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DSNet: an efficient CNN for road scene
segmentation
ping-rong chen,1 hsueh-ming hang,1 sheng-wei chan2 and jing-jhih lin2

Road scene understanding is a critical component in an autonomous driving system. Although the deep learning-based road
scene segmentation can achieve very high accuracy, its complexity is also very high for developing real-time applications. It is
challenging to design a neural net with high accuracy and low computational complexity. To address this issue, we investigate
the advantages and disadvantages of several popular convolutional neural network (CNN) architectures in terms of speed,
storage, and segmentation accuracy. We start from the fully convolutional network with VGG, and then we study ResNet and
DenseNet. Through detailed experiments, we pick up the favorable components from the existing architectures and at the end,
we construct a light-weight network architecture based on the DenseNet. Our proposed network, called DSNet, demonstrates
a real-time testing (inferencing) ability (on the popular GPU platform) and it maintains an accuracy comparable with most
previous systems. We test our system on several datasets including the challenging Cityscapes dataset (resolution of 1024× 512)
with an Mean Intersection over Union (mIoU) of about 69.1 and runtime of 0.0147 s/image on a single GTX 1080Ti. We also
design a more accurate model but at the price of a slower speed, which has an mIoU of about 72.6 on the CamVid dataset.
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I . I NTRODUCT ION

With the fast development of automated driving systems,
a stable and reliable surrounding scene analysis becomes
essential for a safe driving environment.1 The deep-learning
based image semantic segmentation is one of the best solu-
tions because it is sufficiently robust in analyzing the com-
plicated environments. It partitions a captured image into
several regions and recognizes the class (object) of every
pixel, so it can be viewed as pixel-level classification. Differ-
ent from image classification, the image semantic segmenta-
tion identifies the object classes in images and also finds the
locations of objects in images. In addition, it provides pre-
cise object boundary information. Nevertheless, the high
accuracy of image semantic segmentation is often at the
high complexity of a convolutional neural network (CNN)
model without consideration of inference time, resulting in
a difficult implementation on several light devices. There-
fore, a fast and efficient CNN model is very desirable and
imperative for a practical semantic segmentation system.

Recently, an encoder–decoder architecture is popular for
semantic segmentation. The encoder is usually a classifica-
tion network, such as VGG [2], ResNet [3], and DenseNet
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[4]. It employs a series of down-sampling layers to condense
the information. However, the down-sampling operation
drastically reduces the detailed spatial information which
is quite important for the image semantic segmentation
task. To address this issue, some decoders are designed to
recover the spatial resolution by using the up-sampling pro-
cess. Deconvolution is commonly used to produce a learn-
able up-sampling process in many popular networks, such
as DeconvNet [5] and fully convolutional network (FCN)
[6]. Un-pooling used in SegNet [7] is another method to
up-sample the feature maps by reusing the max-pooling
indices produced by the encoder. On the other hand, some
networks are constructed without a decoder network but
retain the detailed spatial information from the encoder
part, such as DeepLab v2 [8], DeepLab v3 [9], and PSPNet
[10]. They remove some down-sampling layers and apply
the dilated convolution, which can maintain the spatial res-
olution without sacrificing the receptive field. Although this
method can improve accuracy, the enlarged feature maps
often significantly slow down the processing, especially for
a deep architecture together with large feature maps. Also,
DeepLab v3+ [11] includes a decoder network to combine
the multi-scale information to obtain better results. These
previous works give us clues in constructing a fast network
that is able to capturemulti-scale informationwithout using
dilated convolution.

In the past a few years, several efficient semantic segmen-
tation networks have been proposed, such as ENet [12] and
ERFNet [13]. ENet is constructed based on the concept of
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SegNet, but it is much slander than the latter and thus offers
a light and fast architecture. Moreover, ENet uses dilated
convolution and stacked residual layers to deepen the net-
work so that the accuracy can be maintained. ERFNet is
a wider version of ENet and uses deconvolutional layers
for the up-sampling process. Also, they adopt the factor-
ized filter structure [14] to separate a two-dimensional filter
into two one-dimensional filters in the convolutional layer
and thus considerably reduce the number of parameters.
Further, both of ENet and ERFNet use an early down-
sampling scheme and an extremely narrow architecture
compared to the schemes with a heavy encoder such as
VGG16 and ResNet101 (top-ranked on ILSVRC [15]). In
this work, we adopt a similar idea in constructing a nar-
row architecture, but DenseNet is selected as the backbone
instead of ResNet because it combines themulti-scale infor-
mationmore frequently, whichmay bemore appropriate for
semantic segmentation purpose.

I I . PROPOSED NETWORK
OVERV IEW

In this paper, the target is to construct a fast network archi-
tecture without degrading its accuracy. Up to now, con-
structing a CNN is often empirical, and it is hard to predict
in advance the results of a modified network. Our aim is
to design a favorable architecture for real-time applications.
We conducted a series of experiments to select the efficient
structures together with various components as described
in Section III. Here, we first give an overview of the pro-
posed network, Dense Segmentation Network, DSNet, in
brief. The entire architecture is shown in Figs 1 and 2.
Figure 1 is the fast version, which has a smaller model size
and a bit lower accuracy comparing to the accurate version
in Fig. 2. But these two versions share a lot of the common
architecture and components. Basically, the network archi-
tecture includes two parts, the encoder and the decoder. The
details are described below.

A) Encoder – fast version
The encoder part is constructed based on the concept of
DenseNet because it achieves high performance with nar-
row layers, resulting in less overall computational cost. The
encoder consists of one initial block, four non-bottleneck
units (without 1× 1 convolution), and 26 bottleneck units
(with 1× 1 convolution). The early down-sampling opera-
tion (convolutionwith a stride of 2) is employed at the initial
block to shrink the size of feature maps and to speed up the
network. Meanwhile, the output channel of the initial block
is set to 32, the growth rate is set to 32, which represents how
many feature maps are generated in one dense unit, and the
channels are compressed with a ratio of 0.5 in the transition
layer before a pooling operation to reduce the complexity.
The bottleneck units adopt a 1× 1 convolution to reduce
the number of channels. As the number of channels is quite
small in Block 1 and Block 2, it is not necessary to decease
the channel numbers there. Thus, the non-bottleneck units

are adopted inBlock 1 andBlock 2 rather than the bottleneck
units.

In the above components, we two modified two origi-
nal dense units to make a trade-off between accuracy and
speed. First, we modify the composition unit from BN-
ReLU-Conv [16] to Conv-BN-ReLU. Even though the full
pre-activation unit (BN-ReLU-Conv) is claimed to improve
the results, it is not possible to merge BN layers into Conv
layers during the testing phase (as discussed in [17]). Thus,
to increase speed, we redesign the DenseNet architecture by
using the Conv-BN-ReLU units to replace the BN-ReLU-
Conv units.

Second, we slightly modify the dense unit by inserting
another convolutional layer at the end of bottleneck and the
non-bottleneck architectures, as shown in Fig. 3. By adopt-
ing this modification, the network can be deepened at a
low computational cost because the preceding layer is suffi-
ciently narrow. Also, the additional convolutional layer can
enlarge the receptive field to capture large-scale objects and
to produce a better result on the high-resolution dataset,
such as Cityscapes dataset. The experimental justification
on the modification is to be discussed in Section III.

B) Encoder – accurate version
In our experiments (Section III), we find that the convolu-
tional layers operated on the large feature maps are impor-
tant for an accurate pixel-level classification, especially
for processing a low-resolution image. Thus, we propose
another architecture (Fig. 2) to deal with the low-resolution
images. This architecture removes the early down-sampling
operation in the initial block in Fig. 1 so that the larger
feature maps are fed to the rest of the network.

Meanwhile, in the decoder, one skip connection con-
nected to Block 2 is removed and all the feature maps are
up-sampled to the resolution of Block 3. Thus, the number
of channels after the concatenated layer becomes 96 and the
last deconvolutional layer up-samples the feature maps by
a factor of 4. As shown in Fig. 2, this architecture is called
DSNet-accurate (accurate dense segmentation network). In
summary, we proposed two architectures to deal with dif-
ferent input resolutions. We name the architecture with the
early down-sampling layer asDSNet-fast. And, the architec-
ture without the early down-sampling operation is called as
DSNet-accurate.

C) Decoder
In our experiments (Section III), we also find that a decoder
with a heavy structure does not seem to provide much
accuracy improvement. Hence, simplifying the decoder is
a feasible way to speed up the network. So, we reduce
the number of channels to 32 by employing four convolu-
tional layers after the Block 2, Block 3, Block 4, and Block
5 (DSNet-fast in Fig. 1). Furthermore, all the feature maps
are up-sampled to the resolution of Block 2 to concate-
nate them together. In the end, a deconvolutional layer
with a four up-sampling rate is used to recover the spatial
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Fig. 1. The architecture of fast dense segmentation network (DSNet-fast). The encoder is constructed based on the deep dense unit described in Fig. 3.

Fig. 2. The architecture of the proposed network, DSNet-accurate. It differs from Fig. 1 (DSNet-fast) mainly in that it removes the down-sampling operation in the
initial block. And it removes the skip connection connected to Block 2, and thus has 96 channels at the concatenation layer rather than 128 channels in DSNet-fast.
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Fig. 3. The modified deep dense units by inserting another convolutional layer (red dotted block). (a) Non-bottleneck architecture. (b) Bottleneck architecture.

resolution for the final dense segmentation. By using this
simple decoder, the computational complexity is consider-
ably decreased and the accuracy can be maintained at the
same time.

I I I . STRUCTURE/COMPONENT
SELECT ION

As mentioned earlier, a series of experiments are carried
out to investigate the pros and cons of various structures
and components. The results give us the clues in select-
ing appropriate architecture and components for designing
DSNet. We now explain the ablation study in detail in this
section. DSNet was hinted by the architecture of FCN. FCN
is an encoder–decoder network and its decoder combines
the multi-scale information in order to produce an accu-
rate prediction. We modify the backbone network of FCN
using ResNet [3] and DenseNet [4]. Extensive experiments
were conducted to compare various combinations before
we settled on a modified version based on DenseNet. We
divide the experiments into two parts, encoder experiments
and decoder experiments. Before describing them, we first
describe the dataset used to benchmark the performance
and the parameter setting in training the networks.

A) Dataset
We use two popular road-scene datasets to evaluate all the
networks in this paper. The first one is CamVid [18], which
consists of 367 training images, 101 validation images, and
233 testing images. The resolution of all images is 480× 360
and there are in total 11 classes in the dataset. The CamVid
dataset can show the importance of detailed information
because the image resolution is relatively low.

The second dataset is Cityscapes [19], which is a larger
dataset for semantic understanding of urban street scenes.
All images are at 2048× 1024 resolution and there are 19

classes for training. Two kinds of annotations are provided,
fine-annotation and coarse-annotation. In this paper, we
use only the fine-annotated dataset to train and evaluate
the networks. It is composed of 2950 training images, 500
validation images, and 1525 test images. For speed con-
sideration, the images are down-sampled by a factor of
2 (horizontally and vertically) in some experiments. The
Cityscapes dataset can show the influence of receptive
field on the networks when the input images are of high
resolutions.

B) Implementation details
All the experiments are conducted on the Pytorch frame-
work [20] with a single Maxwell Titan X GPU. The opti-
mizer is stochastic gradient descend, with a weight decay of
0.0005, a momentum of 0.9, a batch size of 4, and a base
learning rate of 0.05. Inspired by [21, 22], the learning rate
is adjusted after every iteration according to the following
equation:

lr = lrbase ×
(
1− iteration

total iterations

)power

(1)

with a power of 0.9. Also, a total of 13 800 iterations (150
epochs) is set in the training on the CamVid dataset, and
74 400 iterations (100 epochs) is set in the training on the
Cityscapes dataset. In addition, we adopt a class balancing
strategy to compensate small-size classes. Inspired by [5, 11],
the class weightings are calculated by:

wc = 1
log(pc + k)

(2)

where k is a constant set to 1.1 and pc represents the prob-
ability of the presence of class c in pixel level; then, these
class weightings are divided by their maximum value to
normalize their values into [0, 1], so that the other hyper-
parameters can be fixed without affecting the convergence
in training.
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Table 1. Results of FCN-VGG16 and FCN-ResNet50 on CamVid test set
and Cityscapes validation set.

Method Dataset
Image

resolution
mIoU
()

Frame
rate
(fps)

FCN-VGG16 CamVid 480× 360 67.5 39.8
Cityscapes 2048× 1024 65.2 4.1

FCN-ResNet50 CamVid 480× 360 65.0 38.1
Cityscapes 2048× 1024 67.4 5.1

C) Encoder structure – ResNet and variations
In the previous studies, many semantic segmentation
researchers adopted andmodified the neural networks orig-
inally designed for image classification. As said earlier
that we also started from the FCN structure which adopts
VGG16 as the backbone (we name it, FCN-VGG16) and
replace its network by the recent high-performance net-
works. Essentially, there are three network architectures
that we have investigated: VGG16 [2], ResNet50 [3], and
DenseNet [4].

First, it has been shown that the residual block pro-
posed by He et al. [3] can significantly improve the clas-
sification accuracy if the depth of the CNN gets deeper.
Hence, we modify the encoder of FCN by replacing VGG16
with ResNet50 to construct the FCN-ResNet50 network.
The modified network structure is shown in Fig. 4, and is
called FCN-ResNet. As the resolution of feature maps at the
end of FCN-ResNet is twice smaller than FCN-VGG, we
slightly revise the decoder of FCN-ResNet. Different from
the decoder in FCN-VGG, another convolutional layer and
another de-convolutional layer are added into the decoder
of FCN-ResNet so that the last de-convolutional layer can
up-sample the feature maps by a factor of 4, which is iden-
tical to FCN-VGG. In addition, the number of channels in
ResNet increases considerably compared to VGG.

However, according to Table 1, we find that the perfor-
mance varies on different datasets. The mean Intersection
over Union (mIoU) is a commonly used metric for evaluat-
ing the segmentation performance [5–7]. The performance
of FCN-ResNet50 is worse than that of FCN-VGG16 on
the CamVid dataset, but the accuracy of FCN-ResNet50 is
significantly improved on the Cityscapes dataset. We sup-
pose that this is due to different input resolutions. Thus, we
investigate the impact of the input resolution by using the
following experiments.

When viewing the segmentation maps in Fig. 5, we find
that the truck object estimated by FCN-VGG16 is frag-
mented and incomplete. In contrast, FCN-ResNet50 is able
to capture the truck more accurately. One explanation is
that the receptive field of ResNet50 is larger than that of
VGG16; that is, the ResNet50 is able to recognize large size
objects and thus results in amore accurate estimation on the
high-resolution images.

Next, we study the performance on the low-resolution
images. We investigate the problem based on the structure
of VGG16 and ResNet50. In the first few layers, the struc-
ture of ResNet50 has an early down-sampling layer, and then
followed by a down-sampling layer (max-pooling layer).

Table 2. Results of FCN-VGG16 and FCN-VGG-ED on CamVid test set
(training from scratch).

Method mIoU () Frame rate (fps) Model size (MB)

FCN-VGG16 56.9 39.8 72.6
FCN-VGG-ED 52.2 60.6 71.1

Heuristically, these consecutive down-sampling operations
may reduce the feature maps to a rather small size. Thus,
it is difficult to retain the detailed spatial information and
thus leads to a poor segmentation result on small objects.
In order to verify this speculation, we replace the first four
convolutional layers and two max-pooling layers of VGG16
by one early down-sampling layer followed by a down-
sampling layer and call it FCN-VGG-ED as shown in Fig. 6.

As there is no pre-trained model for the modified
network, FCN-VGG16 and FCN-VGG-ED (early down-
sampling) in Table 2 are trained with the random initializa-
tion (training from scratch). The results show that the FCN-
VGG-ED performance degrades considerably and we thus
confirm that the early down-sampling layer is one of the
reasons causing FCN-ResNet50 performance degradation
on low resolution images. On the other hand, the number
of parameters may be another reason causing the degrada-
tion in FCN-VGG-ED. In summary, we have the following
observations based on the results of encoder experiments:

• In order to retain the detailed spatial information, the con-
volution operation performed on the large feature maps is
important for semantic segmentation.

• In order to capture the long-range information and large-
scale objects, a deep architecture is needed for high-
resolution images.

• The early down-sampling layer speeds up the operation
significantly but it degrades the small-size image results.

In brief, we need a deep architecture to process a high-
resolution image. Also, we hope the network is capable of
adding extra convolutional layers for large-size featuremaps
but we also want to have a low computational cost. Thus, the
trade-off between using the early down-sampling layer and
the extra convolutional layers is a critical issue in designing
a fast neural network. The above observations give us clues
in designing the encoder part in Fig. 1. We next look into
the DenseNet [4]. Due to the low complexity in every dense
unit, we can insert additional convolutional layer to process
the large feature maps (e.g. Block 1 in Fig. 1) and thus more
detailed spatial information can be retained.

D) Encoder structure – DenseNet and
variations
Figure 7 shows the architecture of the network using
DenseNet, named FCN-DenseNet, which adopts the origi-
nal residual units (without the dotted block in Fig. 2). We
also contruct FCN-DenseNet-D (with the dotted block in
Fig. 2), which adopts deeper residual units. The encoder
consists of one initial block, four non-bottleneck units,
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Fig. 4. The architecture of FCN-ResNet. The backbone of encoder is ResNet, and a FCN-based decoder is attached to fuse feature maps by summation.

Fig. 5. An output sample that shows the importance of receptive field. (a) Input image, (b) Ground truth, (c) FCN-VGG16 output, (d) FCN-ResNet50 output.

and 26 bottleneck units. The early down-sampling oper-
ation is employed into the initial block to speed up the
network. Different from the ResNet down-sampling imme-
diately behind the early down-sampling layer, we insert
another block (Block 1) to retain the detailed information.
Meanwhile, the output channel number of the initial block
is set to 32, and the growth rate is set to 32, which repre-
sents how many feature maps are generated in one residual
unit. The channels are compressed with a ratio of 0.5 in the
transition layer to reduce the complexity, and the dropout
strategy is adopted at the end of every residual layer with
0.1 drop ratio. Incidentally, the bottleneck units adopt a 1× 1

convolution to reduce the number of channels, but the num-
ber of channels is still few in Block 2 and Block 3, so we
use non-bottleneck units in Block 2 and Block 3 rather than
bottleneck units.

Table 3 shows the results of FCN-DenseNet and FCN-
DenseNet-D and we used the Cityscapes dataset at 1024×
512 resolution to compare the performance with FCN-
ResNet and FCN-VGG.Here, although FCN-DenseNet and
FCN-DenseNet-D do not have pre-trained models on the
ImageNet dataset, the accuracy of FCN-DenseNet-D is
very close to that of FCN-VGG. Also, the speed and the
model size of FCN-DenseNet-D perform much better than
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Fig. 6. The architecture of FCN-VGG-ED (ED: early down-sampling). Similar to Fig. 4, the decoder is a FCN-based structure, but the backbone of the encoder is
VGG.

Fig. 7. The architecture of FCN-DenseNet and FCN-DenseNet-D (“D” means the deep dense unit described in Fig. 3). Similar to Figs 4 and 6, a FCN-base decoder
is employed. The encoder is a customized structure based on the idea of DenseNet.
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Table 3. Results of FCN-DenseNet and FCN-DenseNet-D on Cityscape validation set.

Model Pre-trained Global Acc. () Class Acc. () mIoU () Frame rate (fps) Model size (MB)

FCN-VGG � 94.4 75.7 66.8 16.6 76.5
FCN-ResNet � 93.4 69.4 60.6 17.0 239.3
FCN-DenseNet 94.0 75.9 65.7 50.6 26.8
FCN-DenseNet-D 94.4 77.6 67.2 45.1 27.9

FCN-VGG and FCN-ResNet, which indicates that FCN-
DenseNet-D is a potential architecture for real-life appli-
cations. So, we like to improve accuracy and speed based
on the DenseNet-based architecture to construct a more
efficient network.

Pre-training the networks on a large dataset is a com-
mon way to improve the performance because it can set up
a good initialization and strengthen the feature representa-
tions. Hence, we pre-train the encoders of FCN-DenseNet
and FCN-DenseNet-D on the ImageNet dataset [15] con-
sisting of 1 281 167 training images and 50 000 validation
images with 1000 object categories. Before training on the
ImageNet, we modify the encoders by adding one global
average pooling layer and one fully connected layer, so
that the encoders can be converted to the networks for
image classification purpose. Then, we discard the attached
pooling layer and the fully connected layer, and attach the
decoder network to reconstruct FCN-DenseNet and FCN-
DenseNet-D. Then, we retrain these two encoders with the
pre-trained models on the Cityscapes dataset at 1024× 512
resolution. With the help of the pre-trained model, the
performance can be improved 2–3 mIoU. Furthermore,
although FCN-DenseNet-D is slightly slower than FCN-
DensNet, it attains a higher accuracy and runs pretty fast (45
fps in Table 3). Hence, it (with pre-trained model) is chosen
as the baseline in the later experiments.

E) Decoder experiments
As said, we discard the attached pooling layer and the fully
connected layer of the pre-trained encoder, and connect it
to the FCN-based decoder. We explore two fusion meth-
ods at decoder, summation, and concatenation, which have
been used in ResNet and DenseNet, respectively. Often, the
concatenation fusion has better performance; however, con-
catenating the featuremaps directly increases the number of
channels (calledwide decoder) and results in a high compu-
tational cost in the following layers, as shown in Fig. 8.

Therefore, we reduce the output channels to half at every
convolutional layer at the decoder to reduce the complex-
ity (called narrow decoder, Fig. 8). According to the results
in Table 4, there is no obvious difference among the accu-
racy of these three architectures. But themodel with narrow
decoder speeds up the network using fewer parameters.
Hence, simplifying the decoder seems to be a way to con-
struct an efficient network.

For the purpose of designing a light decoder, we conduct
four variations of the decoder, as Fig. 9 shows. All of them
have the identical encoder, which is similar to the front-
endmodule in Dilation 8 [23], or, essentially it is a modified

Table 4. Fusion methods in the decoder (Cityscapes validation set at
1024× 512 resolution).

Decoder mIoU () Frame rate (fps) Model size (MB)

Summation 68.8 45.1 27.9
Concat-wide 68.7 41.4 30.9
Concat-narrow 68.7 50.6 18.0

Table 5. Results of four decoders on CamVid test set.

Method mIoU () Frame rate (fps) Model size (MB)

Model-1 64.1 24.3 70.6
Model-2 63.0 34.5 59.1
Model-3 63.9 27.0 70.2
Model-4 64.2 30.3 60.3

SegNet. The 14th convolutional layer is inserted to adjust the
number of channels for the decoder. In total, four decoders
are designed and tested. Model-1 adopts the SegNet-like
decoder but replaces the un-pooling layers by the bilin-
ear interpolation layers. Model-2 discards the decoder net-
work and up-samples the feature maps directly to the input
resolution without additional convolutional layers. It can
be viewed as an architecture without the decoder. Model-
3 recovers the spatial resolution gradually but it removes
the last two convolutional layers as compared to Model-1.
Model-4 up-samples the feature maps directly to the input
resolution and uses two convolutional layers to recover the
detailed information.

Table 5 shows the results of four architectures in Fig. 9,
when the CamVid dataset is tested. The results of these four
models are very close, which confirm that the decoder plays
a lesser role in improving the overall performance. Thus,
we can simplify the decoder to speed up the network. Addi-
tionally, the results show that a good decoder can slightly
improve the accuracy; therefore, we design the network
with a moderate decoder for accuracy consideration. More-
over, among Model-1, Model-3, and Model-4, Model-4 is
fast and using fewer parameters, and thus it is preferred for
constructing an efficient network. Thus, Model-4 becomes
our choice for the decoder.

In summary, the decoder experiments give us the follow-
ing observations:

• Using a narrow decoder is able to speed up the net-
work and it provides similar accuracy compared to a wide
decoder.

• Up-sampling the feature maps to a large size and/or using
additional convolutional layers to recover the information
can produce more accurate results.
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Fig. 8. The architecture of FCN-DenseNet-D with the wide decoder and the narrow decoder. Differing from Fig. 7, the concatenation operator is employed instead
of summation in the decoder. There are two channel numbers in the skip connections and decoder layers. The left number (blue) is for the wide decoder and the
right one (red) is for the narrow decoder.

Fig. 9. Variations of Decoder. From top to bottom: (a) Model-1, (b) Model-2, (c) Model-3, (d) Model-4.
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Therefore, in our final design, we remove the decoder
of FCN-DenseNet and use the narrow convolutional layers
followed by the bilinear interpolation layers to produce the
large-size feature maps. A concatenated layer is employed
to combine the feature maps, and a deconvolutional layer
is used to recover the detailed information, to fuse the
feature maps and to determine the final estimation. This
architecture is our proposed DSNet.

I V . PERFORMANCE OF DSNET

As mentioned above, two networks are proposed in this
paper, DSNet-fast (Fig. 1) and DSNet-accurate (Fig. 2).
These two architectures can be used to process different res-
olution images. In this section, we report the experimental
results of the proposed network on CamVid and Cityscapes
datasets. Also, we compare themwith the other state-of-the-
art networks to examine the effectiveness of the proposed
method.

A) Results on CamVid
In this subsection, the CamVid dataset is used to evaluate
the performance of DSNet. In addition to DSNet-fast, the
DSNet-accurate is employed to process the small resolution
images. Here, both DSNet-fast and DSNet-accurate adopt
the pre-trained encoder on ImageNet. After pre-training,
the data augmentation strategy (horizontal flip and pixel
translation) is employed to produce the robust prediction.
Also, we find that decaying the learning rate by equation (1)
can slightly improve the accuracy.

The results are shown in Table 6. DSNet-accurate sac-
rifices the inference speed but its accuracy is higher than
DSNet-fast for about 4 mIoU. In addition, Table 7 shows
that the number of parameters in DSNet-accurate is less
than DSNet-fast due to the elimination of a convolution
layer in the decoder. Here, we already know that the
parameters used in the decoder show less effect on accu-
racy improvement. Also, the number of the parameters
used in first few layers is identical in both DSNet-fast
and DSNet-accurate, which indicates the size of feature
maps is supposed to be more important than using extra
parameters. Thus, the results in Table 6 are consistent with
our observation in Section III that the feature map size
has a significant influence on the accuracy in semantic
segmentation.

On the other hand, compared to the other state-of-the-
art methods, DSNet-accurate shows an outstanding perfor-
mance in processing the low-resolution images (480× 360).
Furthermore, according to the experimental results in
Fig. 10, we find that DSNet-accurate is indeed capable
of retaining more detailed information and capturing the
small objects compared toDSNet-fast. Table 7 lists the frame
rate of DSNet-fast and DSNet-accurate. Both of them pro-
cess a 480× 360 RGB image for more than 58 frames/s,
which demonstrates the real-time testing (inferencing) abil-
ity. Thus, if the computing device is sufficiently powerful or

Table 6. Comparison of DSNet and other schemes on CamVid test set.

Method mIoU () Global Acc. ()

DeepLab-LFOV [8] 61.6 –
Bayesian SegNet [14] 63.1 86.9
Dilation8 [23] 65.3 79.0
EDANet [24] 66.4 90.8
FC-DenseNet103 [25] 66.9 91.5
ICNet [26] 67.1 –
G-FRNet [27] 68.0 –
DCDN [28] 68.4 91.4
SDN [29] 71.8 92.7
DSNet-fast 68.6 91.7
DSNet-accurate 72.6 92.7

Table 7. The speed of DSNet running on 480× 360 resolution with 11
categories (CamVid dataset).

Method Frame rate (fps) Model size (MB)

DSNet-fast 81.9 11.9
DSNet-accurate 58.2 11.6

the input size is small, the DSNet-accurate is also an appro-
priate architecture to balance speed and accuracy for the
real-time applications.

B) Results on Cityscapes
We also tested our systems on the Cityscapes dataset. For
the speed consideration, only DSNet-fast is benchmarked
on this high-resolution dataset. At the training step, we
resize the image and its ground truth (map) to 1024× 512
in order to speed up the network training. During infer-
ence, the input image is at 1024× 512 resolution, but the
output segmentation maps are up-sampled to the full res-
olution (2048× 1024) corresponding to their ground truths
for evaluation. In addition to decaying the learning rate by
(1), we find that adjusting the weight decay from 0.0005 to
0.0001 and adopting the dropout strategy [30] at the end of
every dense unit with a drop rate of 0.1 can further improve
the accuracy for DSNet-fast. Also, the pre-trained encoder
and the data augmentation strategy are used in training to
strengthen the feature representation. The best model of
DSNet-fast can achieve 71.5 mIoU on the validation set.
Some output samples are displayed in Fig. 11.

Furthermore, we compare DSNet-fast with the other
state-of-the-art networks on the Cityscapes test set by sub-
mitting the test results to the online benchmark server. At
the end, DSNet-fast achieves 69.1 mIoU, as Table 8 shows.
For the top-ranked methods, the architectures are more
complex than DSNet-fast. Also, a large amount of data is
included in their training procedure, resulting in the bet-
ter generalization and higher performance. Although the
accuracy of DSNet is still lower than some high accuracy
networks, DSNet is rather fast and accurate in compet-
ing with the efficient networks. It only takes 18.9ms per
image on a Titan X and 14.7ms per image on a 1080Ti, for
1024× 512 resolution inputs. The name of our method on
the leaderboard is NCTU-ITRI.
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Fig. 10. The results of DSNet on CamVid test set. From left to right: (a) Input image, (b) Ground truth, (c) DSNet-fast output, (d) DSNet-accurate output.

Table 8. The results of DSNet-fast and other methods on Cityscapes test set. The results of other methods are listed according to the online
leaderboard and their reference papers (Cityscape webpage).

High-speed network

Runtime (s)

Method Cityscapes data Input downscaling factor Additional data mIoU () Titan X 1080 Ti

SegNet [7] Fine 4 ImageNet 56.1 0.0600 –
ENet [12] Fine 2 – 58.3 0.0130 –
SQ [31] Fine no ImageNet 59.8 0.0600 –
ESPNet [21] Fine 2 – 60.3 0.0089 –
ESPNetv2 [32] Fine 2 ImageNet 62.1 0.0120 –
ContextNet [22] Fine no – 66.1 0.0238 –
EDANet [24] Fine 2 – 66.3 0.0123 0.0092
EDANet [24] Fine, Validation 2 – 67.3 0.0123 0.0092
ERFNet [13] Fine 2 – 68.0 0.0240
ICNet [26] Fine, Validation no ImageNet 69.5 0.0330 –
ERFNet [13] Fine 2 ImageNet 69.7 0.0240 –
DSNet-fast Fine 2 ImageNet 69.1 0.0189 0.0147

V . CONCLUS ION

In general, a deep learning model usually has high per-
formance (accuracy) but often has a low inference speed.
This makes the deep learning based methods difficult to

apply into a real-world application. To solve the problem,
we modify the network architecture based on the FCN and
DenseNet.

In order to find an efficient trade-off between accuracy
and speed, we conduct a series of experiments. We explore
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Fig. 11. Results of DSNet on Cityscapes validation set. From left to right: (a) Input image, (b) Ground truth, (c) DSNet-fast output.

a number of the encoder variations, examine the impact of
input resolution, and the structure and the depth of a neural
net. Next, we look into the fusion methods in the decoder,
and ways to simplify the decoder. Finally, we propose an
architecture that is able to process 1024× 512 resolution
images at 68 fps on a single 1080 Ti GPU card. In addition,
our proposed architecture shows the good results on the two
challenging road-scene datasets, CamVid and Cityscapes.
This demonstrates that the proposed architecture is able to
achieve a high speed and rather high accuracy processing.
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