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Hue-correction scheme considering CIEDE2000
for color-image enhancement including
deep-learning-based algorithms
yuma kinoshita and hitoshi kiya

In this paper, we propose a novel hue-correction scheme for color-image-enhancement algorithms including deep-learning-based
ones. Although hue-correction schemes for color-image enhancement have already been proposed, there are no schemes that
can both perfectly remove perceptual hue-distortion on the basis of CIEDE2000 and be applicable to any image-enhancement
algorithms. In contrast, the proposed scheme can perfectly remove hue distortion caused by any image-enhancement algorithm
such as deep-learning-based ones on the basis of CIEDE2000. Furthermore, the use of a gamut-mappingmethod in the proposed
scheme enables us to compress a color gamut into an output RGB color gamut, without hue changes. Experimental results show
that the proposed scheme can completely correct hue distortion caused by image-enhancement algorithms while maintaining
the performance of the algorithms and ensuring the color gamut of output images.
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I . I NTRODUCT ION

Single-image enhancement is one of the most important
image processing techniques. The purpose of enhancing
images is to show hidden details in unclear low-quality
images. Early attempts at single-image enhancement such
as histogram equalization (HE) [1–5] focused on enhancing
the contrast of grayscale images. Hence, these algorithms do
not directly enhance color images. A way to handle color
images with these algorithms is enhancing the luminance
components of color images and thenmultiplying eachRGB
component by the ratio of enhanced and input luminance
components. Although simple and efficient, algorithms for
grayscale images have limited performance in terms of
enhancing color images. Due to this, interest in color-
image enhancement, such as 3-D histogram-, Retinex-, and
fusion-based enhancement, has increased [6–12]. In addi-
tion, recent single-image-enhancement algorithms utilize
deep neural networks trained to regress from unclear low-
quality images to clear high-quality ones [13–19]. These
deep-learning-based approaches significantly improve the
performance of image enhancement compared with con-
ventional analytical approaches such as HE. However, these

Tokyo Metropolitan University, Tokyo, Japan

Corresponding author:
Yuma Kinoshita
Email: ykinoshita@tmu.ac.jp

color-image-enhancement algorithms cause colors to be
distorted.

To avoid color distortion, hue-preserving image-
enhancement methods have also been studied [20–24].
These hue-preserving methods aim not only to enhance
images, but also to preserve hue components of input
images. In particular, by extending Naik’s work, Kinoshita
and Kiya made it possible to remove hue distortion
caused by any image-enhancement algorithm by replac-
ing the maximally saturated colors on the constant-hue
planes of an enhanced image with those of an input
image [23].

However, perceptual hue-distortion remains because
the hue definition utilized in these hue-preserving meth-
ods does not sufficiently take into account human visual
perception, although these methods can preserve hue
components in the HSI color space. For this reason,
Azetsu and Suetake [24] proposed a hue-preserving image-
enhancement method in the CIELAB color space. The
CIELAB color space [25] is a high-precision model of
human color perception, and it enables us to calculate
accurate color differences including hue differences com-
pared with conventional color spaces such as RGB and HSI
color spaces. Azetsu’s method enables us to remove per-
ceptual hue-distortion based on CIEDE2000, but it uses
a simple gamma-correction algorithm for enhancement.
For this reason, the enhancement performance of Azetsu’s
method is lower than state-of-the-art image-enhancement
algorithms.
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Because of such a situation, in this paper, we pro-
pose a novel hue-correction scheme based on the recent
color-difference formula ‘‘CIEDE2000” [26]. Similarly to
Azetsu’s method, in the proposed scheme, the hue differ-
ence between an enhanced image and the corresponding
input image is perfectly removed. In contrast, any image-
enhancement algorithm such as deep-learning-based ones
can be used to enhance images in the proposed scheme. Fur-
thermore, the use of a gamut-mappingmethod enables us to
compress the color gamut of the CIELAB color space into
an output RGB color gamut, without hue changes. For these
reasons, the proposed scheme can perfectly correct hue
distortion caused by any image-enhancement algorithm
while maintaining the performance of the image processing
method and ensuring the color gamut of output images.

We evaluated the proposed scheme in terms of the
performance of hue correction and image enhancement.
Experimental results show that the proposed scheme
can completely correct hue distortion caused by image-
enhancement algorithms, but conventional hue-preserving
methods cannot. In addition, it is also confirmed that the
proposed scheme can maintain the performance of image-
enhancement algorithms in terms of two objective quality
metrics: discrete entropy and NIQMC.

I I . RELATED WORK

Here, we summarize typical single-image enhancement
methods, including recent fusion-based ones and deep-
learning-based ones, and problems with them.

A) Image enhancement
Various kinds of research on single-image enhancement
have so far been reported [1–19, 27–29]. Classic enhance-
ment methods such as HE focus on enhancing the con-
trast of grayscale images. For this reason, these methods
do not directly handle color images. A way to handle
color images with these methods is enhancing the lumi-
nance components of color images and then multiplying
each RGB component by the ratio of enhanced and input
luminance components. Although simple and efficient, the
methods for grayscale images are limited in their ability to
improve color-image quality. Due to this, interest in color-
image enhancement, such as 3-D histogram-, Retinex-,
and fusion-based enhancement, has increased. Today,many
single-image enhancementmethods utilize deepneural net-
works trained to regress from unclear low-quality images to
clear high-quality ones.

Most classic enhancement methods were designed for
grayscale images. Among these methods, HE has received
the most attention because of its intuitive implementation
quality and high efficiency. It aims to derive a mapping
function such that the entropy of a distribution of out-
put luminance values can be maximized. Since HE often
causes over/under-enhancement problems, a huge number
of HE-based methods have been developed to improve the

performance of HE [1–5]. However, these methods cannot
directly handle color images. The most common way to
handle color images with these methods is enhancing the
luminance components of color images and then multiply-
ing each RGB component by the ratio of enhanced and
input luminance components. Otherwise, these simple and
efficient methods for grayscale images are limited in their
ability to improve color-image quality. As a result, enhance-
ment methods that can directly work on color images have
been developed.

A traditional approach for enhancing color images is
3-D HE, which is an extension of normal HE [6–8]. In this
approach, an image is enhanced so that a 3-dimensional
histogram defined on RGB color space is uniformly dis-
tributed. Another way for enhancing color images is to
use Retinex theory [30]. In Retinex theory, the dominant
assumption is that a (color) image can be decomposed
into two factors, say reflectance and illumination. Early
attempts based on Retinex, such as single-scale Retinex
[27] and multi-scale Retinex [28], treat reflectance as the
final result of enhancement, yet the image often looks
unnatural and frequently appears to be over-enhanced.
For this reason, recent Retinex-based methods [9, 10, 29]
decompose images into reflectance and illumination and
then enhance images by manipulating illumination. Addi-
tionally, multi-exposure-fusion (MEF)-based single-image
enhancement methods were recently proposed [11, 12, 31].
One of them, a pseudo MEF scheme [12], makes any sin-
gle image applicable toMEFmethods by generating pseudo
multi-exposure images from a single image. By using this
scheme, images with improved quality are produced with
the use of detailed local features. Furthermore, quality-
optimized image enhancement algorithms [32–34] enable
us to automatically set parameters in these algorithms and
enhance images, by finding optimal parameters in terms of a
no-reference image qualitymetric. Recentwork has demon-
strated great progress by using data-driven approaches in
preference to analytical approaches such as HE [13–19].
These data-driven approaches utilize pairs of high- and
low-quality images to train deep neural networks, and the
trained networks can be used to enhance color images.

The approaches can directly enhance color images, but
the resulting colors are distorted.

B) Hue-preserving image enhancement
Hue-preserving image-enhancement methods have also
been studied to avoid color distortion [20–22, 24].

Naik and Murthy showed conditions for preserving
hue defined in the HSI color space without color gamut
problems [20]. On the basis of Naik’s work, several hue-
preserving methods have already been proposed [21–23].
In particular, Kinoshita and Kiya made it possible to
remove hue distortion caused by any image-enhancement
algorithm by replacing the maximally saturated colors on
the constant-hue planes of an enhanced image with those
of an input image [23].
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Although these hue-preserving methods can preserve
hue components in the HSI color space, perceptual hue-
distortion remains because the hue definition utilized in
these methods does not sufficiently take into account
human visual perception. For this reason, Azetsu and Sue-
take [24] proposed a hue-preserving image-enhancement
method in the CIELAB color space. The CIELAB color
space [25] is a high-precision model of human color per-
ception, and it enables us to calculate accurate color dif-
ferences including hue differences compared with conven-
tional color spaces such as RGB and HSI color spaces.
However, Azetsu’smethod uses a simple gamma-correction
algorithm for enhancement. Therefore, the enhancement
performance of Azetsu’s method is lower than state-of-the-
art image-enhancement algorithms.

C) Problems in hue correction and our aim
In hue-preserving image-enhancement, there are two prob-
lems as follows:

(i) Kinoshita’s method [23] cannot remove perceptual hue-
distortion, although it can be applied to any image-
enhancement algorithm.

(ii) Azetsu’s method [24] cannot be applied to state-of-
the-art image-enhancement algorithms such as deep-
learning-based ones, although it can remove perceptual
hue-distortion.

For this reason, we propose a novel hue-preserving
image-enhancement scheme that is applicable to any exist-
ing image-enhancement method including deep-learning-
based ones and that perfectly removes perceptual hue-
distortion on the basis of CIEDE2000.

I I I . COLOR SPACES

In this section, we briefly summarize RGB color spaces and
the CIELAB color space. We use notations shown in Table 1
throughout this paper.

A) RGB color spaces
Digital color images are generally encoded by using an
RGB color space such as the sRGB color space [35] and the
Adobe RGB color space [36]. In those RGB color spaces,
a color C can be written as a three-dimensional vector
CRGB = (R,G,B)�, where 0 ≤ R,G,B ≤ 1, and the super-
script � denotes the transpose of a matrix or vector. RGB
color spaces are defined on the basis of the CIE1931 XYZ
color space [37] (hereinafter called ‘‘XYZ color space”). In
the XYZ color space, a color C can be written as CXYZ =
(X,Y ,Z)�, where X,Y ,Z ≥ 0. A map from the XYZ color
space into an RGB color space is given as

CRGB = (f (Rlin), f (Glin), f (Blin))�, (1)

where
(Rlin,Glin,Blin)� = MCXYZ . (2)

Table 1. Notation.

Symbol Definition

R,G, and B R,G, and B components in an RGB color
space

X,Y , and Z X,Y , and Z components in the XYZ color
space

L∗, a∗, and b∗ L∗, a∗, and b∗ components in the CIELAB
color space

C A color written as a three-dimensional
vector. For example, CRGB indicates a
vector whose elements correspond to R, G,
and B components.

�L′,�C′, and �H′ Lightness, chroma, and hue differences
between two colors, respectively, which
defined in the CIEDE2000 color
difference formula [26]

D A color gamut of an RGB color space.

Here,M is a 3× 3 regular matrix, and f (·) denotes an opto-
electronic transfer function (usually called ‘‘gamma correc-
tion”). After applying equation (2), each component ofCRGB
will be clipped so that 0 ≤ R,G,B ≤ 1. In the case of the
sRGB color space, matrix M and transfer function f (·) are
defined as

M =

⎛
⎜⎜⎝

3.2410 −1.5374 −0.4986
−0.9692 1.8760 0.0416
0.0556 −0.2040 1.0570

⎞
⎟⎟⎠ , (3)

f (x) =
{
12.92x x ≤ 0.0031308
1.055x1/2.4 − 0.055 otherwise

. (4)

B) CIELAB color space
The CIELAB color space is designed to model human color
perception, while many RGB color spaces are designed to
encode digital images. Similarly to RGB color spaces, the
CIELAB color space is defined on the basis of theXYZ color
space.

Amap from colorCXYZ in theXYZ color space into color
C = (L∗, a∗, b∗)� in the CIELAB color space is given as

L∗ = 116g(Y/Yw)− 16, (5)

a∗ = 500
(
g(X/Xw)− g(Y/Yw)

)
, (6)

b∗ = 200
(
g(Y/Yw)− g(Z/Zw)

)
, (7)

where

g(x) =
{
x1/3 x > δ3

x
3δ2
+ 4

29
otherwise , δ = 6

29
, (8)

and (Xw,Yw,Zw) indicates a white point in the XYZ color
space.

By using the CIELAB color space, the perceptual color-
difference between two colors C1 and C2 can objectively be
calculated by using a color difference formula. CIEDE2000,
which is one of the most recent color difference formulas,
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measures the color difference on the basis of lightness differ-
ence �L′, chroma difference �C′, and hue difference �H′
[26, 38].

Given two colors Ci = (L∗i , a
∗
i , b
∗
i )
�, i = 1, 2, the light-

ness, chroma, and hue differences [�L′(C1,C2),
�C′(C1,C2), and �H′(C1,C2)] in CIEDE2000 are calcu-
lated as follows (see also [38]).

(i) Calculate C′i, h
′
i.

C∗i,ab =
√(

a∗i
)2 + (b∗i )2 (9)

C∗ab =
C∗1,ab + C∗2,ab

2
(10)

G = 0.5

(
1−

√
(C∗ab)7

(C∗ab)7 + 257

)
(11)

a′i = (1+ G)a∗i (12)

C′i =
√(

a′i
)2 + (b∗i )2 (13)

h′i =
{
0 b∗i = a′i = 0
tan−1

(
b∗i , a

′
i
)

otherwise (14)

(ii) Calculate �L′, �C′, and �H′.

�L′(C1,C2) = L∗2 − L∗1 (15)

�C′(C1,C2) = C′2 − C′1 (16)

�h′ =

⎧⎪⎪⎨
⎪⎪⎩
h′2 − h′1

∣∣h′2 − h′1
∣∣ ≤ 180◦(

h′2 − h′1
)− 360◦

(
h′2 − h′1

)
> 180◦(

h′2 − h′1
)+ 360◦

(
h′2 − h′1

)
< −180◦

(17)

�H′(C1,C2) = 2
√
C′1C′2 sin

(
�h′

2

)
(18)

On the basis of CIEDE2000, we propose a novel hue-
correction scheme for color-image enhancement.

I V . PROPOSED HUE -CORRECT ION
SCHEME

A) Overview
Figure 1(a) shows an overview of our hue-correction
scheme. Our scheme consists of two steps: hue correction
and gamut mapping.

The hue-correction step receives two images Î and Iref ,
and it corrects the hue at each pixel of an enhanced image Î
so that the hue perfectly matches the hue at a correspond-
ing pixel for Iref , where the hue definition in the proposed
scheme follows �H′ in CIEDE2000. The reference image
Iref can be any color image that has the same resolution as Î.
For removing hue distortion caused by image enhancement,
we use an input image I and the corresponding enhanced
image as Iref and Î, respectively. Any image-enhancement
algorithm such as deep-learning-based ones can be used
for obtaining Î. Since the hue-correction step is performed

Fig. 1. Proposed hue-correction scheme. (a) Use of proposed hue-correction
scheme. (b) Hue correction. (c) Gamut mapping.

on the CIELAB color space, this step will produce images
that have out-of-gamut colors of an output RGB color space.
Therefore, we map the out-of-gamut colors into the out-
put color space without hue changes by using an existing
gamut-mapping method.

B) Deriving proposed hue correction
As shown in Fig. 1(b), the goal of the proposed hue correc-
tion is to obtain a color C = (L∗, a∗, b∗)� that satisfies the
following conditions.

• �H′(C,Cref ) = 0,
• �L′(C, Ĉ) = 0,
• �C′(C, Ĉ) = 0,

where Ĉ = (L̂∗, â∗, b̂∗)� andCref = (L∗ref , a
∗
ref , b

∗
ref )
� are col-

ors at a pixel of enhanced image Î and reference image
Iref , respectively. Please note that any image enhancement
algorithms can be used to obtain Ĉ because there are no
assumptions about Ĉ.

A sufficient condition for�H′(C,Cref ) = 0 is given from
equations (9)–(18) as

a∗ = ka∗ref and b
∗ = kb∗ref , (19)

where k ≥ 0. From equation (15), a necessary and sufficient
condition for �L′(C, Ĉ) = 0 is

L∗ = L̂∗. (20)

In addition, when C satisfies equation (19), a necessary and
sufficient condition for �C′(C, Ĉ) = 0 is

k = Ĉ∗

C∗ref
, (21)

from equations (9)–(13) and (16). Therefore, hue-corrected
color C is calculated as

C =
(
L̂∗,

Ĉ∗

C∗ref
a∗ref ,

Ĉ∗

C∗ref
b∗ref

)�
. (22)
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The CIELAB color space has a wider color gamut than RGB
color spaces. The difference between color gamuts causes
pixel values to be clipped, and the clipping causes output
images to be color-distorted. In the next section, we intro-
duce a gamut-mapping method in order to transform color
C obtained by the hue correction into color in an RGB color
space, without hue changes.

Algorithm 1 Gamut mapping using bisection method.
Input: C = (L∗, a∗, b∗),D and threshold
Output: m′
if C ∈ D then

m′ ← 1
returnm′

end if
ms← 0
ml ← 1
whileml −ms > threshold do

m← ms+ml
2

if (L∗,ma∗,mb∗) ∈ D then
ms← m

else
ml ← m

end if
end while
m′ ← ms
returnm′

C) Deriving gamut-mapping method
Gamut-mapping methods map a color in a wide color
space into a narrow color space D so that the color dif-
ference between colors before and after the mapping is
minimized [39]. In this paper, we calculate a gamut-mapped
color Cout ∈ D such that�H′(Cout,C) = 0 in order to pre-
serve hue. Furthermore, we assume an additional condition,
�L′(Cout,C) = 0, for simplicity.

The solution Cout is obtained by solving an optimizing
problem:

Cout = argmin
C′∈D

�C′(C′,C)

s.t. �H′(C′,C) = 0,�L′(C′,C) = 0.
(23)

From equations (19) and (20), equation (23) results in the
problem asking form′ [see Fig. 1(c)] as follows.

m′ = argmax
m

m s.t. 0 ≤ m ≤ 1, (L∗,ma∗,mb∗)� ∈ D
(24)

In experiments, we utilized the bisection method to solve
equation (24). This algorithm is shown in Algorithm 1,
where we set threshold as 1/256.

D) Proposed procedure
The procedure of our hue-correction scheme is shown as
follows.

(i) Obtain image Î by applying an image-enhancement
algorithm to input image I. Here, we can use state-of-
the-art image-enhancement algorithms including deep-
learning-based ones.

(ii) Map RGB pixel values in Î and reference image Iref
into colors in CIELAB color space Ĉ = (L̂∗, â∗, b̂∗)� and
Cref = (L∗ref , a

∗
ref , b

∗
ref )
� in accordancewith equations (1),

(2), and (5)–(8).
(iii) Obtain hue-corrected color C by applying hue correc-

tion in equation (22) to Ĉ.
(iv) Obtain color Cout by applying gamut mapping to C by

(a) Letting the color gamut of an output RGB color
space be D and calculating m′ in accordance with
equation (24).

(b) Calculating Cout as Cout = (L̂∗,m′a∗ref ,m
′b∗ref )

�.
(v) Map colors Cout into the output RGB color space, and

obtain output image Iout.

E) Properties of proposed scheme
The proposed scheme has the following properties:

• The proposed scheme can be applied to any image-
enhancement algorithms such as deep-learning-based
ones (see Section IV.B).

• Perceptual hue-distortion, on the basis of CIEDE2000,
between an enhanced image Î and the corresponding
input image I can perfectly be removed (see Section IV.B).

• The resulting hue-corrected image Iout has no out-of-
gamut colors (see Section IV.C).

In the next section, the three properties of the proposed
scheme will be confirmed.

V . S IMULAT ION

We evaluated the effectiveness of the proposed scheme by
using three objective quality metrics including a color dif-
ference formula.

A) Simulation conditions
Seven input images selected from a dataset [40] were used
for a simulation. In this simulation, the proposed scheme
was evaluated in terms of the hue-correction performance
and the enhancement performance. To evaluate the hue-
correction performance, the hue difference �H′ defined in
CIEDE2000 [26], between an input image and the corre-
sponding enhanced image was calculated.

Furthermore, the enhancement performance was also
evaluated by using two objective image-qualitymetrics: dis-
crete entropy and one of the no-reference image-quality
metrics for contrast distortion (NIQMC) [41]. Discrete
entropy represents the amount of information in an image.
NIQMC assesses the quality of contrast-distorted images by
considering both local and global information [41].
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Table 2. Hue difference scores �H′ for image enhancement methods without any color correction (“w/o corr.’’) and with proposed scheme (“Prop.”).

LIME [10] iTM-Net [42] DeepUPE [18]

Scene w/o corr. Prop. w/o corr. Prop. w/o corr. Prop.

Arno 0.644 0.001 1.384 0.000 3.619 0.000
Chinese garden 0.708 0.000 1.406 0.000 2.689 0.000
Estate rsa 0.339 0.000 1.252 0.000 2.220 0.000
Kluki 0.509 0.000 1.455 0.000 3.636 0.000
Laurenziana 0.544 0.000 1.412 0.000 1.821 0.000
Mountains 0.036 0.000 1.354 0.000 1.068 0.000
Ostrow tumski 0.425 0.000 1.288 0.000 3.067 0.000
Average 0.458 0.000 1.364 0.000 2.589 0.000

Boldface indicates better score.

Table 3. Discrete entropy scores for image-enhancement methods without any color correction (“w/o corr.’’) and with proposed scheme (“Prop.”).

LIME [10] iTM-Net [42] DeepUPE [18]

Scene w/o corr. Prop. w/o corr. Prop. w/o corr. Prop.

Arno 7.659 ±0.000 6.561 ±0.000 7.544 ±0.000
Chinese garden 7.310 ±0.000 6.768 ±0.000 7.064 ±0.000
Estate rsa 7.532 ±0.000 6.389 ±0.000 7.234 ±0.000
Kluki 7.359 ±0.000 6.878 ±0.000 7.706 ±0.000
Laurenziana 7.546 ±0.000 6.792 ±0.000 7.468 ±0.000
Mountains 7.336 ±0.000 5.636 ±0.000 7.519 ±0.000
Ostrow tumski 7.595 ±0.000 6.855 ±0.000 7.227 ±0.000
Average 7.477 ±0.000 6.554 ±0.000 7.395 ±0.000

For proposed scheme, difference between scores for “w/o corr.” and “Prop.” are provided.
Boldface indicates difference whose absolute value is less than 0.01.

B) Applicability to enhancement algorithms
We first confirmed the applicability of the proposed
scheme to image-enhancement algorithms including deep-
learning-based ones. Three methods were used in the pro-
posed scheme for enhancement (i.e. for generating Î): low-
light image enhancement via illumination map estimation
(LIME) [10], iTM-Net [42], and deep underexposed photo
enhancement (DeepUPE) [18], where LIME is a retinex-
based algorithm, and the others are deep-learning-based
ones. Table 2 shows the hue difference between the input
and resulting images. Here, the hue difference was calcu-
lated as the absolute average of�H′ for all pixels. The results
indicate that the image-enhancement methods caused hue
distortion. A comparison between the enhancement meth-
ods without any color correction and with the proposed

scheme illustrates that the use of the proposed scheme
completely removed the hue distortion for all cases.

Tables 3 and 4 illustrate discrete entropy and statisti-
cal naturalness scores, respectively. For each score, a larger
value means higher quality. As shown in both tables, the
proposed scheme can maintain the performance of image
enhancement. This result is also confirmed by comparing
Fig. 2(e) with Fig. 2(f).

C) Comparison with hue-preserving
enhancement methods
The proposed scheme was also compared with three con-
ventional hue-preserving enhancement methods: Naik’s
method [20], Ueda’s method [22], and Azetsu’s method
[24]. In this simulation, DeepUPE [18] was utilized for

Table 4. NIQMC scores for image-enhancement methods without any color correction (“w/o corr.’’) and with proposed scheme (“Prop.”).

LIME [10] iTM-Net [42] DeepUPE [18]

Scene w/o corr. Prop. w/o corr. Prop. w/o corr. Prop.

Arno 5.437 −0.014 4.682 +0.004 5.543 −0.028
Chinese garden 5.542 +0.003 4.793 −0.007 5.554 −0.006
Estate rsa 5.029 −0.004 4.066 −0.006 5.159 −0.019
Kluki 5.478 +0.014 4.870 −0.011 5.609 ±0.000
Laurenziana 5.527 −0.006 4.801 −0.004 5.719 +0.001
Mountains 4.548 −0.008 3.346 −0.002 5.054 −0.018
Ostrow tumski 5.560 −0.012 5.035 +0.033 5.321 −0.011
Average 5.303 −0.004 4.513 +0.001 5.423 −0.012

For proposed scheme, difference between scores for “w/o corr.” and “Prop.” are provided.
Boldface indicates difference whose absolute value is less than 0.01.
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Fig. 2. Results of hue correction (for image “Arno”.) (a) Input. (b) Naik [20].
(c) Ueda [22]. (d) Azetsu [24]. (e) DeepUPE [18]. (f) Prop. w/ DeepUPE.

Table 5. Comparison with conventional hue-preserving
image-enhancement methods (hue difference �H′).

Scene Naik [20] Ueda [22] Azetsu [24] Prop.

Arno 0.144 0.726 0.001 0.000
Chinese garden 0.355 0.719 0.000 0.000
Estate rsa 0.441 0.607 0.000 0.000
Kluki 0.476 0.590 0.000 0.000
Laurenziana 0.200 0.609 0.000 0.000
Mountains 0.006 1.375 0.000 0.000
Ostrow tumski 0.082 0.786 0.000 0.000
Average 0.243 0.773 0.000 0.000

the proposed scheme. Table 5 illustrates the hue difference
scores. From the table, it is confirmed that the proposed
scheme and Azetsu’s method could completely remove hue
distortion. In contrast, Naik’s and Ueda’s method could not
avoid hue distortion. This is because these methods use a
hue definition that does not sufficiently take into account
human visual perception. Although Azetsu’s method com-
pletely avoided hue distortion, its enhancement perfor-
mance was lower than the proposed scheme in terms of
both entropy andNIQMC (see Tables 6 and 7). Entropy and
NIQMC scores will be high when the luminance histogram
of an image is uniform. These scores for Naik’s and Ueda’s
methods tend to be high because these methods utilize
HE-based enhancement algorithms. In contrast, Azetsu’s
method enhances images by a simple gamma correction
that does not consider input images. Hence, the enhance-
ment performance of Azetsu’s method depends heavily on
input images.

Table 6. Comparison with conventional hue-preserving
image-enhancement methods (entropy).

Scene Naik [20] Ueda [22] Azetsu [24] Prop.

Arno 6.844 6.955 7.414 7.544
Chinese garden 7.262 7.094 7.135 7.064
Estate rsa 6.931 6.756 7.169 7.234
Kluki 7.335 7.290 7.705 7.706
Laurenziana 7.318 7.276 7.474 7.468
Mountains 6.889 7.579 7.195 7.519
Ostrow tumski 6.869 7.211 7.303 7.227
Average 7.064 7.166 7.342 7.395

Table 7. Comparison with conventional hue-preserving
image-enhancement methods (NIQMC).

Scene Naik [20] Ueda [22] Azetsu [24] Prop.

Arno 5.687 5.456 5.431 5.571
Chinese garden 5.762 5.537 5.378 5.561
Estate rsa 5.581 5.280 4.787 5.178
Kluki 5.875 5.453 5.439 5.609
Laurenziana 5.745 5.595 5.535 5.718
Mountains 5.606 5.721 4.219 5.072
Ostrow tumski 5.636 5.584 5.371 5.332
Average 5.699 5.518 5.166 5.435

Fig. 3. Comparison with conventional hue-preserving image-enhancement
methods using 500 images in MIT-Adobe FiveK dataset [43] (hue difference
�H′). (a) Naik’s method, (b) Ueda’s method, (c) Azetsu’s method, (d) deep-
UPE, and (e) deepUPE with proposed scheme. Boxes span from first to third
quartile, referred to as Q1 and Q3, and whiskers show maximum and min-
imum values in range of [Q1 − 1.5(Q3 − Q1),Q3 + 1.5(Q3 − Q1)]. Band and
cross inside boxes indicate median and average value, respectively. Use of pro-
posed scheme enabled us to completely remove hue distortion caused by any of
image-enhancement methods.

As shown in Tables 8 and 4, the entropy and NIQMC
scores of the proposed scheme depended on the enhance-
ment method used in the scheme. Please note that our
aim is not to obtain the highest enhancement perfor-
mance, but to remove hue distortion due to enhance-
ment while maintaining the performance of enhancement
algorithms.

Figures 3–5 summarize quantitative evaluation results
as box plots for the 500 images in the MIT-Adobe FiveK
dataset [43] in terms of the hue-difference �H′, entropy,
and NIQMC, respectively. The boxes span from the first to



8 yuma kinoshita and hitoshi kiya

Fig. 4. Comparison with conventional hue-preserving image-enhancement
methods using 500 images in MIT-Adobe FiveK dataset [43] (Entropy). (a)
Naik’s method, (b) Ueda’s method, (c) Azetsu’s method, (d) deepUPE, and (e)
deepUPEwith proposed scheme. Boxes span fromfirst to third quartile, referred
to asQ1 andQ3, and whiskers showmaximum andminimum values in range of
[Q1 − 1.5(Q3 − Q1),Q3 + 1.5(Q3 − Q1)]. Band and cross inside boxes indicate
median and average value, respectively. Use of proposed scheme enabled us to
maintain image enhancement performance.

Fig. 5. Comparison with conventional hue-preserving image-enhancement
methods using 500 images in MIT-Adobe FiveK dataset [43] (NIQMC). (a)
Naik’s method, (b) Ueda’s method, (c) Azetsu’s method, (d) deepUPE, and (e)
deepUPEwith proposed scheme. Boxes span fromfirst to third quartile, referred
to asQ1 andQ3, and whiskers showmaximum andminimum values in range of
[Q1 − 1.5(Q3 − Q1),Q3 + 1.5(Q3 − Q1)]. Band and cross inside boxes indicate
median and average value, respectively. Use of proposed scheme enabled us to
maintain image enhancement performance.

the third quartile, referred to asQ1 andQ3, and the whiskers
show the maximum and the minimum values in the range
of [Q1 − 1.5(Q3 − Q1),Q3 + 1.5(Q3 − Q1)]. The band inside
boxes indicates the median, i.e. the second quartile Q2, and
the cross inside boxes denotes the average value. Figures 3–5
illustrates that the proposed scheme completely removed
hue distortion andmaintained the performance of the deep-
learning-based image-enhancement method.

For these reasons, it was confirmed that the proposed
hue-correction scheme can completely remove hue dis-
tortion caused by image-enhancement algorithms while
maintaining the performance of image enhancement. Fur-
thermore, the proposed scheme is applicable to any

Table 8. Hue difference �H′ between input image and corresponding
image enhanced with/without gamut mapping.

Scene w/o gamut mapping w/ gamut mapping

Arno 0.366 0.001
Chinese garden 0.113 0.000
Estate rsa 0.089 0.000
Kluki 0.117 0.000
Laurenziana 0.145 0.000
Mountains 0.007 0.000
Ostrow tumski 0.214 0.000
Average 0.134 0.000

image-enhancement algorithm including state-of-the-art
deep-learning-based ones.

D) Effect of gamut mapping
Table 8 shows hue difference scores �H′ between input
images and the corresponding images enhanced by the pro-
posed scheme with/without gamut mapping, where LIME
[10]was utilized as an image-enhancement algorithm. From
the table, it is confirmed that the proposed scheme without
the gamut mapping did not completely remove hue dis-
tortion but the proposed scheme with the gamut mapping
did. This hue distortion is due to the clipping of out-of-
gamut colors in the color space conversion process from the
CIELAB color space to the sRGB color space. For this rea-
son, it is showed that the gamut mapping in the proposed
scheme is effective to avoid hue distortion due to color space
conversion.

V I . CONCLUS ION

In this paper, we proposed a novel hue-correction scheme
based on CIEDE2000. The proposed scheme removes hue
distortion caused by image-enhancement algorithms so that
the hue difference, which is defined inCIEDE2000, between
an enhanced image and a reference image becomes zero. In
addition, applying hue-preserving gamut-mapping enables
us to compress the color gamut of the CIELAB color space
into the color gamut of an output RGB color space. Exper-
imental results showed that images corrected by the pro-
posed scheme have completely the same hue as those of
reference images (i.e. input images), but those with con-
ventional hue-preserving methods do not. Furthermore,
the proposed scheme can maintain the performance of
image-enhancement algorithms in terms of discrete entropy
and NIQMC. This result indicates that the use of the pro-
posed scheme enables us to make all image-enhancement
algorithms including deep-learning-based ones be hue-
preserving ones.
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