.0, we partition the evalua-

tion set of the BTAS corpus into an enrolment set and a test
set by taking 30 genuine and 30 spoofed utterances from
every speaker to form the enrolment set (rest constitute the
“test set’). The data statistics of both data sets are summa-
rized in Table 3. Once again, the enrolment set only contains
known RCs (all unknown RCs are in the test set) and held
out “test set” kept as the same characteristics (in terms of
replay conditions) as the original BTAS 2016 evaluation set.
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Fig. 8. Number of utterances for each speaker in the ASVspoof2017 v2.0 evaluation set. The speaker IDs provided in the dataset are indicated along the x-axis.

Table 2. ASVspoof2017 Version 2.0 [24]

# Utterances #RC

Subset # Speakers Genuine Spoof conditions

Train 10 1507 1507 3
Dev 8 760 950 10
Evaluation Enrolment set* 17 170 1169 7

Test set* 17 1058 10 839 50

*The details of “Enrolment set” and the “Speaker-specific Test set” can be
found in http://www2.ee.unsw.edu.au/ASVspoof/.

Table 3. “Replay Subset” of the BTAS2016 corpus.

# Utterances

Subset # Speakers Genuine Spoof

Train 14 4973 2800
Dev 14 4995 2800
Evaluation Enrolment set* 16 480 480

Test set* 16 5096 4320

*The details of “Enrolment set” and the “Speaker-specific Test set” can be
found in http://www2.ee.unsw.edu.au/ASVspoof/.

V I . FRONT -END FEATURES

A key difference between ASV systems and spoofing detec-
tion systems pertains to the fact the ASV systems try

to capture speaker cues while normalizing other factors
(channel factors, phonetic factors, etc), whereas spoofing
detection aims to model the channel differences between
genuine and spoofed speech. Consequently, a significant
portion of recent research on replay detection has focused
on developing suitable front-ends that encode information
most relevant to identifying replay channels. In our exper-
iments reported in this paper we adopt two front-ends
that have previously shown to be effective for replay detec-
tion, namely, CQCC [2] and spectro-temporal modulation
feature (STMF) [22].
Finally, in addition to CQCCs and STMFs, we also

employ a third front-end in the form of log compressed
modified group delay (LMGD) in our investigations. While
CQCCs and STMFs are both spectral features, LMGDs
are extracted from frame-based group delay and includ-
ing them in our experiments allow us to study the effect
of speaker variability in non-spectral features as well. It is
also worth noting that all three are extracted over differ-
ing time periods (∼8ms for CQCC, 20ms for LMGD, and
entire utterance for STMF).
MGD function was initially developed as an alterna-

tive to typical spectral features [38]. However, recent results
suggest that their high dynamics range and spiky nature
may make them ineffective for replay attack detection [19].
To offset these disadvantages, we propose the use of log

Fig. 9. Number of utterances from each speaker in the BTAS 2016 evaluation set. The speaker IDs provided in the dataset are indicated along the x-axis.

http://www2.ee.unsw.edu.au/ASVspoof/
http://www2.ee.unsw.edu.au/ASVspoof/
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Fig. 10. LMGD feature extraction.

(a)

(b)

Fig. 11. t-SNE plot depicting the distribution of (a) MGD and (b) LMGD
features for a subset of ASVspoof2017 v2.0 train.

compressed magnitude of MGD with DCT as an alterna-
tive feature representationwhichwe refer to as LMGD(refer
Fig. 10). To ascertain if this proposed advantage is real-
ized, we projected both MGD and LMGD features (both
120 dimensional feature space) obtained from a subset of the
ASVspoof v2.0 training set onto 2-dimensions using t-SNE
and plot them in Fig. 11. It is clear that spoofed and gen-
uine speech classes are better separatedwith LMGD features
than with MGD features. The log compressed MGD vector
is defined as,

log MGD = log
∣∣∣∣XR(ω)YR(ω) + XI(ω)YI(ω)

S(ω)2γ

∣∣∣∣
α

(8)

where the subscripts R and I denote the real and imagi-
nary parts of X(ω) and Y(ω), which in turn correspond to
the Fourier transforms of x(n) and nx(n) respectively. The
parameters α and γ vary from 0 to 1.

V I I . EXPER IMENTAL SETT ING

A number of experiments were carried out to evaluate
the proposed approaches for speaker-dependent spoofing
detection against the SI baselines. The metric employed to
quantify performance in these comparisons are: (a) “Over-
all EER”, which is the equal error rate for spoofing detection
evaluated over all utterances in the test set; (b) “Speaker-
wise EER”, which is the equal error rate computed sepa-
rately speaker-by-speaker; and finally (c) “Average EER” is
average speaker-wise equal error rate (EER) (averaged over
all speakers).

A) Front-end feature configurations
Prior to all feature extraction, the speech was pre-
emphasized with 0.97 factor. It should be noted that no
normalization is applied to any of the features in this work.

STMF parameters: Pre-emphasized speech is framed
with a 50 overlap between them using a Hamming win-
dow. The STMF features are extracted using the same
parameters and MCF-CC and MSE-CC features are cho-
sen with 15 and 30 dimensions respectively and feature-level
concatenation is performed to obtain 45 dimensions for
each utterance as in [22].

LMGD parameters: LMGD features are extracted from
frames of 50 overlap followed by Hamming window. α, γ
were empirically chosen to be 0.4 and 0.9, respectively,
based on the development set. LMGD feature is 120 dimen-
sions which consists of static, velocity, and acceleration
coefficients.

CQCC parameters: For the derivation of CQCC fea-
tures, we have used the same configuration as used in the
ASVspoof2017 challenge baseline [2]. A Constant-Q Trans-
form is appliedwith amaximum frequency of fmax = 8 kHz,
which is the Nyquist frequency and the minimum fre-
quency, fmin = fmax/29 ≈ 15Hz, where 9 is the number of
octaves. The number of bins per octave is set to 96. Resam-
pling is applied with a sampling period of 16 bins in the
first octave. The CQCC feature dimension is set to 90
coefficients.

B) GMM backend configuration
In the proposed GMM system, the spoofed and genuine
UBMs were both implemented as 512 mixture GMMs for
CQCC and LMGD features and as 4 mixture GMMs for
STMF features. All UBMs were trained using the EM
algorithm with random initialization. In the experiments
carried out on the ASVspoof2017 v2.0 corpus, the Train and
Dev sets were used tomodel the genuine and spoofedUBMs
(no overlapwith test speaker data). For the system evaluated
on BTAS 2016, the train set was used to model the UBMs.
The speaker-dependent genuine and spoofed models were
then estimated from the UBMs via MAP adaptation (mean
and weights only) using the Enrolment set (refer section V
for details on the enrolment set).
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Fig. 12. Two variants of the DNN that can be employed as the SI and speak-
er-dependent DNNs in Fig. 6: (a) five FC layers; and (b) three residual layers in
between two FC layers.

C) DNN backend configuration
The SI baseline systems, using either the CQCC or the
LMGD front-ends, were trained using Train and Dev sets
for the ASVspoof2017 v2.0 system and the Train set for
the BTAS 2016 system. Two variations of this DNN sys-
tem were developed and evaluated, one with five fully-
connected (FC) layers and the other with three residual
network layers sandwiched between two FC layers as shown
in Fig. 12. In both systems, the final FC layer has 64 neu-
rons and the first FC layer has as many neurons as the input
feature dimension. The middle three FC layers of the first
system (Fig. 12(a)) have 1024, 512, and 256 neurons, respec-
tively (going from the input to output). The three residual
layer blocks of the second system (Fig. 12(b)) all have an
identical architecture with each block comprising two layers
of weights comprising 256 and 128 neurons each. All hidden
layer neurons employ a ReLU activation function and the
final layer uses softmax activation. Dropouts and batch nor-
malization were employed during model training, using a
cross-entropy loss function, and the dropout rate was set as
0.4. Learning rates were decayed uniformly across the net-
work per epoch from 10−2 to 10−5. Early stopping based on
validation loss on the dev set was used to avoid overfitting.
All network weights are initialized from a normal distri-
bution with zero-mean and a standard deviation of 10−2.
Layerwise L2 regularization was also performed.
Finally, to obtain speaker-dependentDNNback-ends for

our proposed system, the trained (SI models were used as
initial models and the final two layers were retrained for
three additional epochs using the enrolment data from the
target speaker. When using CQCC and LMGD features, the
average posterior predicted by the back-end over all the
frames in an utterance is used as the score to calculate EERs.
The DNN back-end Architecture chosen for the STMF

front-end were constrained to be a smaller version of that
used by the CQCC and LMGD systems to avoid over
parameterization. Since STMF is an utterance-based fea-
ture, a single set of posteriors is predicted by the back-end
and used as the score to estimate EERs.

V I I I . RESULTS AND D ISCUSS ION

In this section, we report experimental results obtained
when comparing the proposed speaker-dependent back-
ends to corresponding SI ones. In addition to overall error
rates, we also report comparisons per speaker and under
different RCs.

A) Speaker dependent versus speaker
independent spoofing detection
1) GMM backend
The proposed speaker-dependent GMM back-end for
spoofing detection outlined in Fig. 5(c), which employs
speaker-dependent genuine and spoofed models (herein
referred to as GA+ SA), are compared to the earlier system
[3] that employed only speaker-dependent genuine mod-
els (shown in Fig. 5(b) and herein referred to as GA+ S)
as well as a SI back-end (Fig. 5(a), herein referred to as
G+ S). Table 4 reports the comparison carried out on the
ASVspoof2017 v2.0 dataset and Table 5 shows the results
obtained on the BTAS2016 dataset. From these results, it can
be seen that the speaker-dependent approach outperforms
a SI one. These improvements are in line with observations
noted in section II that indicate short term CQCC features
encode more speaker information compared to longer term
STMFs. However, these improvements obtained by mak-
ing the spoofed models speaker specific are all relatively
small, especially when compared to the significant improve-
ments obtained when the genuine model was made speaker
specific.
In addition to the overall EER, we also compare speaker-

wise EERs (aswell their averages) and show this comparison
in Figs 13 and 14 for ASVspoof2017 and BTAS2016 respec-
tively. The speaker-wise results indicate that the speaker-
dependent approach is superior to the SI one for almost all
speakers in the test set. Furthermore, the average of speaker
wise EER of GA+ SA is consistently lower than the average
speakerwise EER ofGA+ S across all three features on both
ASVspoof2017 v2.0 and BTAS 2016.

Table 4. Comparison of SI and speaker-dependent GMM back-ends
evaluated on the ASVspoof2017 v2.0 “test set” in terms of the overall EER

.

Feature set G+ S (baseline) GA+ S [3] GA+ SA (proposed)

CQCC 25.1 12.33 11.14
LMGD 29.79 17.16 14.84
STMF 8.12 3.98 3.63

Table 5. Comparison of SI and speaker-dependent GMM back-ends
evaluated on the BTAS 2016 “test set” in terms of the overall EER .

Features G+ S (baseline) GA+ S [3] GA+ SA (proposed)

CQCC 8.36 2.41 1.77
LMGD 0.92 0.57 0.31
STMF 1.12 0.42 0.37
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Here it should be noted that the number of trials (per
speaker) used to estimate the speaker-wise EERs is sig-
nificantly lower than the number of trials in the test
set used to evaluate the overall EER and consequently
these speaker-wise EERs should be considered as indicative
only.

In addition, it is also worth noting that when evaluat-
ing the SI baseline systems (without CMVN) on the orig-
inal ASVspoof2017 v2.0 evaluation set we obtained EERs
of 24.5, 29, and 7.9 for the CQCC, LMGD, and STMF
front-ends respectively. These are comparable to all pre-
viously published results (since the original evaluation set

(a)

(b)

(c)

Fig. 13. Comparison of SI and speaker-dependent GMM back-ends evaluated on the ASVspoof2017 v2.0 ”test set” in terms of speaker-wise EERs for the three
different front-ends: (a) CQCC; (b) STMF; and (c) LMGD. In additions the graphs also show the average EERs (obtained by averaging across speakers).
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(a)

(b)

(c)

Fig. 14. Comparison of SI and speaker-dependent GMM back-ends evaluated on the BTAS 2016 “test set” in terms of speaker-wise EERs for the three different
front-ends: (a) CQCC; (b) STMF; and (c) LMGD. In additions the graphs also show the average EERs (obtained by averaging across speakers).

is employed) and the 7.9 for STMF systems is the low-
est EER currently reported on v2.0 [22]. Also, the EERs on
the original evaluation set and the modified evaluation set
employed in this paper are very similar which demonstrates
that the results obtained using the modified evaluation

set are also equally valid. Finally, in order to determine
if the reported results are biased in any way due to the
larger number of spoofed enrolment data compared to gen-
uine enrolment data (specifically in the ASVspoof2017 v2.0
enrolment set), we repeated the experiment with an equal
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Table 6. Comparison of speaker-dependent and SI DNN back-ends on
the ASVspoof2017 v2.0 “Test set” in terms of overall EER ().

Speaker-independent Speaker-dependent
Features (baseline) (proposed)

FC STMF 13.69 9.91
CQCC 32.96 24.57
LMGD 32.31 22.17

Residual STMF 13.2 11.12
CQCC 29.1 22.32
LMGD 27.2 19.80

Table 7. Comparison of speaker-dependent and SI DNN back-ends on
the BTAS2016 “Test set” in terms of overall EER ().

Speaker-independent Speaker-dependent
Features (baseline) (proposed)

FC STMF 2.92 1.97
CQCC 4.23 2.72
LMGD 3.35 2.34

amount of genuine and spoofed enrolment data. We set
up this condition by reducing the spoofed enrolment data
set to match the size of the genuine enrolment set. The
results obtained matched those from the other experiments
suggesting the results are not biased in any way due to
the spoofed enrolment set being larger than the genuine
enrolment set.

2) DNN backend
Similar to the GMM back-end comparisons, we com-
pare the speaker-dependent DNN back-end to the SI
DNN back-end (details in section VII-C) on both the
ASVspoof2017 v2.0 dataset and the BTAS2016 dataset and
report the results in Tables 6 and 7, respectively. Since two
variants of the DNN back-end were considered (as shown
in Fig. 12), we report both results. These results also indi-
cate that a speaker-dependent approach outperforms a SI
one.

B) Investigating the system performance in
terms of different replay configurations for
ASVspoof2017 v2.0
To understand the behavior of the proposed speaker-
dependent systems under different qualities of environ-
ments, play-back, and recording devices, we compare the
speaker-dependent STMF GMM system to a SI STMF
GMM system in different RCs. The ASVspoof2017 v2.0
database contains recordings collected with diverse RCs,
each comprising one recording device, one playback device,
and one acoustic environment. In order to aid analysis, the
distinct RCs were previously grouping together overlapping
configurations [24]. We adopt the same groupings in our
analyses. The overall EER evaluated under each condition
(group) is reported in Fig. 15. These results also suggest that
a speaker-dependent back-end would be preferable to a SI
one.

(a)

(b)

(c)

Fig. 15. Comparison of overall  EER of STMF grouped by the (a) acoustic
environment, (b) playback, and (c) recording device into low,medium, and high
threat attacks for speaker independent (baseline) and speaker dependent (pro-
posed) systems. For each group, the quality of the other two parameters is a mix
of all three qualities (for e.g., low quality playback test utterances come from
a mix of low, medium, and high quality acoustic environment and recording
devices).

C) Simulated spoofed data
In practice, speaker specific spoofed data is not likely to
be available during the system training phase. However, it
may still be possible to create speaker specific spoofedmod-
els using simulated spoofed data. Specifically, one or more
spoofing environment models can be employed to gener-
ate simulated spoofed speech from the available genuine
speech. To investigate this hypothesis, we carried out spoof-
ing detection experiments where speaker specific spoofed
models were trained using only simulated spoofed data
(created as outlined above).
The simulated replayed speech has been created using

the pyroomacoustic simulator [39]. The pyroomacous-
tic tool is a recent open software package which facili-
tates the simulation of room acoustic conditions as well
as loudspeakers and microphones. The model parameters
employed in our simulation are shown in Table 8. These
simulations were made in line with the assumptions inher-
ent in the ASVspoof2017 replay data [2] and we do not
include any model of room or channel acoustics that would
have been present when the original recording of the speech
might have been made surreptitiously.
All 170 genuine speech utterances (refer Table 2) in the

genuine enrolment set was put through this model to sim-
ulate a corresponding “replayed spoofed speech” utterance.
This simulated data was then used to adapt the speaker spe-
cific spoofed models. The ASVspoof2017 v2.0 evaluation
set was retained as the test set and the results have been
tabulated in Table 9. Comparing Table 4 with Table 9, we see
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Table 8. Configuration of the Pyroomacoustic [39] replay simulation.

Room corners ([0,0], [0,3], [5,3], [5,1], [3,1], [3,0]),
Source Unidirectional ideal loudspeaker at position (1,1)
Room Uniform absorption of 0.01
Mic Circular 6 channel microphone array at (2,2) with a

radius of 0.1 and main directivity of
Phi= 0. Channel 1 is taken as the replay

Table 9. Comparison of SI and speaker-dependent GMM back-ends
evaluated on the ASVspoof2017 v2.0 “test set” in terms of overall EER

(). Here the speaker specific spoofed models (SA) are all obtained using
simulated replayed speech data.

Features G+ S (baseline) GA+ S [3] GA+ SA (simulated)

CQCC 25.1 12.33 11.22
LMGD 29.79 17.16 15.25
STMF 8.12 3.98 3.64

that almost identical results are obtained even when we use
simulated spoofed data to train the speaker specific spoofed
models.

I X . CONCLUS ION

Even though most of the recent research efforts in develop-
ing spoofing detection systems has focused on their devel-
opment independent of the ASV system, in practice, they
will always be used in conjunctionwith speaker verification.
Consequently, some speech data (enrolment data) from
each target claimed speaker will always be available since
they are required to develop any speaker verification sys-
tem. In this paper, we tackle the question of whether this
data can be used to improve the spoofing detection system.
Specifically, we have carried out multiple analyses to

quantify speaker variability in the feature space, which
revealed that adoption of speaker-dependent models for
spoofing detection can be expected to lead to better
accuracy. Following this, we develop two straight-forward
approaches, one for a GMM back-end and one for a neural
network back-end, to adapt spoofing detection back-ends
to each claimed target speaker using the available enrol-
ment speech as well as spoofed versions of these obtained
by replaying them via a few different conditions (avail-
able in the training sets of both speech corpora used in
our experiments). Validation on the evaluations sets of
both ASVspoof2017 v2.0 and BTAS2016 reveals that this
improves spoofing detection accuracy over the correspond-
ing SI back-ends under all conditions, even when the
spoofed utterances in the test came via unseen replay chan-
nels. Our experiments were carried out over three different
front-ends: CQCCs, STMF, and LMGDs, as well as two dif-
ferent back-ends: GMM and DNN, and consistently the
speaker-dependent versions outperformed the SI versions.
Our previous work showed that significant gains can be

obtained by incorporating this information to train speaker
specific genuine speech models. Experiments reported in
this paper demonstrate that small additional gains may be

obtained by adopting speaker-specific spoofed models as
well. Furthermore, simulated spoofed speech can be used
to train these speaker-specific spoofed models.
These experimental results suggest that reducing vari-

ability in the spoofed model (by eliminating speaker vari-
ability) only leads to small improvements in spoofing
detection. In future work, we plan to study the interaction
between speaker variability and spoofing channel effects to
extend this investigation.
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