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Amulti-branch ResNet with discriminative
features for detection of replay speech signals
xingliang cheng, mingxing xu and thomas fang zheng

Nowadays, the security of ASV systems is increasingly gaining attention. As one of the common spoofing methods, replay attacks
are easy to implement but difficult to detect.Many researchers focus on designing various features to detect the distortion of replay
attack attempts. Constant-Q cepstral coefficients (CQCC), based on the magnitude of the constant-Q transform (CQT), is one
of the striking features in the field of replay detection. However, it ignores phase information, which may also be distorted in the
replay processes. In this work, we propose a CQT-based modified group delay feature (CQTMGD) which can capture the phase
information of CQT. Furthermore, a multi-branch residual convolution network, ResNeWt, is proposed to distinguish replay
attacks from bonafide attempts. We evaluated our proposal in the ASVspoof 2019 physical access dataset. Results show that
CQTMGD outperformed the traditional MGD feature, and the fusion with other magnitude-based and phase-based features
achieved a further improvement. Our best fusion system achieved 0.0096 min-tDCF and 0.39 EER on the evaluation set and
it outperformed all the other state-of-the-art methods in the ASVspoof 2019 physical access challenge.
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I . I NTRODUCT ION

Speech, the most natural and convenient way for commu-
nication, contains abundant information, such as meaning,
emotion, and identity. The automatic speaker verification
(ASV) is the technique of identifying a person by the pro-
vided speech samples. ASV has recently been widely used
as a user authenticationmethod. In themeantime, the secu-
rity of ASV attracts more attention. There are mainly four
kinds of attackingmethods [1]: imitation (i.e.mimicking the
voice of the target user), voice conversion (i.e. converting
voice of a person into the voice of the target user), speech
synthesis (i.e. synthesizing the voice of the target user by the
given text), and replay (i.e. replaying a pre-recorded voice
of the target user). Among them, replay attacks are easy
to implement since they only need to record the voice of
the target user and replay the recording with a loudspeaker.
Meantime, the quality of recording and playback devices are
getting increasingly exquisite, making it difficult to distin-
guish bonafide attempts from replay attacks. A study has
reported that ASV systems are highly vulnerable to replay
attacks [2]. To improve the security of ASV, it is important
to develop techniques to detect such attacks.
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Replay detection is the technique of distinguishing replay
speech signals fromhuman (bonafide) speech signals. Three
major discrepancies between them are: (1) Flexibility: The
content of replay signals is frozen at the time of record-
ing. However, bonafide speeches are dynamically gener-
ated by a person at the time of verification. Thus, replay
attacks have lesser flexibility than bonafide attempts. Based
on this phenomenon, challenge-based approaches [3] have
been proposed, which require users to respond to a random
challenge. (2) Randomness: Due to the randomness of pro-
nunciation, a person can not speak a speech twice in the
completely same way. However, the randomness of record-
ing and replay devices is much lesser than the random-
ness of human pronunciation. Based on this phenomenon,
template-matching-based approaches [4] have been pro-
posed. Those approaches match a speech signal to template
databases to verify whether it is presented earlier or not.
(3) Distortion: The replay processes cause distortion, which
includes device distortion and environment distortion.
Researchers attempt to detect the distortion. The dis-

tortion falls into four categories: (1) Linear distortion: It
is related to the flatness of the frequency responses of
devices. (2) Nonlinear distortion: It includes harmonic dis-
tortion and intermodulation distortion. New frequency
components, which do not exist in original signals, will be
introduced by nonlinear distortion. (3) Additive noises: It
includes the noises caused by physical devices and noises
from environments. (4) Reverberations: Since the record-
ings used for playback also contain reverberations, the
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reverberations of reverberations will cause distortion in
the replay attacks. The distortion mentioned above can be
reflected in the cepstral domain. There are several feature
sets which are designed in the cepstral domain, such as
the constant-Q cepstral coefficients (CQCC) [5], Mel fre-
quency cepstral coefficients (MFCC), inverseMel frequency
cepstral coefficients (IMFCC) [6], linear prediction cepstral
coefficients [7], and rectangular frequency cepstral coeffi-
cients (RFCC) [8]. In addition tomagnitude-based features,
several phase-based features, such as the modified group
delay (MGD) function [9] and relative phase shift feature
[10], have been proposed to detect the distortion in the
phase domain.
Apart from these features, classifiers also play an impor-

tant role in the replay detection task. The Gaussian mixture
model (GMM), a traditional statistical model, is popular in
this field. However, GMM is a frame-level model. Thus, it
can hardly describe the reverberation distortion acrossmul-
tiple frames. Two-dimensional convolutional neural net-
works (2D-CNN) can model the correlation in both direc-
tions, that is, the frequency-axis and time-axis. Thus, they
can detect the reverberation effects across frames. Several
2D-CNNs have been used in replay detection, such as the
light CNN [11] and ResNet [12].
In this study, we propose a replay detection method

which can detect various replay attacks. The main contri-
butions of our work can be summarized as follows:

(1) Constant-Q transform (CQT)-based modified group
delay feature (CQTMGD). To utilize the phase informa-
tion of theCQT spectrum,we propose a novelMGD fea-
ture based on CQT. A spectrogram-based MGD extrac-
tionmethod is also proposed to accelerate the extraction
process with the help of a fast algorithm of CQT.
(2) Multi-branch residual convolutional neural network.
We propose a novel multi-branch building block for
ResNet. The multi-branch structure can enhance gener-
alization and reduce redundancy simultaneously. More-
over, compared with the frame-level GMM, 2D-CNN
can better detect time-domain distortion. Thus, it is
more suitable for replay detection.
(3) Exploring and analyzing the limitations of models
and replay spoofing databases. The class activation map-
ping (CAM) technique [13] was used to visualize the
distribution of the attention of the model. We found
that the model was focusing on trailing silence and
low-frequency bands. Further analysis of trailing silence
shows a fake cue in the ASVspoof 2019 dataset. We
reestimated the performance after removing the trailing
silence in the dataset. The results show that the perfor-
mance in the original dataset may be over-estimated.
Moreover, we analyzed the discriminability of differ-
ent frequency bands. The results show the differences
between the ASVspoof 2019 dataset and the ASVspoof
2017 dataset. It also explains why the CQT-based spec-
trogram outperformed the discrete Fourier transform-
based spectrogram in the ASVspoof 2019 dataset but
worse than that in the ASVspoof 2017 dataset.

Compared with the previous work [14], this work pro-
vides more experimental results and in-depth analyses of
the proposed method. The results in another widely used
replay attack database are provided to evaluate the gener-
alization of the proposed method. The discriminability of
different frequency bands was analyzed by using the F-ratio
method, and the results explain the performance differ-
ences between the two databases. Various silent conditions
were further analyzed since the performance may be over-
estimated by the trailing silence in the ASVspoof 2019 PA
database. Moreover, the distribution of the attention of the
model was visualized with three more kinds of input fea-
tures. A more in-depth analysis of the performance under
various recording and replay conditions was performed.
The rest of this paper is organized as follows. In Section

II, we review the related works on spoofing detection.
Section III describes the proposed CQTMGD, and Section
IV describes themulti-branch residual neural network. The
experiments are described in Section V, and the results are
discussed in SectionVI. Further analyses and discussion are
presented in Section VII. Our conclusions are presented in
Section VIII.

I I . RELATED WORK

Feature Engineering. To detect the distortion in replay
attacks, various features have been proposed. In [15],
Villalba and Lleida proposed four kinds of hand-designed
features, namely, the spectral ratio, low frequency ratio,mod-
ulation index, and sub-band modulation index. These fea-
tures capture the distortion caused by far-field recording
processes and the non-flat frequency responses of small
loudspeakers. Instead of designing features for noticeable
distortion, some researchers try to find differences in the
entire frequency-domain. The proposed RFCC [8] and
IMFCC [6] use different frequency warping functions from
MFCC, while MFCC is widely used in speech process-
ing tasks. This indicates that the importance of different
frequency bands in replay detection may differ from tra-
ditional speech process tasks. Apart from the traditional
Fourier transform, various signal processing methods are
also introduced, such as the CQT [5], single-frequency-
filtering technology [16], and variable-length Teager energy
separation algorithm [17]. However, most of those features
only preserve magnitude information and discard phase
information,while the phase of signalsmay also be distorted
in the replay processes. To utilize the phase information,
Tom et al. [18] used the group delay function (GD) in replay
detection. Oo et al. [19] introduced the relative phase (RP)
feature and further extended it in the Mel-scale (Mel-RP)
and the gammatone-scale (Gamma-RP). Phapatanaburi et
al. [20] proposed to extract RP based on the linear prediction
analysis (LPA), which extracted RP on the residual signal of
LPA.

DNN-based Classifier . Replay detection needs to detect
unknown attacks. Thus, many researchers proposed sev-
eral methods to boost the generalization of DNN. In [21],
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Lavrentyeva et al. proposed a spoofing detection method
based on the light CNN model with the max-feature-map
activation. Compared with the traditional CNN, the light
CNN has fewer parameters, which can alleviate the over-
fitting problems in small datasets. In [22], an autoencoder
was trained to reduce the dimension of CQCC. The bottle-
neck activations of the autoencoder were fed into a Siamese
neural network for classification. Cai et al. [23] used data
augmentation techniques before training ResNet. Tom et al.
[18] pre-trained a ResNet model in the ImageNet dataset
[24] and then transformed it for replay detection tasks.

I I I . CQT -BASED MOD IF I ED GROUP
DELAY FEATURE

In this section, we propose a novel feature for replay detec-
tion. The motivation of the novel feature is that the widely
used CQCC feature set [5] discards all the phase informa-
tion and only preserves the magnitude information of the
CQT. Since the distortion of the replay processes is pre-
sented not only in the magnitude but also in the phase,
the phase information may be helpful for replay detection.
To utilize the phase information of CQT, we extract the
MGD feature based on CQT to construct what we called the
CQTMGD.

A) Group delay function
The GD is defined as the negative derivative of the
unwrapped phase spectrum [25]:

τl(ω) = −d(θl(ω))

dω
, (1)

where ω is the frequency variable, θl(ω) is the phase spec-
trum of the signal xl(n), which is the l-th frame of the entire
signal x(n). However, it is difficult to estimate the phase
spectrum due to the phase wrapping problem. Thus, the
GD is usually calculated without the phase spectrum, as
follows [25]:

τl(ω) = −d(θl(ω))

dω

= −Im
(
d(log(|Xl(ω)|) + jθl(ω))

dω

)

= −Im
(
d(log(Xl(ω)))

dω

)

= Re
(
Yl(ω)

Xl(ω)

)

= Re(Yl(ω))Re(Xl(ω)) + Im(Yl(ω))Im(Xl(ω))

|Xl(ω)|2 ,

(2)
where Re(•) and Im(•) are the real and imaginary part of a
complex variable, respectively. Xl(ω) is the spectrum of the
signal xl(n) and Yl(ω) is the first derivative of Xl(ω), which
can also be seen as the spectrum of the signal nxl(n).

B) Modified GD
When the energy of a signal (the |Xl(ω)|2 in equation (2))
is close to zero, there will be spiky peaks in the GD. MGD
can solve this problem by using the cepstrally smoothed
spectrum, called Sl(ω), as the denominator of τl(ω) [25]:

τ̂l(ω) = sign.
∣∣∣∣Re(Yl(ω))Re(Xl(ω)) + Im(Yl(ω))Im(Xl(ω))

|Sl(ω)|2γ
∣∣∣∣
α

,

(3)

where sign is the sign of the original GD, γ and α are two
tunable parameters, varying from 0 to 1.

C) CQT-based MGD feature
The traditional MGD function is extracted with the Fourier
transform. The Fourier transform is related to the CQT.
Both of them can be seen as a bank of sub-band filters.
The main differences between CQT and the Fourier trans-
form is that (1) the center frequencies of CQT filters are
geometrically spaced as fk = 2k/bf0, where f0 is the mini-
mal frequency, and b is the number of filters per octave, and
(2) the bandwidth of each CQT filter is determined by the
center frequency as δk = fk+1 − fk, resulting a constant ratio
of center frequency to resolution Q = (fk)/(δk) = (21/b −
1)−1. The CQT is defined as:

Xcqt(k) = 1
Nk

Nk−1∑
n=0

x(n)WNk(n)e
−j2πQn/Nk , (4)

where Nk = Q(fs)/(fk) is the length of analysis windows, fs
is the sample rate of the signal,WNk(•) is an arbitrary Nk-
length window function. As a comparison, the definition of
the discrete-time Fourier transform is:

Xft(ω) = 1
N

N−1∑
n=0

x(n)WN(n)e−jωn. (5)

It will be found that Xcqt(k) = Xft((2πQ)/(Nk)) when N =
Nk. That means CQT can be seen as a type of the Fourier
transform with carefully designed varying-length windows
and a constant Q-factor, making it reasonable to extract
MGD with CQT.
Realizing the relationship between CQT and the Fourier

transform, CQT-based MGD can be seen as a bunch of
MGD with variable-length frames, i.e.

τ̂
cqt
l (k) = τ̂l,Nk

(
2πQ
Nk

)
, (6)

where τ̂l,Nk(•) is the MGD function at the l-th Nk-
length frame. However, frequency-by-frequency frame-by-
frame calculations are time-consuming. To utilize the fast
algorithm of CQT [26] to accelerate the extraction process,
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an auxiliary signal y′(n) is introduced as

y′(n) = nx(n). (7)

For each frame of y′(n), we have

y′
l(n) = (l · T + n)xl(n), (8)

where T is the hop size between two adjust frames. Thus, we
have

Yl(ω) = Y ′
l (ω) − l · T · Xl(ω). (9)

Since both Y ′(ω) and X(ω) can be calculated by the fast
algorithm of CQT, CQT-based MGD can be extracted
according to equation (3), as shown in Algorithm 1.

Algorithm 1 CQTMGD Extraction Method
Input:

The signal, x(n);
The hop size between frames, T;
The fast algorithm of CQT, ζ(•);

Output:
The CQT-based MGD, τ̂ cqt

l (k);
1: set X(k, l) = ζ(x(n));
2: set y′(n) = nx(n);
3: set Y ′(k, l) = ζ(y′(n));
4: set Y(k, l) = Y ′(k, l) − l · T · X(k, l);
5: for each frame do
6: calculate the τ̂

cqt
l (k) according to the equation (3);

7: end for

I V . MULT I -BRANCH RES IDUAL
NEURAL NETWORK

This section describes the details of the multi-branch resid-
ual neural network for replay detection. Our hypothesis is
that, different from the widely used GMM, the deep resid-
ual convolutional neural network could: (1) bring out the
discriminative information hidden in time-frequency rep-
resentation, and (2) learn the dependencies between frames
to better model reverberation effects. Moreover, the multi-
branch structure can reduce the redundancy of the network
as well as increase the generalization for unknown attacks.
The blend of the deep residual convolutional neural net-
work and multi-branch structure is named the ResNeWt
network.

A) Residual neural network
Residual neural network (ResNet) is widely used in image
recognition fields and also explored in the replay detec-
tion task [12]. It eases the optimizing of a deep network by
using residualmapping instead of directmapping. Formally,
it tries to learn a residual mapping function F(x) instead
of learning the desired underlying mapping H(x) directly,
where H(x) = F(x) + x. This overcomes the performance
degradation when plain CNNs going deeper.

ResNet is constructed by stacking building blocks. In
[27], two different kinds of building blocks are proposed
for ResNet, that is, the basic building block and bottleneck
block. The basic block, which consists of two convolutional
layers, is used in shallow networks, such as ResNet-18 and
ResNet-34. The bottleneck block, which consists of three
convolutional layers, is used in deep networks, such as
ResNet-50.

B) Multi-branch ResNet
In this paper, a multi-branch building block is proposed.
The input of the building block will be processed by K inde-
pendent paths. The output of each path is concatenated
to form the final output of the building block. Due to the
independence of each path, the depth of each convolutional
kernel is decreased. Thus, the model can be compressed by
the multi-branch structure. It is important for replay detec-
tion because the limited training data may be overfitted
easily. The multi-branch building block is defined as:

Y = X + D


i=1

fi(X), (10)

where Y is the output of the building block, X is the input
tensor, fi(•) can be an arbitrary function which splits the
input first and then transforms them, D is the number of
transformations,
 is an aggregate function which concate-
nates a tensor along the channel-axis, defined as:

D


i=1
[S(i)
1 , . . . , S

(i)
Ci
] = [S(1)

1 , . . . , S
(1)
C1 , S

(2)
1 , . . . , S

(D)
CD
], (11)

where [S(i)
1 , . . . , S(i)

k ] is a k-channel tensor.
A residual neural network with the multi-branch build-

ing block proposed above is named ResNeWt. The “W” in
the name is the concatenation of the two characters “v”. It
implies the multi-branch structure which processes input
values separately and concatenates the processing results as
the output. The proposed ResNeWt-18, which is based on
ResNet-18, is shown in Table 1. There are three main differ-
ences: (1) the multi-branch structure is used based on the
basic block, (2) the number of filters in the building block is
doubled, and (3) a dropout layer is added after global aver-
age pooling layer. The spectral feature of each utterance is
repeated or/and truncated along the time-axis to ensure the
shape of inputs is fixed. Then it is fed into the network to
determine whether the utterance is genuine or not.
There are two commonly used multi-branch neural net-

works, that is, the Inception network [29] and ResNeXt [30].
The main difference between the proposed multi-branch
structure and the Inception network is the structure of
branches. In ResNeWt, all the branches follow the same
topological structure. While in Inception, they are differ-
ent. We use the same structure because it eases the hyper-
parameter tuning progress. Comparing ResNeWt with the
ResNeXt, both follow the split-transform-merge strategy to
build a multi-branch structure. The difference is the aggre-
gate function. In the ResNeXt, it uses the sum function. In
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Table 1. The overall architecture of ResNeWt18. The shape of a residual
block [27] is inside the brackets, and the number of stacked blocks on a
stage is outside the brackets. “C=32” means the grouped convolutions
[28] with 32 groups. “2-d fc” means a fully connected layer with 2 units.

Stage Output shape Detail

conv1 256× 128 7× 7, 64, stride 2
conv2 128× 64 3× 3 max pool, stride 2[

3× 3, 128,
3× 3, 128, C = 32

]
× 2

conv3 64× 32
[
3× 3, 256,
3× 3, 256, C = 32

]
× 2

conv4 32× 16
[
3× 3, 512,
3× 3, 512, C = 32

]
× 2

conv5 16× 8
[
3× 3, 1024,
3× 3, 1024, C = 32

]
× 2

1× 1 global average pool, dropout, 2-d fc, softmax

ResNeWt, it uses the concatenate function. Thus, the build-
ing blocks of ResNeXt need to have more than three layers.
Otherwise, it should equal to a wide and densemodule [30].
In contrast, our proposed structure can be applied to an
arbitrary number of layers. Thus, the two-layer basic block
of ResNet can only be used in ResNeWt.

V . EXPER IMENTAL SETUP

A) Database
The ASVspoof 2019 physical access dataset was used for
evaluating the proposed system in this paper. Table 2
describes the subset configuration. This dataset is based
upon simulated and carefully controlled acoustic and replay
configurations for the convenience of analysis. The simula-
tion processes are illustrated in Fig. 1. The VCTK corpus1
was used as the source speech data. Bona fide attempts were
simulated by passing the source speeches to an environ-
ment simulator. Replay spoofing attempts were simulated
by passing the source speeches to an environment simula-
tor first (to simulate recording environments), followed by
a device simulator (to simulate playback devices), and then
another environment simulator (to simulate playback envi-
ronments). The environment was assumed to be a room
simulated by Roomsimove2 with three parameters, that is,
the room size S, reverberation time RT, and the distance
from the talker to the microphone D. The effects of devices
were represented by a quality indicator Q, which was sim-
ulated by the generalized polynomial Hammerstein model
and the synchronized sweptsine tool3.

B) System description
This subsection provides the detailed description of the
implemented system.

(1) Feature Extraction: Two categories of feature sets,
namely, magnitude-based and phase-based features, were

1http://dx.doi.org/10.7488/ds/1994
2http://homepages.loria.fr/evincent/software/Roomsimove_1.4.zip
3https://ant-novak.com/pages/sss/

Table 2. A summary of the ASVspoof 2019 physical access dataset [31].

Subset Speakers Utterances Bonafide Spoofing

Training 20 54 000 5400 48 600
Development 20 29 700 5400 24 300
Evaluation 48 134 730 18 090 116 640

Fig. 1. An illustration of the simulation processes in theASVspoof 2019 physical
access dataset (adapted from [31]).

extracted using STFT and CQT. For magnitude-based fea-
tures, we extracted the STFT-based log power magnitude
spectrogram (Spectrogram), Mel scale filter banks (MelF-
banks), and CQT-based log power magnitude spectro-
gram (CQTgram). For phase-based features, we extracted
the MGD feature and the proposed CQT-based MGD
(CQTMGD) feature. Spectrogram and MelFbanks were
extracted with Hamming window, 50 ms frame length, 32
ms frameshift, and 1024 FFT points. A total of 128 Mel fil-
ter banks were extracted in MelFbanks. The MGD feature
was extracted with 50 ms frame length, 25 ms frameshift,
Hamming window, 1024 FFT points, α = 0.6, and γ = 0.3.
The CQTgram and CQTMGD features were extracted with
32 ms frameshift, Hanning window, 11 octaves, and 48 bins
per octave. For CQTMGD, we set α = 0.35 and γ = 0.3.
All the features were truncated along the time-axis to pre-
serve exactly 256 frames. The short speeches were extended
by repeating itself. Finally, all the inputs were resized to
512× 256 by the bilinear interpolation.

2) Training Setup: ResNeWt was optimized by the Adam
algorithmwith 10−3.75 as the learning rate, and the batch size
was 16. The training process was stopped after 50 epochs.
The loss function was the binary cross-entropy between
predictions and targets. The dropout ratio was set to 0.5.
The output of the “bonafide” node in the last full connec-
tion layer was obtained as the decision score (before the
softmax function). The Pytorch toolkit [32] was employed
to implement the model.

3) Score Fusion: A score-level fusion was performed to
combine the models using different features. For simplic-
ity, the ensemble system averaged the output score of all
the subsystems. A greedy-based strategy was used in select-
ing subsystems. First, the best system was chosen. Then,
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each time, one system was added and the new ensem-
ble system was evaluated in the development set. The best
one was selected according to the minimum normalized
tandem detection cost function (min-tDCF) (described in
Section V.C). The selection process would not stop until the
performance no longer improved.

C) Performance evaluation
In the ASVspoof 2019 challenge, the minimum normalized
tandem detection cost function (min-tDCF) [31, 33] was used
as the primary metric, which can be calculated as:

t-DCFminnorm = min
s

βPcmmiss(s) + Pcmfa (s), (12)

where Pcmmiss(s) and Pcmfa (s) are, respectively, the miss rate
and false alarm rate of a countermeasure (CM) system at
threshold s; β is a cost which depends on the min-tDCF
parameters and ASV errors (β ≈ 2.0514 in the ASVspoof
2019 physical access development set with the ASV scores
provided by the organizers of the challenge [31]).
The equal error rate (EER) [31] was also used as the

secondary metric.

V I . EXPER IMENTAL RESULTS

A) Comparison of different features
Table 3 depicts a quantitative comparison of different fea-
tures. Among all the magnitude-based features, CQTgram
achieved the lowest EER and almost the lowest min-tDCF.
The concatenation of CQTgram and MelFbanks improved
themin-tDCF slightly, increasing the EER in themeantime.
However, as shown in Fig. 2, the output of CQTgram-based
(B) and concatenated feature-based (C) systemswere highly
correlated. Thus, CQTgram may be the key contributor
in the concatenated feature. For the phase-based features,
CQTMGDoutperformedMGD,which should be attributed
to CQT. It indicates that CQT outperformed the Fourier
transform in this dataset/task. Finally, score-level fusion
achieved further improvements, indicating the complemen-
tarity between magnitude and phase, as well as between
CQT and the Fourier transform.

B) Comparison with related models
Table 4 shows the performance achieved by different clas-
sifiers in the development set. ResNeWt18 outperformed
ResNet18 on the three types of features. ResNeWt34 out-
performed ResNet34 on two types of features (CQT-
gram and CQTGMD). The similar results were achieved
for ResNeWt50 and ResNet50. Those results indicate
the effectiveness of ResNeWt. However, when comparing
ResNeWt50with ResNeXt50, we foundResNeXt50 achieved
better performance. Since the multi-branch structure of
ResNeXt cannot be applied to two-layer building blocks,
ResNeWt is a good supplement in this field. By compar-
ing the models which use the different numbers of layers,

Table 3. Performance in the ASVspoof 2019 physical access
development set with different features using ResNeWt18 as the classifier.

Description Feature set t-DCFminnorm EER()

Magnitude Spectrogram 0.0882 3.15
MelFbanks (A) 0.0428 1.70
CQTgram (B) 0.0110 0.39

A|Ba (C) 0.0093 0.41

Phase MGD (D) 0.0246 0.97
CQTMGD (E) 0.0149 0.54

Fusion C + Db 0.0061 0.28
C + Eb 0.0072 0.31

C + D + Eb 0.0049 0.20

aA|B: Concatenating the feature set A and B along the frequency-axis with
the shape of 656× 256(656 = 528(CQTgram)+ 128(MelFBanks)).
bC+D+E: The fusion (score averaging) of subsystems.

Fig. 2. The correlation between the decision score of the systems using differ-
ent features in the ASVspoof 2019 physical access development set. A|B is the
concatenating of feature A and B along the frequency-axis.

it can be found that the shallow model worked better than
the deep model. Based on the results, we chose to use the
ResNeWt18 model as the classifier in the rest of the paper.

C) Comparison with relevant systems
Table 5 compares the performance of our proposal to other
relevant systems. Our proposed system outperformed the
baseline systems, as well as other top-performing systems.
In particular, the system that used the concatenating of
CQTgram andMelFbanks feature as inputs already outper-
formed other top-performing fusion systems. Compared
with the best baseline system, our best fusion system yielded
96.1 and 96.5 relative error reduction on min-tDCF and
EER, respectively. Also, it achieved 21.3 and 27.8 rela-
tive error reduction on min-tDCF and EER, respectively,
compared with the fusion system proposed in [34].
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Table 4. Performance (EER) in the ASVspoof 2019 physical access
development set with different models.

Model CQTgram MGD CQTMGD

ResNet18 0.46 1.28 0.78
ResNeWt18 0.39 0.97 0.54

ResNet34 0.45 1.18 0.75
ResNeWt34 0.36 1.19 0.70

ResNet50 0.82 1.14 1.81
ResNeXt50 0.52 1.16 0.81
ResNeWt50 0.57 1.31 0.92

Table 5. Comparison with relevant systems in the ASVspoof 2019
physical access evaluation set.

Feature set Model t-DCFminnorm EER()

LFCC GMM [31] 0.3017 13.54
CQCC GMM [31] 0.2454 11.04

LFCC+
IMFCC+
STFT+ GD

ResNet [23] 0.0168 0.66

CQCC, STFT SENet, ResNet [35] 0.0161 0.59
CQT+ LFCC

+ DCT
LCNN [34] 0.0122 0.54

MelFbanks (A) ResNeWt 0.0511 2.01
CQTgram (B) ResNeWt 0.0208 0.74
A|B (C) ResNeWt 0.0134 0.52
MGD (D) ResNeWt 0.0465 2.15
CQTMGD (E) ResNeWt 0.0250 0.94

C + D + E ResNeWt 0.0096 0.39

D) Performance in ASVspoof 2017 V2
To explore the generalization of the proposed system, we
further evaluated it in the ASVspoof 2017 V2 dataset. Due
to the limited amount of the training data in the ASVspoof
2017 V2 dataset, the training progress was stopped after
25 epochs. Both the training and development set in the
ASVspoof 2017 V2 dataset was used for training.
The experimental results are shown in Table 6. Firstly,

both MGD and CQTMGD performed worse than the base-
line systems, but the fusion of them outperformed the best
baseline system. It shows that both feature sets are infor-
mative but not informative enough for replay detection.
Secondly, the best single system outperformed the base-
line systems, which shows the generalization of the pro-
posed method. Thirdly, the fusion of the four feature sets
further improved the performance, which shows the com-
plementarity between those feature sets. Fourthly, over-
all performance was much worse than the performance
reported in the ASVspoof 2019 dataset, which indicates that
the real-scene replay data are more challenging than the
simulated replay data. Lastly, the Spectrogram feature set
outperformed the CQTgram feature set, and MGD outper-
formed CQTMGD. Those observations may indicate that
the Fourier transform outperforms CQT in this dataset.
This finding goes against the findings in the ASVspoof
2019 dataset (in Section VI.A). We will analyze it in the
discussion section.

Table 6. Comparison with relevant systems in the ASVspoof 2017 V2
evaluation set.

Feature set Model EER()

CQCC GMM [36] 15.33
CQCC+Energy GMM [36] 12.24

Spectrogram (A) ResNeWt 9.24
CQTgram (B) ResNeWt 11.56
MGD (C) ResNeWt 17.64
CQTMGD (D) ResNeWt 19.50

C+D 11.41
A+B+C+D 8.24

Table 7. Contribution analysis in the ASVspoof 2019 physical access
development set comparing with the best baseline system.

Feature set Model t-DCFminnorm EER()

CQCC GMM [31] 0.1953— 9.87 —
ResNet 0.0501 ↓74.4 1.98 ↓79.9
ResNeWt 0.0419 ↓78.5 1.67 ↓83.1

CQTgram (B) ResNet 0.0124 ↓93.7 0.46 ↓95.3
ResNeWt 0.0110 ↓94.4 0.39 ↓96.1

MGD (D) ResNet 0.0314 ↓83.9 1.28 ↓87.0
ResNeWt 0.0297 ↓84.8 1.22 ↓87.6

CQTMGD (E) ResNet 0.0223 ↓88.6 0.78 ↓92.1
ResNeWt 0.0180 ↓90.8 0.71 ↓92.8

B + D + E ResNeWt 0.0056 ↓97.1 0.24 ↓97.6

V I I . D I SCUSS ION

A) Contribution analysis
This subsection analyzes the contribution of different com-
ponents to reveal the causes of the huge performance
improvement of the proposed system compared with the
baseline systems. As shown in Table 7, there was a dramatic
performance improvement when ResNet replaces GMM,
and a further improvement was achieved when CQTgram
replaces the hand-crafted CQCC feature. This implies that
the main contribution of improvement comes from supe-
rior modeling capabilities of ResNet, and the use of the
low-level feature allows it to exert its modeling capabilities
better. Moreover, the proposed ResNeWt achieved about
0.6–4.1 further relative error reduction, compared with
ResNet. The fusion of various kinds of magnitude-based
and phase-based features further improved performance.

B) Conditions analysis
The performance pooled by each simulation factor is shown
in Tables 8 and 9. Overall, it was more challenging to
distinguish bonafide attempts from replay attack attempts
when the room becomes larger. A similar phenomenon
was observed when the talker-to-ASV distance, attacker-
to-talker distance, and T60 decrease. This phenomenon is
related to reverberation distortion. To be more exact, it
is related to the reverberation of reverberation (RoR) that
is introduced in the playback process. T60 controls the
duration of reverberation. Thus, larger T60 will cause more
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severe reverberation distortion, and that is easier to detect.
The room size affects the interval between reflected sounds.
Thus, a smaller room causes denser reflected sounds, which
can also be seen as a more severe reverberation distortion
when T60 is fixed. Recordings captured closer to a micro-
phone are expected to have higher signal-to-reverberation
ratio. For devices, as expected, high-quality devices are
more difficult to be detected than low-quality devices.
Different systems perform differently. We found that the

frame-level GMM was also sensitive to the reverberation
distortion. It is because that the longest interval between
two adjacent reflected sounds is about

√
20/340 ≈ 18.6ms,

which is less than the length of frames. Thus, reverberation
distortion is also presented at the frame-level.
Comparing the bestGMMsystemwith the best ResNeWt

system on the room-size factor, the relative error reduction
of GMM from the large-size room to middle-size roomwas
(13.27− 10.45)/13.27 = 21.3, which is less than the (0.67−
0.32)/0.67 = 52.2 of ResNeWt. The similar observation
was obtained on comparing the middle-size room to the
small-size room ((10.45− 8.97)/10.45 = 14.2 for GMM
and (0.32− 0.13)/0.32 = 59.4 for ResNeWt). It shows that
ResNeWt wasmore sensitive to the room-size factor. This is
because that the 2D convolution kernel of CNN can capture
the correlation along both the frequency-axis and time-axis.
Thus, CNN can learn to estimate some factors related to the
room size (maybe the interval of reflected sounds). Since
RoR will cause a different pattern of the interval of reflected
sounds, those estimated factors are distinguishable from
bonafide attempts to replay attacks. However, GMM can-
not capture this information. Meantime, the relative error
reduction on the T60 factor was similar for both GMM
and ResNeWt. For the replay device quality, GMMwas hard
to detect perfect-quality devices, while ResNeWt did much
better. It shows the capability of ResNeWt on digging out
unobvious discriminative information.
One phenomenon was out of our expectations. The

quality of recordings should be improved when the talker-
to-ASV distance decreases. Thus, it should be good for

Table 10. Performance (EER) analysis of the best ResNeWt system in
the ASVspoof 2019 physical access evolution dataset pooled by

talker-to-ASV distance.

Loudspeaker-to-ASV (cm)

User-to-ASV (cm) 10− 50 50− 100 >100

10− 50 0.66 0.44 0.49
50− 100 0.39 0.23 0.28
> 100 0.30 0.20 0.23

Fig. 4. The distribution of the duration of the trailing silence alongwith various
T60. All the outliers are hidden for clarity.

replay detection. However, as shown in Table 9, the actual
performance degraded. We further analyzed this phe-
nomenon and the results are shown in Table 10. Spoofing
attempts became more difficult to detect when the loud-
speakers for replay attack get closer to theASVmicrophone.
However, it seemed to be beneficial for replay detection
when real users go far from the ASVmicrophone, nomatter
how attackers place the loudspeakers. The reason for this
needs further study.

Table 8. Performance (EER) analysis in the ASVspoof 2019 physical access evaluation dataset pooled by environment configurations.

Room size (m2) T60 (ms) Talker-to-ASV distances (cm)

System 2–5 5–10 10–20 50–200 200–600 600–1000 10–50 50–100 >100

LFCC+GMM 12.47 12.67 14.19 16.53 13.32 8.82 14.73 13.60 12.16
CQCC+GMM 8.97 10.45 13.27 18.92 8.87 3.50 11.31 11.49 10.35
MGD 1.30 2.07 3.04 3.15 1.55 1.61 2.93 1.75 1.66
CQTMGD 0.46 0.63 1.48 1.81 0.67 0.36 1.54 0.55 0.71
fusion 0.13 0.32 0.67 0.56 0.30 0.23 0.66 0.23 0.23

Table 9. Performance (EER) analysis in the ASVspoof 2019 physical access evaluation dataset pooled by replay configurations.

Attacker-to-talker distance (cm) Replay device quality

System 10–50 50–100 >100 perfect high low

LFCC+GMM 15.92 12.54 11.29 27.06 4.20 3.53
CQCC+GMM 11.77 10.38 10.51 22.99 5.48 1.93
MGD 2.51 1.96 1.76 3.02 2.15 1.06
CQTMGD 1.07 0.70 0.83 1.43 0.70 0.32
fusion 0.46 0.33 0.34 0.66 0.31 0.11
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C) Attention analysis
To better understand how themodel works, we further visu-
alized the distribution of the attention of the model by the
CAM technique [13]. In binary classification, the evidence
that proves an input signal falling to one category in the
meantime indicates the absence of the signal in another cat-
egory. As we only concerned about the positive evidence, all
the negative value in CAM was set to zero.
Figure 3 demonstrates the visualization of attention dis-

tributions. There were two apparent patterns. Firstly, the
model concentrated on low frequencies (the green solid
line box in Fig. 3). It indicates the importance of low-
frequency bands. This could explain why CQT worked
better than Fourier transform. Since the frequency resolu-
tion of CQT in low frequencies is much higher than the
Fourier transform, such low frequencies can be hardly dis-
tinguished in the Fourier transform-based spectrogram.
Also, we should notice that this phenomenon is different
from the conclusion found in the ASVspoof 2017 challenge,
where the high-frequency bands are more important [7].
This will be further analyzed in the following discussion.
Secondly, the model paid much attention to trailing

silence, indicating that there is some discriminative infor-
mation in the silent signal.

D) Trailing silence analysis
To further explore the effect of silence, this subsection ana-
lyzes the silence which appears at the end of the speech.
The silence discussed here is not the zero values only, but
all the low-energy parts. Specifically, since there is no noise
in the simulated data, all the non-voice parts of speech
are the silence. The energy-based voice activation detec-
tion method [37] was used to distinguish the silence from
speeches. Figure 4 shows the distribution of the duration
of the trailing silence under various T60 conditions. It is
shown thatwhen theT60 increases, the duration of the trail-
ing silence becomes longer. This is because that the long-tail
silence was mainly caused by the reverberation. Due to
the reverberation of reverberation (RoR), spoofing attempts
contain longer trailing silence than bonafide attempts.
Suppose the model uses the duration of the trailing

silence as a clue to distinguish replay attacks from bonafide
attempts. In this case, it can be easily fooled by adding
or removing the silence at the end of the signal. Thus,
we retrained the model on original recordings (with the
silence) but removed the trailing silence during the test
phase. The performance of all the models was decreased
dramatically, as shown in Table 11 (condition “O - R”). It
shows that the model did use the fake clue so that the

Fig. 3. The attention distribution of the ResNeWt model using the class activation mapping technique [13] for the spoofing category. Each row represents an input
feature set of the ResNeWt model. Each column represents a randomly selected audio sample from the ASVspoof 2019 physical access development dataset. The
filename of each sample is shown on the top of the column. The first two columns (on the left side) are genuine attempts, the last two columns (on the right side)
are replay attacks. The green box shows that the models are paying much attention to the lower-frequency range. Best view in color.
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Table 11. Results of trailing silence analysis in the ASVspoof 2019
physical access development set. The condition “O” means that the

dataset is original, and the condition “R” means that the trailing silence is
removed. The condition “X - Y” means the model is trained under

condition “X” and tested under condition “Y”. The number on the left of
the arrow indicates the performance in the original dataset (i.e. on

condition “O - O”).

Cond. System t-DCFminnorm EER()

O - R CQCC+GMM 0.1953→ 0.3003 9.87→ 15.39
Spectrogram 0.0882→ 0.3580 3.15→ 15.05
CQTgram 0.0110→ 0.2705 0.39→ 10.18
MGD 0.0246→ 0.2938 0.97→ 12.66
CQTMGD 0.0149 → 0.2268 0.54 → 8.94

R - R CQCC+GMM 0.1953→ 0.2717 9.87→ 14.33
Spectrogram 0.0882→ 0.0888 3.15→ 3.59
CQTgram 0.0110 → 0.0317 0.39 → 1.13
MGD 0.0246→ 0.0643 0.97→ 2.45
CQTMGD 0.0149→ 0.0371 0.54→ 1.36

R - O CQCC+GMM 0.1953→ 0.1825 9.87→ 9.90
Spectrogram 0.0882→ 0.1061 3.15→ 4.33
CQTgram 0.0110→ 0.0899 0.39→ 3.80
MGD 0.0246 → 0.0690 0.97 → 2.54
CQTMGD 0.0149→ 0.0839 0.54→ 3.61

Fig. 5. The F-ratio analysis results.

performance may be overestimated. Those observations
agree with the previous work [38] which also found that the
performance was over-estimated due to the trailing silence.
To prevent the models from using the information on

the trailing silence, we removed the trailing silence in the
training set and retrained the models. As shown in Table 11
(condition “R - R”), the models worked again, however,
with some degradation on performance. Moreover, when
the models were trained without the trailing silence and
tested with the trailing silence kept, another degradation
was observed on all themodels except for the CQCC-GMM
baseline. This shows that the neural network may be more
sensitive to the mismatch between the training and test
data. However, this can be easily solved by removing all the
silence during the test phase. Overall, the performance of
all the proposed models was much better than the base-
line system. It demonstrates the capability of the proposed
systems.

E) Frequency importance analysis
Previous studies [39] have reported the different importance
of different frequency bands in the anti-spoofing task. In
this study, we used the Fisher’s ratio (F-ratio) [40] approach
to investigate the discriminability of different frequency

bands in the replay attack scenario. F-ratio is defined as
the ratio of between-class distance and within-class vari-
ance, which can measure linear discriminability between
two classes. This is formulated as follows:

FCbonafideCspoofing = (μbonafide − μspoofing)
2

σ 2bonafide + σ 2spoofing
(13)

where Cbonafide and Cspoofing represent two classes, μi is the
mean of class i, and σi is the intra-class variance of class i.
F-ratio for different frequency bands was calculated in

the following steps. Firstly, for each speech sample, a spec-
trogramwas extracted by the short-time Fourier transform.
Then, the frequency axis of the spectrogram was linearly
divided into 50 frequency bands. Finally, the F-ratio values
for each frequency bandwere calculated based on themeans
and variances of the samples from two classes.
Figure 5 shows the F-ratio values over different frequency

bands in two datasets. For the ASVspoof 2019 dataset, the
very-low-frequency bands were more discriminable than
others. This may be an explanation for the previous find-
ing in Section VII.C that the networks paid more attention
to the low-frequency bands. For the ASVspoof 2017 dataset,
many researchers have reported that high-frequency bands
were more important in replay detection [6, 7]. However,
the analysis here shows that both the very-low-frequency
bands and very-high-frequency bands were discriminable.
The reason for this may be related to the different band-
widths of two frequency bands. The bandwidth of discrim-
inable bands in high frequencies is much wider than the
discriminable bands in low frequencies. Thus, the wider
frequency bandsmay containmore discriminative informa-
tion. Moreover, the wider frequency bands are more likely
to be found by researchers, and the narrower may be over-
looked. For example, a previous study [6] also used the
F-ratio method for analysis. However, the number of sub-
bands used for analysis was much lesser than this study.
Thus, the discriminability of the very-low-frequency bands
was not discovered.
The results here agree with the finding in the study [41],

which found that 0–0.5 kHz and 7–8 kHz sub-bands were
more discriminative than other frequency bands. Another
study [42], which used the RP for analysis, reported that
0–1 and 4–5 kHz were more informative and discrimina-
tive. However, we did not observe the discriminability on
4–5 kHz,whichmay be because of the different features used
for analysis.
Those findings also explain why CQTgram worked bet-

ter than the Spectrogram feature in the ASVspoof 2019
PA dataset, but not worked well in the ASVspoof 2017 V2
dataset. It is because that the CQTgram feature set can cap-
ture more information in low frequencies, however, com-
press the information in high frequencies. If there is more
discriminable information in low-frequency bands than in
high-frequency bands (as the ASVspoof 2019 PA dataset),
the CQTgram feature set will work better than the Spec-
trogram feature set. Otherwise, in the ASVspoof 2017 V2
dataset, the Spectrogram feature set captures more infor-
mation in high-frequency bands than the CQTgram feature
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Fig. 6. The detailed F-ratio analysis results in the ASVspoof 2017 V2 dataset (grouped by replay configurations).

Fig. 7. The detailed F-ratio analysis results in the ASVspoof 2019 physical access dataset (grouped by replay configurations). Attack ID: (replay device quality,
attacker-to-talker distance). Environment ID: (room size, T60, talker-to-ASV distance). All the factors fall into three categories (from “a” to “c” or from “A” to “C”).

set. Thus, the Spectrogram feature set worked better than
CQTgram.
We also visualized the F-ratio values for each attack type.

The results in the ASVspoof 2017 V2 dataset are shown in
Fig. 6. It shows that the discriminability of frequency bands
was related to the attack types. Thus, there may need dif-
ferent features for different kinds of attacks. The detailed
results in the ASVspoof 2019 dataset are shown in Fig. 7. It
shows a high correlation between F-value in low frequencies
and the playback device quality. It indicates that the dis-
criminative of low frequencies may be related to the lower
cutoff frequency. For the class-C devices, the lower cutoff
frequency is larger than 600 Hz. For the class-B devices, the
lower cutoff frequency is smaller than 600Hz. For the class-
A devices, the lower cutoff frequency is 0, which means it is
ideal. Thus, the class-C device introduces more distortion
than the class-A device in very-low-frequency bands.

V I I I . CONCLUS ION

In this paper, we proposed a novel CQTMGD and a
multi-branch residual convolutional network (ResNeWt) to
distinguish replay attacks from bonafide attempts. Experi-
mental results in the ASVspoof 2019 physical access dataset
clarify that the proposed CQTMGD feature outperformed
the traditional MGD feature and ResNeWt also outper-
formed ResNet.
Compared with the CQCC-GMM baseline, the best

fusion system yielded 96.1 and 96.5 relative error reduc-
tion on min-tDCF and EER, respectively. Meantime, it out-
performed, to the best of our knowledge, all the state-of-the-
art systems in the ASVspoof 2019 physical access challenge
as well. Further analysis shows that the spoofing samples
tend to have a long tail of the silence. To get closer to reality,

we cut all the trailing silence and retrained the models. The
results show that the performance was decreased but still
outperformed the baseline system. The impact of differ-
ent frequency bands was also analyzed, and we found that
both very-low-frequency and very-high-frequency bands
contain discriminable information. Moreover, the discrim-
inability of frequency bands is related to replay attack con-
figurations. Thus, different methods may be needed for
different types of replay attacks.
Meantime, a counterintuitive phenomenonwas found by

condition analysis that it seemed to be good for detecting
replay attacks when real users are far from the ASV micro-
phone. This needs further analysis in the future.
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