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overview paper

Subspace learning for facial expression
recognition: an overview and a new perspective
cigdem turan,1,2 rui zhao,1 kin-man lam1 and xiangjian he3

For image recognition, an extensive number of subspace-learning methods have been proposed to overcome the high-
dimensionality problem of the features being used. In this paper, we first give an overview of themost popular and state-of-the-art
subspace-learning methods, and then, a novel manifold-learning method, named soft locality preserving map (SLPM), is pre-
sented. SLPM aims to control the level of spread of the different classes, which is closely connected to the generalizability of the
learned subspace. We also do an overview of the extension of manifold learning methods to deep learning by formulating the
loss functions for training, and further reformulate SLPM into a soft locality preserving (SLP) loss. These loss functions are
applied as an additional regularization to the learning of deep neural networks. We evaluate these subspace-learning methods,
as well as their deep-learning extensions, on facial expression recognition. Experiments on four commonly used databases show
that SLPM effectively reduces the dimensionality of the feature vectors and enhances the discriminative power of the extracted
features. Moreover, experimental results also demonstrate that the learned deep features regularized by SLP acquire a better
discriminability and generalizability for facial expression recognition.
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I . I NTRODUCT ION

Dimensionality reduction, which aims to find the dis-
tinctive features to represent high-dimensional data in a
low-dimensional subspace, is a fundamental problem
in classification. Many real-world computer-vision and
pattern-recognition applications, e.g. facial expression
recognition, involve large volumes of high-dimensional
data. Subspace analysis is an effective method to handle
the high-dimensional data, and serves two important tasks.
The first one is the dimensionality reduction, which makes
the original data easier to visualize and analyze. The
second task is for manifold learning, with the high-
dimensional data being projected into a lower-dimensional
manifold representation. According to Boufounos et al.
[1], dimensionality reduction techniques contribute sig-
nificantly to various industrial applications, by reducing
the time complexity of the algorithms and improving the
semantic intensity of the visual features. As an effective
approach for dimensionality reduction, subspace learning
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has been widely studied in the literature for learning a low-
dimensional space to describe the high-dimensional data,
while preserving their structure. Principal component anal-
ysis (PCA) [2, 3] and linear discriminant analysis (LDA)
[3, 4] are two notable linear methods for subspace learn-
ing. PCA aims to find principal projection vectors, which
are those eigenvectors associated with the largest eigenval-
ues of the covariance matrix of training samples, to project
the high-dimensional data to a low-dimensional subspace.
Unlike PCA, which is an unsupervised method that consid-
ers common features of training samples, LDA employs the
Fisher criteria tomaximize the between-class scattering and
tominimize the within-class scattering, so as to increase the
discriminative power of the learned low-dimensional fea-
tures. AlthoughLDA is superior to PCA for pattern recogni-
tion, it suffers from the small-sample-size (SSS) problem [5]
because the number of training samples available is much
smaller than the dimension of the feature vectors (FVs) in
most of the real-world applications. To overcome the SSS
problem, Li et al. [6] proposed the maximummargin crite-
rion (MMC) method, which utilizes the difference between
the within-class and the between-class scatter matrices as
the objective function. In [7], it is shown that intra-class
scattering has an important effect when dealing with over-
fitting in training amodel. Unlike the conventional wisdom,
too much compactness within each class decreases the gen-
eralizability of the manifolds. Since LDA and MMC are too
“harsh,” they need to be softened. Liu et al. [7] proposed
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the soft discriminant map (SDM), which tries to control the
spread of the different classes. MMC can be considered as a
special case of SDM, where the softening parameter β = 1.

Linear methods, such as PCA, LDA, and SDM, may
fail to find the underlying nonlinear structure of the data
under consideration, and they may lose some discriminant
information of the manifolds during the linear projection.
To overcome this problem, some nonlinear dimensional-
ity reduction techniques have been proposed. In general,
the techniques can be divided into two categories: kernel-
based and manifold-learning-based approaches. Kernel-
based methods, as well as the linear methods mentioned
above, only employ the global structure while ignoring the
local geometry of the data. However, manifold-learning-
based methods can explore the intrinsic geometry of the
data. Popular nonlinearmanifold-learningmethods include
ISOMAP [8], locally linear embedding (LLE) [9], and
Laplacian eigenmaps [10], which can be considered as spe-
cial cases of the general framework for dimensionality
reduction named “graph embedding” [11]. Although these
methods can represent the local structure of the data, they
suffer from the out-of-sample problem. Locality preserving
projection (LPP) [12] was proposed as a linear approxima-
tion of the nonlinear Laplacian eigenmaps [10] to overcome
the out-of-sample problem. LPP considers the manifold
structure via the adjacency graph. The manifold-learning
methods presented so far are based on unsupervised learn-
ing, i.e. they do not consider the class information. Sev-
eral supervised-basedmethods [13–15] have been proposed,
which utilize the discriminant structure of the manifolds.
Marginal Fisher analysis (MFA) [11] uses the Fisher crite-
rion and constructs two adjacency graphs to represent the
within-class and the between-class geometry of the train-
ing data. Several other methods have been proposed with
similar ideas, such as locality-preserved maximum infor-
mation projection (LPMIP) [16], constrained maximum
variance mapping (CMVM) [17], and locality sensitive dis-
criminant analysis (LSDA) [18]. Quite recently, more effec-
tive graph-construction methods [19, 20] have been inves-
tigated, which show great potential in manifold learning.
Jia et al. [19] presented a joint learning framework to con-
struct clustering-aware graphs. They further enhanced their
framework in [20]. In real-life applications, unlabeled data
exist because of various reasons. To deal with this prob-
lem, various semi-supervised learning algorithms have also
been proposed [21–23]. Jia et al. [24] presented the graph-
Laplacian principal component analysis (GL-PCA), which
uses weak supervision to capture both local and global data
structures.

Although the above-mentioned subspace-learning
methods have demonstrated promising performance by
increasing the discriminative power of the learned features,
they fail to penalize the between-class distance in local data
structure, when learning manifolds. Those methods also
cannot exhibit a similar performance on testing data, which
leads to the poor generalization ability of the learned man-
ifolds in real-world applications. In this paper, we will first
give an overview of subspace-learning methods, and then,

propose a new graph-based method to solve the generaliza-
tion problem of the existing subspace-learning methods by
extending their merits to form a better method. The major
novelties of the proposed method, named “soft localitypre-
serving map (SLPM),” can be outlined as follows:

(i) SLPM constructs a within-class graph matrix and a
between-class graph matrix using the k-nearest neigh-
borhood and the class information to discover the local
geometry of the data.

(ii) To overcome the SSS problem and to decrease the com-
putational cost of computing the inverse of a matrix,
SLPM defines its objective function as the difference
between the between-class and the within-class Lapla-
cian matrices.

(iii) Inspired by the idea of SDM on the importance of the
intra-class spread, a parameter β is added to control
the penalty on the within-class Laplacian matrix so as
to avoid the overfitting problem and to increase the
generalizability of the underlying manifold.

To improve the generalizability of the manifolds gener-
ated by the subspace-analysis methods, more training sam-
ples, which are located near the boundaries of the respective
classes, are desirable. In this paper, we apply our proposed
SLPM method to facial expression recognition, and pro-
pose an efficient way to enhance the generalizability of the
manifolds of the different expression classes by feature aug-
mentation or generation. An expression video sequence,
which ranges from a neutral-expression face to the highest
intensity of an expression, allows us to select appropri-
ate samples for learning a better and more representative
manifold for the expression classes. For the optimal man-
ifold of an expression class, its center should represent
those samples that best represent the facial expression con-
cerned, i.e. those expression face images with the highest
intensities. When moving away from the manifold center,
the corresponding expression intensity should be reducing.
Those samples near the boundary of a manifold are impor-
tant for describing the expression, which also defines the
shape of the manifold. To describe a manifold boundary,
images with low-intensity expressions should be consid-
ered. Since the FVs used to represent facial expressions
usually have high dimensionality, many training samples
near the manifold boundary are required, so as to represent
it completely. However, we usually have a limited number
of weak-intensity expression images, so feature generation
is necessary to learn more complete manifolds.

With the rapid development of deep learning technolo-
gies, more and more attention has been paid to the gen-
eration of the learned deep features. The convolutional
neutral network (CNN) is one of the most powerful deep
learning techniques to learn discriminative representations
for facial expressions [25]. However, CNN-based methods,
learned via logistic regression, generally suffer from poor
discriminability and generalization in real-world scenarios.
To address these issues, deep subspace learning methods
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have been widely studied in recent years to enhance the dis-
criminative and generalization ability of the learned deep
features from CNNs [26–28]. In this paper, we describe
the extension of LPP to deep learning, and then formulate
the proposed SLPM algorithm for deep learning as well,
so more discriminative deep features of facial expressions
can be learned. Specifically, we employ LPP or SLPM as
an additional regularization term in the objective function
for training the deep models. Extensive experiments show
that the regularization effect from SLPM contributes to a
more robust deep model with better generalization for the
real-world facial-expression recognition task.

In other applications, additional samples have also been
generated for manifold learning. In [29], faces are mor-
phed between two people with different percentages so as
to generate face images near the manifold boundaries. By
generating more face images and extracting their FVs, the
manifold for each face subject can be learned more accu-
rately. Therefore, the decision region for each subject can
be determined for watch-list surveillance. In our algorithm,
rather thanmorphing faces and extracting features from the
synthesized face, we propose generating features for low-
intensity expressions directly in the feature domain. Gen-
erating features in this way should be more accurate than
extracting features from distorted faces generated by mor-
phing. Several fields of research, such as text categorization
[30], handwritten digit recognition [31], facial expression
recognition [32, 33], etc., have also employed feature gen-
eration to achieve better learning. Unlike these methods,
which generate features in the image domain, the proposed
method generates features in the feature domain.

The structure of this paper is as follows. In Section II,
we first explain the graph-embedding techniques, and give
a detailed comparison of those existing subspace-learning
approaches similar to our proposed method. After that, we
present the extension of subspace analysis to deep learning.
In Section III, the proposed SLPM, is formulated. Its rela-
tions to SDM is further explored, and its extension to deep
soft locality preserving learning is presented. In Section IV,
we explain the local descriptors used in our experiments
and the feature-generation algorithm, and describe how to
enhance the manifold learning with low-intensity images.
In Section V, we present the databases used in our exper-
iments, and the preprocessing of the face images. Then,
experimental results are presented, with a discussion. We
conclude this paper in Section VI.

I I . AN OVERV IEW OF SUBSPACE
LEARN ING

In this section, an overview of the graph-embedding tech-
niques is presented in detail, with the different vari-
ants. Then, graph-based subspace-learning methods are
described in two parts: (1) how the adjacency matrices
are constructed, and (2) how their objective functions are
defined. In addition, we also review the subspace learn-
ing methods, extended for deep learning, for enhancing the

feature discriminative power in facial image analysis. Table
1 summarizes the notations used in this section.

A) Graph embedding
Given m data points {x1, x2, ..., xm} ∈ R

D, the graph-based
subspace-learning methods aim to find a transformation
matrix A that maps the training data points to a new set of
points {y1, y2, ..., ym} ∈ R

d(d � D), where yi = ATxi andA
is the projection matrix. After the transformation, the data
points xi and xj, which are close to each other, will have
their projections in the manifold space yi and yj close to
each other. This goal can be achieved by minimizing the
following objective function:∑

ij

(yi − yj)
2wij, (1)

wherewij represents the similarity between the training data
xi and xj. If wij is non-zero, yi and yj must be close to each
other, in order tominimize (1). Taking the data points in the
feature space as nodes of a graph, an edge between nodes i
and j has a weight of wij, which is not zero, if they are close
to each other. In the literature, we have found three different
ways to determine the local geometry of a data point:

1 ε-neighborhood: this uses the distance to determine
the closeness. Given ε ∈ R, ε-neighborhood chooses
the data points that fall within the circle around xi
with a radius ε. Those data points fall within the ε-
neighborhood of xi can be defined as

O(xi, ε) = {x| ‖x − xi‖2 < ε}. (2)

2 k-nearest neighborhood: another way of determining
the local structure is to use the nearest neighborhood
information. Presuming that the closest k points of xi
would still be the closest data points of yi in the projected
manifold space, we can define a functionN(xi, k), which
outputs the set of k-nearest neighbors of xi. Two types of
neighborhood, with label information incorporated, are
considered:N(xi, k+) andN(xi, k−), which represent the
sets of k-nearest neighbors of xi of the same label and of
different labels, respectively.

3 The class information: the class or label information is
often used in supervised subspace methods. In a desired
manifold subspace, the data points belonging to the class
of xi are to be projected such that they are close to
each other, so as to increase the intra-class compactness.
The data points belonging to other classes are projected,
such that they will become farther apart and have larger
inter-class separability. The class label information is
often combined with either the ε-neighborhood or the
k-nearest neighborhood.

The similarity graph is constructed by setting up edges
between the nodes. There are different ways of determin-
ing the weights of the edges, considering the fact that the
distance between two neighboring points can also pro-
vide useful information about the manifold. Given a sparse
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Table 1. List of mathematical notations, acronym and their corresponding descriptions

Symbol Description Acronym Description

xi ∈ R
D i-th data point with the length of D PCA Principal component analysis

yi ∈ R
d i-th data point in the learned subspace with the length of d LDA Linear discriminant analysis

A Transformation matrix MMC Maximum margin criterion
AT Transpose of the transformation matrix A SDM Soft discriminant map
W Similarity matrix LLE Locally linear embedding
D Diagonal matrix LPP Locality preserving projection
L Laplacian matrix LPMIP Locality-preserved maximum information projection
N(xi, k) The set of k-nearest neighbors of xi CMVM Constrained maximum variance mapping
l(xi) The class label of xi LSDA Locality-sensitive discriminant analysis
wij Similarity between data points xi and xj GL-PCA Graph Laplacian principal component analysis
ww
ij Within-class similarity between data points xi and xj OLLP Orthogonal locality preserving projection

wb
ij Between-class similarity between data points xi and xj SOLLP Supervised orthogonal locality preserving projection

k+ The number of nearest neighbors of the same class label MFA Marginal Fisher analysis
k− The number of nearest neighbors of the different class label MMDA Multi-manifolds discriminant analysis

SLPM Soft locality preserving map

symmetric similarity matrix W, two variations have been
proposed in the literature:

1 Binary weights: wij = 1 if, and only if, the nodes i and j
are connected by an edge, otherwise wij = 0.

2 Heat kernel (t ∈ R): if the nodes i and j are connected by
an edge, the weight of the edge is defined as

wij = exp
(−‖xi − xj‖2

t

)
. (3)

After constructing the similaritymatrixwith theweights,
the minimization problem defined in (1) can be solved
by using the spectral graph theory. Defining the Lapla-
cian matrix L = D − W, where D is the diagonal matrix
whose entries are the column sum of W, i.e. dii = ∑

j wij,
the objective function is reduced to

min
∑
ij

(yi − yj)
2wij = min

∑
ij

(ATxi − ATxj)2wij

= minATXLXTA.
(4)

where X = [x1, x2, ..., xm], and A is the projection matrix
whose columns are the projection vectors. To avoid the
trivial solution of the objective function, the constraint
ATXDXTA = 1 is often added. After specifying the objec-
tive function, the optimal projection matrix A can be com-
puted by solving the standard eigenvalue decomposition or
generalized eigenvalue problem. Equation (4) can be solved
by using Lagrange multiplier, as follows:

∂

∂A
(ATXLXTA − λ(ATXDXTA − 1)) = 0. (5)

The solution is (XDXT)−1XLXTA = λA. The columns ofA
should be the eigenvectors of the matrix (XDXT)−1XLXT ,
corresponding to the d(d � D) smallest non-zero eigenval-
ues.

1) Constructing the within-class and the
between-class graph matrices
As mentioned in the previous section, one of the most pop-
ular graph-based subspace-learning methods is LPP [12],

which uses an intrinsic graph to represent the locality infor-
mation of the data points, i.e. the neighborhood informa-
tion. The idea behind LPP is that if the data points xi and xj
are close to each other in the feature space, then they should
also be close to each other in the manifold subspace. The
similarity matrixW for LPP can be defined as follows:

wij =
{
1, if xi ∈ N(xj, k) or xj ∈ N(xi, k),

0, otherwise,
(6)

where N(xj, k) represents the set of k-nearest neighbors of
xi. One shortfall of the above formulation for wij is that it
is an unsupervised method, i.e. not using any class-label
information. Thinking that the label information can help
to find a better separation between different classmanifolds,
supervised locality preserving projections (SLPP)was intro-
duced in [13]. Denote l(xi) as the corresponding class label
of the data point xi. SLPP uses either one of the following
formulations:

wij =
{
1, if l(xi) = l(xj),

0, otherwise,
(7)

wij =

⎧⎪⎨
⎪⎩
1, if (xi ∈ N(xj, k) or xj ∈ N(xi, k))

and l(xi) = l(xj),

0, otherwise.

(8)

Note that equation (7) does not include the neighbor-
hood information to the adjacency graph, and the simi-
larity matrices defined above can be constructed using the
heat kernel. This strategy is also adopted in [19, 20] for
graph construction. Orthogonal locality preserving projec-
tion (OLPP) [34] whose eigenvectors are orthogonal to each
other is an extension of LPP. It is worth noting that, in
our experiments we applied supervised orthogonal local-
ity preserving projections (SOLPP), which is OLPP with its
adjacency matrix including class information.

Yan et al. [11] proposed a general framework for dimen-
sionality reduction, namedmarginal Fisher analysis (MFA).
MFA, which is based on graph embedding as LPP, uses
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two graphs, the intrinsic and penalty graphs, to characterize
the intra-class compactness and the interclass separability,
respectively. In MFA, the intrinsic graphww

ij , i.e. the within-
class graph, is constructed using the neighborhood and class
information as follows:

ww
ij =

{
1, if xi ∈ N(xj, k+

1 ) or xj ∈ N(xi, k+
1 ),

0, otherwise,
(9)

where k+
1 is the number of nearest neighbors of the same

class of xi. Similarly, the penalty graph wb
ij, i.e. the between-

class graph, is constructed as follows:

wb
ij =

{
1, if xi ∈ N(xj, k−

2 ) or xj ∈ N(xi, k−
2 ),

0, otherwise,
(10)

where k−
2 is the number of nearest neighbors whose class is

different from xi.
LSDA [18] and improved locality-sensitive discriminant

analysis (ILSDA) [35] are subspace-learning methods pro-
posed in 2007 and 2015, respectively. They construct the
similarity matrices in the same way, but LSDA uses binary
weights, while ILSDA sets the weight of the edges using the
heat kernel. The similarity matrices of LSDA are defined as
follows:

ww
ij =

{
1, if xi ∈ N(xj, k) and l(xi) = l(xj),

0, otherwise.
(11)

wb
ij =

{
1, if xi ∈ N(xj, k) and l(xi) �= l(xj),

0, otherwise.
(12)

It can be observed that the intrinsic and the penalty graphs
of MFA, LSDA, and ILSDA are similar to each other. In
MFA, the numbers of neighboring points for both the sim-
ilarity matrices are known, i.e. k1 and k2. In LSDA and
ILSDA, the k neighbors of xi are selected, which are then
divided for constructing the within-class (k+ samples the
same class as xi) and the between-class matrices (k− sam-
ples of other classes), i.e. k = k+ + k−. Let k1 and k2 be the
numbers of samples belonging to the same class and dif-
ferent classes, respectively, for MFA. It is worth noting that
the equation N(xi, k1) ∩ N(xi, k2) = N(x1, k) is not always
true. This is because it is not necessarily true that k+ = k1
and k− = k2. Therefore, the neighboring points of xi in
LSDA and ILSDA are not the same asMFA, even if k = kt =
k1 + k2. However, the adjacencymatrices constructed in the
manifold learning methods are similar to each other. The
main difference between the existing methods in the litera-
ture is in their definitions of the objective functions.Wewill
elaborate on the differences in the objective functions in the
next section.

LPMIP [16], proposed in 2008, uses the ε-neighborhood
condition, i.e.O(xi, ε). Although it was originally applied as
an unsupervised learningmethod, the class labels were used
to construct the locality and non-locality information for
facial expression recognition. In 2008, Li et al. [17] proposed
CMVM, which aims to keep the local structure of the data,

while separating the manifold of the different classes far-
ther apart. The local-structure graphs, i.e. the between-class
graph and the dissimilarities graph, are defined as follows:

ww
ij =

⎧⎪⎨
⎪⎩
1 or exp

(−‖xi − xj‖2
t

)
, if xi ∈ O(xj, ε),

0, otherwise.
(13)

wb
ij =

{
1, if l(xi) �= l(xj),

0, otherwise.
(14)

As (13) and (14) show, the within-class matrix of CMVM
only preserves the local structure of the whole data, while
the between-classmatrix only uses the class label to increase
the separability of different class manifolds. In 2015, an
extension of CMVM, namely CMVM+ [36], was proposed
to overcome the obstacles of CMVM. CMVM+ adds the
class information and neighborhood information to the
similarity matrices. The updated version of the graphs can
be written as follows:

ww
ij =

{
1, if xi ∈ N(xj, k) and l(xi) = l(xj)

0, otherwise.
(15)

wb
ij =

{
1, if l(xj) ∈ Cinc(xi),

0, otherwise.
(16)

where Cinc(xi) is a set of neighboring points belonging to
different classes, i.e. l(xi) �= l(xj). More details of the func-
tion Cinc(xi) can be found in [36].

In 2011, multi-manifolds discriminant analysis (MMDA)
[37] was proposed for image feature extraction, and applied
to face recognition. The idea behind MMDA is to keep
the points from the same class as close as possible in the
manifold space, with the within-class matrix defined as
follows:

ww
ij =

⎧⎪⎨
⎪⎩
exp

(
−‖xi−xj‖2

t

)
, if l(xi) = l(xj)

0, otherwise.
(17)

MMDA also constructs a between-class matrix in order
to separate the different classes from each other. The dif-
ference between the between-class matrix of MMDA and
the other subspace methods is that its graph matrix is con-
structed by not taking all the data points as nodes, but
rather calculating the weighted centers of different classes
by averaging all the data points belonging to the classes
under consideration. LetM = [m̃1, m̃2, . . . , m̃c] be the class-
weighted centers, where c is the number of classes. Then, the
between-class matrix of MMDA can be written as:

wb
ij = exp

(−‖m̃i − m̃j‖2
t

)
. (18)

In Table 2, a summary is given of the within-class graph
and between-class graph for the subspace-learning meth-
ods, reviewed in this paper. In this table, the determina-
tion of the nearest neighbors; whether or not the class
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information being used, i.e. supervised or unsupervised
learning; and the formulation of the weights are provided
for the within-class graph and the between-class graph.
For LPP/OLPP/SLPP/SOLPP, only the within-class graph
is considered, so the neighborhood, class information, and
weight for the between-class graph are listed as n/a (not
available).

2) Defining the objective functions
Table 3 summarizes the objective functions of the
approaches reviewed in the previous section, as well as the
constraints used. We can see that SLPP has only one Lapla-
cian matrix defined in its objective function, because it
constructs one similarity matrix only, while all the other
methods have two matrices: one is based on the intrinsic
graph, and the other on the penalty graph.

In general, there are two ways of defining the objec-
tive functions with the intrinsic and the penalty matri-
ces. The first one utilizes the Fisher criterion to maximize
the ratio between the scattering of the between-class and
that of the within-class Laplacian matrices. MFA, MMDA,
and CMVM+ employ the Fisher criterion. Although the
application of the Fisher criterion shows its robustness, it
involves taking the inverse of a high-dimensional matrix to
solve a generalized eigenvalue problem. To solve this prob-
lem, LSDA, LPMIP, and our proposed SLMP define their
objective functions as the difference between the intrinsic
and the penalty-graph matrices, while MMC and SDM use
the difference between the inter-class and the intra-class
scatter matrices.

As shown in Table 3, ILSDA adopts a similar objective
function to LSDA, but with a difference that thewithin-class
scatter matrix is included in the objective function. The
within-class scatter matrix Sw – as used in LDA – indicates
the compactness of the data point in each class. ILSDA uses
the scatter matrix to project outliers closer to the class cen-
ters under consideration. The objective function of ILSDA
is defined as follows:

max AT(P − αSw)A, (19)

where P = X(Lb − Lw)XT , as defined in the objective func-
tion of LSDA. CMVM, unlike other methods which aim to
minimize the within-class spread, intends to maintain the
within-class structure for each class by defining a constraint,
i.e. ATXLwXTA = XTLwX, while increasing the inter-class
separability with the following objective function:

max ATXLbXTA, (20)

where Lw and Lb are the within-class and the between-class
Laplacian matrices, respectively.

B) Deep subspace learning
Deep subspace learning generally employs multi-level sub-
space mapping to extract abstract features from an image.
One of the most commonly used deep subspace learning
frameworks is PCANet [38], proposed by Chan et al., which

iteratively utilizes the convolutional layers with the PCA fil-
ters to learn image representations. They further proposed
LDANet [38] to enhance the feature representations, based
on the Fisher criterion. To tackle the efficiency problem
caused by cascading the PCAor LDAfilters, binary hashing,
and block-wise histograms, the pooling operation is intro-
duced into the deep frameworks to reduce the dimension-
ality of the extracted features, such as the general pooling
[39], the rank-based average pooling [40], and the spatial
pyramid pooling [41].

The above-mentioned methods aim to learn linear map-
pings to form the subspace for describing facial images.
However, these methods lack the capacity to describe the
complexity of facial expressions in real-world scenarios.
Deep convolutional neural networks (DCNNs) provide an
alternative to learning the subspace by using more compli-
cated nonlinear mappings. Recently, DCNNs have shown
their superiority in various computer vision tasks, includ-
ing image classification [42, 43], object detection [44, 45],
and image restoration [46, 47]. A DCNNmodel is generally
trained by minimizing an empirical risk as follows:

θ∗ = argmin
θ

∑
i

L(fθ (xi), l(xi)), (21)

where fθ is the nonlinear mapping function with its train-
able parameters θ under an objective function L, and xi
represents an input signal, with its corresponding label l(xi).
In terms of the facial expression recognition task, the objec-
tive function is generally defined as the softmax lossLsfm as
follows:

Lsfm = −
∑
i

log
eW

T
l(xi)

yi+bl(xi)∑n
j=1 e

WT
j yi+bj

, (22)

where yi = fθ (xi) is the learned deep feature for sample xi,
andW and b are the trainable kernels and bias of the output
layer, respectively. However, the features learned under the
softmax loss can achieve class separability only, but there is
no guarantee for discriminability. Therefore, deep subspace
regularizers are proposed to introduce the within-class and
the between-class variances as the additional penalty into
the objective function. By this means, the learned deep fea-
tures become more discriminative and generalized for rec-
ognizing new unseen query faces. Similar to the traditional
subspace learning algorithms introduced in Section A),
deep subspace learning aims to learn a subspace that char-
acterizes face features by widening the between-class differ-
ences and compacting the within-class variations. In this
paper, we mainly focus on the regularization-based deep
subspace learning methods.

1) Regularization for deep subspace learning
Wen et al. [28] proposed theCenter loss for face recognition,
which aims to minimize the within-class variations while
keeping the features of different classes separable. To this
end, the Center loss minimizes the distance between each
sample and its corresponding class center in the latent space,
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Table 2. Comparison of the within-class graph and the between-class graph for different subspace-learning methods

The within-class graph The between-class graph

Methods Neighborhood Class info Weight Neighborhood Class info Weight

LPP [12]/OLPP [34] Optional No Optional n/a n/a n/a
SLPP [13]/SOLPP Optional Yes Optional n/a n/a n/a
LSDA [18] knn Yes bn knn Yes bn
MFA [11] knn Yes bn knn Yes bn
CMVM [17] ε-ball No bn/hk n/a Yes bn
LPMIP [16] ε-ball No hk ε-ball No hk
MMDA [37] n/a Yes hk Class centers Yes hk
CMVM+ [36] knn Yes bn knn Yes bn
ILSDA [35] knn Yes hk knn Yes hk
SLPM (proposed) knn Yes bn/hk knn Yes hk

bn: binary weights, hk: heat kernel, knn: k-nearest neighbor.

Table 3. Comparison of the objective functions used by different subspace methods

Methods Objective functions Constraints (s.t.)

LPP [12]/SLPP [13] max
A

ATXLXTA ATXDXTA = I

LSDA [18] max
A

ATX(αLb + (1 − α)Ww)XTA ATXDwXTA = I

MFA [11] min
A

ATXLwXTA
ATXLbXTA n/a

CMVM [17] max
A

ATXLbXTA ATXLwXTA = XLwXT

LPMIP [16] max
A

ATX(αLb − (1 − α)Ww)XTA ATA − I = 0

MMDA [37] max
A

ATXLbXTA
ATXLwXTA n/a

CMVM+ [36] max
A

ATXLbXTA
ATXLwXTA n/a

ILSDA [35] maxAT(P − αSw)A where P = X(Lb − Lw)XT ATA − I = 0
SDM [7] max Sb − αSw n/a
SLPM maxAT(XLbXT − βXLwXT)A or maxATX(Lb − βLw)XTA ATA − I = 0

as follows:

LCenter = 1
2

m∑
i=1

||yi − cl(xi)||22, (23)

where cl(xi) denotes the center or mean deep feature for the
class l(xi), and m is the batch size. This Center loss can
effectively describe the within-class variations. However,
the between-class variations are not sufficiently considered,
which may result in the overlaps between the clusters of
different classes in the latent space. Therefore, in order to
enlarge the between-class distance, Cai et al. [26] proposed
the Island loss, which further introduces a regularization
term to penalize the pairwise distance between the centers
of different classes, as follows:

LIsland = 1
2

m∑
i=1

||yi − cl(xi)||22

+ λ
∑
cj∈N

∑
ck∈N
k�=j

(
ck · cj

||ck||2||cj||2 + 1
)
,

(24)

where λ is a hyperparameter controlling the trade-off
between the intra-class and the inter-class variations, and
N denotes the set of class centers in the learned subspace.
The second term in this loss function is normalized to the
range [0, 2]. Compared to the Center loss, the Island loss
further maximizes the distance between the centers of the

different classes. This effectively addresses the overlap issue
and significantly improves the feature discriminative ability.

On the contrary, local information is essential for the for-
mation of a feature space with better generalization [27].
Inspired by SLPP [13], Li et al. [27] proposed the local-
ity preserving (LP) loss, and established the deep local-
ity preserving-CNN (DLP-CNN), which aims to guarantee
the local consistency in the learned subspace. The locality
preserving loss is formulated as follows:

LLP =
∑
i,j

Si,j||yi − yj||, (25)

where the similarity matrix Si,j is defined, based on SLPP
[13], as follows:

Si,j =

⎧⎪⎨
⎪⎩
1, if (xi ∈ N(xj, k) or xj ∈ N(xi, k))

and l(xi) = l(xj),

0, otherwise.

(26)

However, to calculate the sum of the pairwise distances,
the entire training set is required to be fed to the network for
training in each iteration, which is computationally inten-
sive. Therefore, Li et al. [27] further proposed to make an
approximation by only searching the k nearest neighbors
of yi in each iteration. Thus, the locality preserving loss is
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reformulated as follows:

LLP = 1
2

m∑
i=1

∣∣∣∣
∣∣∣∣yi − 1

k

∑
y∈N(yi ,k)

y
∣∣∣∣
∣∣∣∣
2

2
, (27)

whereN(yi, k) denotes the ensemble of the k-nearest neigh-
bors of the feature point yi with the same label. Equation
(27) effectively characterizes the “local” within-class scat-
ters, because the samples from the same class are forced to
be close to each other in the latent subspace.Moreover, if we
set the number of neighbors k = Nj, whereNj is the number
of samples from the j-th class in the entire training set, the
locality preserving loss becomes the Center loss. Thus, the
Center loss can be regarded as a special case of the locality
preserving loss.

However, the locality preserving loss, similar to the Cen-
ter loss, has not sufficiently considered the local inter-class
variations, and only adopts the softmax loss to make the
features separable. Therefore, in this paper, we reformulate
the proposed SLPM as an additional regularization, i.e. soft
locality preserving (SLP) loss, for training the CNN mod-
els, in order to learn more discriminative representations
for facial expressions. We summarize the above-mentioned
deep subspace-learning methods in Table 4.

2) Learning scheme
Both the center-based [26, 28] and the locality-based [27]
methods need to take all the training samples, which are
fed to the network, to calculate the respective class cen-
ters in training. This is not only time-consuming, but also
impractical in real-world applications. To address this prob-
lem, a mini-batch-based training scheme is necessary to
reliably update or compute the centers for those additional
regularization terms.

For the center-based approaches, Wen et al. [26] pro-
posed to compute the gradients of the class centers based
on the samples in a mini-batch only. Specifically, the class
centers are first randomly initialized at the beginning of the
training process. In each iteration, the gradient of LCenter
with respect to the FV yi is calculated as follows:

∂LCenter

∂yi
= yi − cl(xi), (28)

and then the centers are updated in each iteration as follows:

�cj =
∑m

i=1 δ(l(xi) = j)(cj − yi)
1 + ∑m

i=1 δ(l(xi) = j)
, (29)

where δ(condition) = 1 if the condition is satisfied, and
δ(condition) = 0, otherwise. By this means, the randomly
initialized class centers can be optimized during the mini-
batch training. Similarly, the center gradients in the Island

loss can be computed as follows:

�cj =
∑m

i=1 δ(l(xi) = j)(cj − yi)
1 + ∑m

i=1 δ(l(xi) = j)

+ λ

|N| − 1

∑
ck∈N
k�=j

ck
||ck||2||cj||2 −

(
ck · cj

||ck||2||cj||32

)
cj,

(30)
where |N| denotes the total number of expression classes.

As the center-based method is just a special case of the
locality-basedmethod, the center updating scheme in DLP-
CNN [27] can be defined similarly, as follows:

∂LLP

∂yi
= yi −

1
k

∑
y∈N(yi ,k)

y. (31)

It is worth noting that all the above-mentioned regularizers
are cooperating with the softmax loss defined in equation
(22) to jointly supervise the subspace learning process.

I I I . SOFT LOCAL ITY PRESERV ING
MAP

In this section, we introduce the proposed method, SLPM,
with its formulation and connection to the previous studies.
Then, we will also describe the local descriptors used for
facial expression recognition in our experiments. Finally,
we extend SLPM to deep learning, and describe the deep
network architecture for learning discriminative features
supervised by the soft locality preserving loss.

A) Formulation of the SLPM
Similar to other manifold-learning algorithms, two
graph-matrices, i.e. the between-class matrix Wb and the
within-class matrixWw, are constructed to characterize the
discriminative information, based on the locality and class-
label information. Given m data points {x1, x2, . . . , xm} ∈
R

D and their corresponding class labels {l(x1), l(x2), . . . ,
l(xm)}, we denote Nw(xi, kw) = {xw1

i , x
w2
i , . . . , xwkw

i } as the
set of kw-nearest neighbors with the same class label as xi,
i.e. l(xi) = l(xw1

i ) = l(xw2
i ) = · · · = l(xwkw

i ), and Nb(xi, kb)
= {xb1i , xb2i , . . . , x

bkb
i } as the set of its kb nearest neighbors

with different class labels from xi, i.e. l(xi) �= l(xwj
i ), where

j = 1, 2, . . . , kb. Then, the inter-class weight matrixWb and
the intra-class weight matrixWw can be defined as below:

wb
ij =

⎧⎪⎨
⎪⎩
exp

(−‖xi − xj‖2
t

)
, xj ∈ Nb(xi, kb),

0, otherwise.
(32)

ww
ij =

⎧⎪⎨
⎪⎩
exp

(−‖xi − xj‖2
t

)
, xj ∈ Nw(xi, kw),

0, otherwise.
(33)

SLPM is a supervised manifold-learning algorithm, which
aims tomaximize the between-class separability, while con-
trolling the within-class spread with a control parameter β
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Table 4. Comparison of the different deep subspace-learning regularizers

The within-class variation The between-class variation

Methods Region Class info Weight Region Class info Weight

Center loss [28] Global Yes bn n/a n/a n/a
Island loss [26] Global Yes bn Global Yes bn
LP loss [27] Local Yes bn n/a n/a n/a
SLP loss Local Yes bn/hk Local Yes hk

bn: binary weights, hk: heat kernel.

used in the objective function. Consider the problem of cre-
ating a subspace, such that data points fromdifferent classes,
i.e. represented as edges in Wb, stay as distant as possible,
while data points from the same class, i.e. represented as
edges in Ww, stay close to each other. To achieve this, two
objective functions are defined as follows:

max
1
2

∑
i,j

(yi − yj)
2wb

i,j, (34)

min
1
2

∑
i,j

(yi − yj)
2ww

i,j. (35)

Equation (34) ensures that the samples fromdifferent classes
will stay as far as possible from each other, while equation
(35) is to make samples from the same class stay close to
each other after the projection. However, as shown in [48]
and [7], small variations in the manifold subspace can lead
to overfitting in training. To overcome this problem, we add
the parameter β to control the intra-class spread. Note that,
the method SDM in [7] uses the within-class scatter matrix
Sw – as defined for LDA – to control the intra-class spread.
In our proposed method, we adopt the graph-embedding
method, which uses the locality information about each
class, in addition to the class information. Hence, the two
objective functions equations (34) and (35) can be combined
as follows:

max
1
2

⎛
⎝∑

i,j

(yi − yj)
2wb

i,j − β
∑
i,j

(yi − yj)
2ww

i,j

⎞
⎠ ,

= max (Jb(A) − βJw(A)),

(36)

where A is a projection matrix, i.e. Y = ATX and X =
[x1, x2, . . . , xm]. Then, the between-class objective function
Jb(A) can be reduced to

Jb(A) = 1
2

∑
i,j

(yi − yj)
2wb

i,j

= ATXLbXTA,

(37)

where Lb = Db − Wb is the Laplacian matrix of Wb and
dbii = ∑

j w
b
ij is a diagonalmatrix. Similarly, the within-class

objective function Jw(A) can be written as

Jw(A) = 1
2

∑
i,j

(yi − yj)
2ww

i,j

= ATXLwXTA,

(38)

where Lw = Dw − Ww and dwii = ∑
j w

w
ij . If Jb and Jw

are substituted into equation (36), the objective function
becomes as follows:

max JT(A) = max (Jb(A) − βJw(A))

= max (ATXLbXTA − βATXLwXTA)

= max ATX(Lb − βLw)XTA,

(39)

which is subject toATA − I = 0, so as to guarantee orthog-
onality. By using Lagrange multiplier, we obtain

L(A) = ATX(Lb − βLw)XTA − λ(ATA − I). (40)

By computing the partial derivative of L(A), the optimal
projection matrix A can be obtained, as follows:

∂L(A)

∂A
= X(Lb − βLw)XTA − λA, (41)

i.e. X(Lb − βLw)XTA = λA. The projection matrix A can
be obtained by computing the eigenvectors of X(Lb −
βLw)XT . The columns of A are the d leading eigenvectors,
where d is the dimension of the subspace. The proposed
SLPM algorithm requires computing the pairwise dis-
tance between the samples for construction of the within-
class and between-class matrices. The complexity of this
is O(m2), where m is the number of training samples. In
addition, the complexity of calculating the eigenvalue
decomposition is O(m3). LDA, LPP, MFA, and other
manifold-learning algorithms, whose objective functions
have a similar structure, lead to a generalized eigenvalue
problem. Such methods suffer from the matrix-singularity
problem, because the solution involves computing the
inverse of a singular matrix. Although computing the
inverse of amatrix also involves a time complexity ofO(m3),
the proposed objective function is designed in such a way
as to overcome this singularity problem. However, in our
algorithm, PCA is still applied to data, so as to reduce its
dimensionality and to reduce noise.

B) Intra-class spread
As we have mentioned before, the manifold spread of the
different classes can affect the generalizability of the learned
classifier. To control the spread of the classes, the parame-
ter β is adjusted in our proposed method, like SDM. Figure
1 shows the change in the spread of the classes when β

increases.We can see that increasing β will also increase the
separability of the data, e.g. the training data is located at
almost the same position in the subspace when β = 1000.
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Fig. 1. Spread of the respective expression manifolds when the value of β increases from 1 to 1000: (1) anger, (2) disgust, (3) fear, (4) happiness, (5) sadness, and (6)
surprise.

C) Relations to other subspace-learning
methods
As discussed in Section 2, there have been extensive studies
on manifold-learning methods. They share the same core
idea, i.e. using locality and/or label information to define an
objective function, so that the data can be represented in a
specific way after projection.

There are two main differences between SLPM and
LSDA. First, LSDA defines their objective function as a
subtraction of two objective functions like SLPM. How-
ever, LSDA imposes the constraintATXDwXTA = I, which

results in a generalized eigenvalue problem. As we men-
tioned in Section 2, the generalized eigenvalue problem
suffers from the computational cost of calculating an inverse
matrix. SLPM only determines the orthogonal projections,
with the constraintATA − I = 0. Therefore, SLPM can still
be computed by eigenvalue decomposition, without requir-
ing computing any inverse matrix. Second, LSDA finds the
neighboring points followed by determining whether the
considered neighboring points are of the same class or
of different classes. This may lead to an unbalanced and
unwanted division of neighboring points, simply because
of the fact that a sample point may be surrounded by more
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Table 5. Network architecture for learning discriminative features supervised by the soft locality preserving loss

Type Conv ReLU MPool Conv ReLU MPool Conv ReLU Conv ReLU MPool Conv ReLU Conv ReLU FC ReLU FC

KS 3 – 2 3 – 2 3 – 3 – 2 3 – 3 – – – –
OC 64 – – 96 – – 128 – 128 – – 256 – 256 – 2000 – 7
P 1 0 0 1 0 0 1 0 1 0 0 1 0 1 0 – 0 –
S 1 1 2 1 1 2 1 1 1 1 2 1 1 1 1 – 1 –

KS, OC, P, and S refer to the kernel size, output channel, padding, and stride, respectively.

samples belonging to the same class than samples with dif-
ferent class labels. In order not to lose locality information
in such a case, SLPM defines two parameters k1 and k2,
which are the numbers of neighboring points belonging to
the same class and different classes, respectively. In other
words, the numbers of neighboring points belonging to the
same class and different classes can be controlled.

Both SDM and ILSDA also consider the intra-class
spread when defining the objective function. SDM controls
the level of spread by applying a parameter to the within-
class scatter matrix Sw. However, it only uses the label infor-
mation about the training data – its scatter matrices do
not consider the local structure of the data. Our proposed
SLPM aims to include the locality information by employ-
ing graph embedding in our objective functions. Therefore,
SLPM is a graph-based version of SDM. ILSDA uses both
the label and neighborhood information represented in the
adjacent matrices, and also aims to control the spread of the
classes. However, ILSDA achieves this by adding the scat-
ter matrix Sw to its objective function. In our algorithm, we
propose controlling the spread with the within-class Lapla-
cian matrix Lw, without adding a separate element to the
objective function.

D) Deep soft locality preserving learning
The objective function of SLPM, as described in equation
(36), is extended for deep learning for learning more
discriminant deep features. The objective function is for-
mulated as a loss function, which aims to minimize the
within-class variation, while maximizing the between-class
difference. In equation (36), y is the feature in the learned
subspace formed by a linear projectionmatrixA.wb andww

represent the similarity between the between-class samples
and the within-class samples, respectively, in a local neigh-
borhood. If we employ a deep neural network to extract the
FV from each sample, denoted as yi = fθ (xi), the learning
objective becomes as follows:

θ∗ = argmin
θ

β
∑
i,j

ww
i,j||yi − yj||22

−
∑
i,j

wb
i,j||yi − yj||22,

with yi = fθ (xi),

(42)

where the similarity of the inter-class and intra-class sam-
ples, i.e. wb

i,j and ww
i,j, are computed based on equations (32)

and (33), respectively.

Similar to DLP-CNN [27], the learned feature yi should
be updated iteratively during the mini-batch training.
Therefore, we adopt the same approximation in [27] to only
consider the k nearest neighbors of each feature yi, and
reformulate the objective function as follows:

LSLP = β

m∑
i=1

∣∣∣∣
∣∣∣∣yi − 1

kw

∑
y∈Nw(yi ,kw)

y
∣∣∣∣
∣∣∣∣
2

2

−
m∑
i=1

∣∣∣∣
∣∣∣∣yi − 1

kb

∑
y∈Nb(yi ,kb)

y
∣∣∣∣
∣∣∣∣
2

2
,

(43)

where β also controls the intra-class spread, which
affects the generalization of the resultant feature extrac-
tor. Equation (43) represents the proposed soft locality-
preserving (SLP) loss, which effectively characterizes the
within-class and the between-class variations in a local
region, and consequently enhances the discriminability and
the generalization of the model.

We follow the learning strategy in [26–28], and adopt the
joint supervision of the softmax and the SLP loss to train up
the CNN model, named SLP-CNN, for subspace learning.
Thus, the overall loss function is defined as follows:

L = Lsfm + λLSLP, (44)

where λ balances the trade-off between the two loss terms.
The softmax loss guarantees the separability of the global
scatter, while the SLP loss enhances the discriminative
power based on local scatters.

To learn the deep discriminative features with respect to
facial expressions, we establish a convolutional neural net-
work with the same architecture as DLP-CNN [27], whose
structure is shown in Table 5. We adopt an 18-layer CNN
with the ReLU [49] activation function. The last fully con-
nected layer in Table 5 is the softmax layer for introducing
the softmax supervision. It can be seen from the table that
we extract a 2000-dimensional FV from each facial sample.
The SLP loss is computed based on these 2000-dimensional
FVs, produced by the second last layer. We summarize
our proposed learning algorithm, SLP-CNN, as shown in
Algorithm 1. In terms of the time complexity, the proposed
algorithm only affects that in the training stage, and thus,
brings no burden to the inference stage. The proposed SLP
loss requires computing the pairwise distance between the
samples doing training. Therefore, the time complexity in
a mini-batch is described as O(m2). As a comparison, the
LP loss requires computing the distance between samples
in the same cluster, whose computation should be O(m′2),
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where m′ denotes the number of samples belonging to the
same class in a mini-batch.

Algorithm 1: Learning algorithm for SLP-CNN
Input: Training samples {xi}Ni=1.
1: Initialize: Network parameters θ(0), learning rate
μ, hyperparameters λ, softmax layer parameters φ(0),
neighboring nodes kw and kb, number of epochsT, mini-
batch sizem.
2: for t = 0 : T do
3: extract feature with CNN:

yi = fθ(t) (xi)
4: compute the within-class and the between-class
centers from the k-nearest neighbors of yi:

cw = 1
kw

∑m
j=1 yjw

w
i,j

cb = 1
kb

∑m
j=1 yjw

b
i,j

5: update the softmax layer parameters:

φ(t+1) = φ(t) − μ(t) ∂L(t)
sfm

∂φ(t) ,
6: update backpropagation error:

∂L(t)

yi
= ∂L(t)

sfm

yi
+ λ

∂L(t)
SLP
yi

,
7: update network parameters:

θ(t+1) = θ(t) − μ(t) ∂L(t)

∂θ(t)

= θ(t) − μ(t) ∑m
i=1

∂L(t)

∂yi
∂yi
∂θ(t) ,

8: end for
Output: Trained network parameter θ(T).

I V . FEATURE DESCR IPTORS AND
GENERAT ION

In this section, we will first present the descriptors used
for representing facial images for expression recognition,
then investigate the use of face images with low-intensity
and high-intensity expressions formanifold learning, which
represent the corresponding samples at the core and bound-
ary of the manifold for an expression. After that, we will
introduce our proposed feature-generation algorithm.

A) Descriptors
Recent research has shown that local features can achieve
higher and more robust recognition performance than by
using global features, such as eigenfaces and Fisherfaces,
and intensity values. Therefore, in order to show the robust-
ness of our proposed method, four different commonly
used local descriptors for facial expression recognition,
local binary pattern (LBP) [50, 51], local phase quantiza-
tion (LPQ) [52], pyramid of histogram of oriented gradients
[53], andWeber local descriptor (WLD) [54], are considered
in our experiments. These descriptors can represent face
images, in terms of different aspects such as intensity, phase,
shape, etc., so that they are complementary to each other
[55]. As shown in Algorithm 2, features are extracted using
one of the above-mentioned local descriptors, followed by

the subspace learning with SLPM and a feature-generation
method.

Algorithm 2: The overall flow of our proposed SLPM

1. Extract features from face images: Xdesc.
2. Learn the projection matrixWpca via PCA.
3. Construct the within-class graph matrixWw and the
between-class similarity matricesWb.

4. Calculate the Laplacian matrices Lw and Lb.
5. Solve the eigenvalue decomposition of X(Lb −

βLw)XT .
6. Choose the eigenvectors corresponding to the d
largest eigenvalues,WmL.

7. Ydesc = WT
mLW

T
pcaXdesc.

8. Add features obtained with either low-intensity
images (Yl) or feature generation (Yl) to form the
training data Tl or T

l
, respectively.

9. Learn the nearest neighbor classifier.

B) Feature generation
Features in a projected subspace still have a high dimension.
A large number of samples for each expression is necessary
in order to accurately represent its correspondingmanifold.
This is similar to deep learning in that an extremely large
amount of training samples are necessary to solve the over-
fitting problem. For deep learning, data augmentation is
carried out to generate more samples from a single training
image. However, for conventional subspace analysis meth-
ods, data augmentation does not work properly. To achieve
effective learning, it is necessary to generate more features
located near the manifold boundaries. Then, more accurate
decision boundaries can be determined for accurate facial
expression. In other words, feature augmentation should be
performed, rather than data augmentation.

Video sequences with face images, changing from neu-
tral expression to a particular expression, are used for learn-
ing. Let fi,θ denote the frame index of the face image of
expression intensity θ (0 ≤ θ ≤ 1, 0 = neutral expression
and 1 = the highest intensity of an expression, i.e. the peak
expression) of the sequence Si in a dataset of m video
sequences. Let xθ

i ∈ R
D be the FV extracted from the fi,θ -

th frame of the sequence Si. The frame index fi,θ can be
calculated as follows:

fi,θ = ni × θ , (45)

where ni is the number of frames in the sequence Si.
Therefore, {x11, x12, . . . , x1m} ∈ R

Dare the FVs extracted from
the face images with high-intensity expressions, i.e. the
last frames of the m video sequences. Suppose that
{xξ

1 , x
ξ
2 , . . . , xξ

m}are the FVs extracted from the correspond-
ing low-intensity images, and the corresponding frame
number in the respective video sequences is fi,ξ . In our
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algorithm, we use a different set of ξ values, where 0.6 ≤
ξ ≤ 0.9, to learn the different expression manifolds.

1) Manifold learning with high- and
low-intensity training samples
A projection matrix A that maps the FVs X1 = [x11, x12, . . . ,
x1m] to a new subspace is first calculated using SLPM.
The corresponding projected samples are denoted as Y1 =
[y11, y

1
2, . . . , y

1
m], i.e. y

1
i = ATx1i . Then, the same projection

matrix A is used to map the low-intensity FVs Xξ =
[xξ

1 , x
ξ
2 , . . . , xξ

m], i.e. y
ξ
i = ATxξ

i , which should lie on the
boundary of the corresponding expression manifold. The
high-intensity and low-intensity samples in the subspace
form a training matrix, denoted as Tξ , as follows:

Tξ = [Y1 Yξ ] = [ATX1 ATXξ ], (46)

where ξ(0 ≤ ξ ≤ 1) represents the intensity of the low-
intensity images. Figures 2(b) and (c) demonstrate the train-
ing data Tξ with two different values of ξ on the CK+
database.

Conventional manifold-learning methods map train-
ing samples, irrespective of how strong the expressing
images are, as close as possible after transformation. This
results in limited performance in terms of generalization.
In our feature-generation algorithm, the subspace learn-
ing method, SLPM, is first applied to features extracted
from high-intensity expressions. Then, features extracted
from low-intensity expressions are mapped to the learned
subspace. As observed in Fig. 3, features extracted from
low-intensity expressions are located farther from the core
samples (formed by high-intensity expressions) and near
the boundary of the manifolds after the mapping.

Let {x0s1 , x0s2 , . . . , x0sp} ∈ R
D be the set of FVs extracted

from neutral face images, where x0si is the FV of the neutral
face image belonging to the subject si, and p is the number
of the subjects in the dataset. The expression images of the
subject si are denoted as

X1
si = [x1si,1 , x

1
si,2 , . . . , x

1
si,r ], (47)

where r is the number of expression images belonging to si
and x1si,j is the FV extracted from the j-th expression image of
si. Then, the feature matrix for all the expressions is formed
as follows:

X1
s = [X1

s1 ,X
1
s2 , . . . ,X

1
sp]. (48)

The proposed sample-generationmethod operates in the
learned subspace. Thus, the FVs extracted from the neutral
face images and the expression images are all mapped to
the learned subspace using the projection matrix A learned
from X1

s, as follows:

Y1 = ATX1
s = [Y1

s1 ,Y
1
s2 , . . . ,Y

1
sp], and (49)

Y0 = ATX0
s = [y0s1 , y

0
s2 , . . . , y

0
sp]. (50)

Equations (49) and (50) represent the set of FVs of high-
intensity expressions and neutral expressions of all subjects,
respectively, in the subspace.

The proposed feature-generation method generates low-
intensity FVs based on vector-pairs selected from two dif-
ferent sets: (1) vector-pairs from Y1

si and (2) vector-pairs
from Y1

si and y0si . In the following sections, we will describe
the feature-generationmethod with respect to two different
vector-pairs.

2) Vector-pairs from Y1
si and y0si

Let Yθne
si = [yθne

si,1→0
, yθne

si,2→0
, . . . , yθne

si,r→0
] be the feature matrix

of possible low-intensity expressions with an intensity of
θne(0 < θne < 1) belonging to the subject si, where yθne

si,j→0
is

the corresponding low-intensity FV generated using y1si,j→0

and y0si . In the rest of the paper, the arrow “→” indicates the
direction of the FVs to be generated, with 0 and 1 being a
neutral face image and a face image with the highest inten-
sity, respectively. yθne

si,j→0
means that the FV is generated in

the direction from y1si,j to y0si where y
1
si,j is the mapped FV

extracted from the j-th expression image of si.
A set of FVs extracted from an expression video

sequence, which starts from a neutral-expression face to
the highest intensity of an expression, can be perceived as
a path from the reference center, i.e. the neutral manifold,
to a particular expression manifold wherein the distance of
an expression manifold from the center is directly propor-
tional to the intensity of the expression [56]. Therefore, for
databases consisting of only static expression images, the
feature matrix of possible low-intensity expressions can be
obtained by assuming that the relation between the distance
from yθne

si,j→0
to y0si and the expression intensity is linear. As

illustrated in Fig. 4(a), the low-intensity FV yθne
si,j→0

, belonging
to si, can be computed as follows:

yθne
si,j→0

= θne · y1si,j + (1 − θne) · y0si , (51)

Figures 2(d) and (e) outline the training datawith the fea-
ture generation using neutral images when θne = 0.9 and
θne = 0.7, respectively. As seen in Fig. 2, both the abso-
lute low-intensity FVs and the possible low-intensity FVs
generated by linear interpolation have a similar structure.

3) Vector-pairs from Y1
si

The respective expression manifolds can be far from each
other in the learned subspace. For this reason, more fea-
tures between expression manifolds are also needed. In
the previous section, we proposed the idea that the FVs
extracted from low-intensity expression images should be
distant from the corresponding manifold center, thus, this
can enhance the generalizability of the learned manifold.
Using a similar idea, more features that are distant from
the manifold centers can be generated using vector-pairs
from the feature matrix of high-intensity expressions of the
same subject, Y1

si , as illustrated in Fig. 4(b). A FV yθexp
si,j→k ,

which lies on the line from the j-th expression-vector of si,
y1si,j , to the k-th expression-vector of si, y1si,k , with a weight
θexp(0 < θexp < 1) can be computed as follows:

yθexp
si,j→k = θexp · y1si,j + (1 − θexp) · y1si,j , (52)
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Fig. 2. Representation of the FVs of happiness (HA) on the CK+ database, after SLPM: (a) HA, i.e. high-intensity expression samples are applied to SLPM, (b)
HA+ low intensity FV with ξ = 0.9, (c) HA+ low intensity FV with ξ = 0.7, (d) HA+ generated FV with θne = 0.9, and (e) HA+ generated FV with θne = 0.7.

Fig. 3. Subspace learnedusing SLPM,with local descriptors “LP,” based on the dataset namedCK+: (a) themapped features extracted fromhigh-intensity expression
images and neutral face images, (b) the mapped features extracted from high-intensity and low-intensity (ξ = 0.7) images, and (c) the mapped features extracted
from high-intensity and low-intensity (ξ = {0.9, 0.8, 0.7, 0.6, 0.5, 0.4}) images.

Suppose that cj = l(y1si,j) and ck = l(y1si,k) are the expression
classes of the j-th and the k-th expression vectors, respec-
tively, andni,cj andni,ck are the number of expression-vectors
of expression classes cj and ck, respectively, belonging to
subject si. Then, a total ofni,cj ni,ck FVs can be generated. The
feature matrix consisting of the generated features using the
pairs from Y1

si can be denoted as follows:

Yθexp
si,exp =[yθexp

si,1→2 , y
θexp
si,2→3 , . . . , y

θexp
si,1→r , . . . ,

yθexp
si,r→1 , y

θexp
si,r→2 , . . . , y

θexp
si,r−1→r ].

(53)

The training matrix, Tθ , is updated to Tθ , which is used as
a static database, as follows:

Tθ = [Y1 Yθne
ne Yθexp

exp ], (54)

where Yθne
ne = [Yθne

s1,ne ,Y
θne
s2,ne , . . . ,Y

θne
sp,ne] and Yθexp

exp =
[Yθexp

s1,exp ,Y
θexp
s2,exp , . . . ,Y

θexp
sp,exp]. In our experiments, we vary the θne

and the θexp values from 0.7 to 0.9. Algorithm 1 lists the
overall flow of the proposed algorithm.

When an FV is generated, it is checked whether or not it
is closest to its corresponding manifold class. Furthermore,
the FVs are generated solely for the pairs of clusters that are
in close proximity to each other in the learned subspace.

V . EXPER IMENTAL SET -UP AND
RESULTS

A) Experimental setup
In our experiments, four facial-expression databases,
(1) Bahcesehir University Multilingual Affective Face
Database (BAUM-2) [57], (2) Extended Cohn-Kanade
(CK+) [58] database, (3) Japanese Female Facial Expression
(JAFFE) [59] database, and (4) Taiwanese Facial Expres-
sion Image Database (TFEID) [60], were used to evaluate
the robustness and performances of the different subspace-
learning methods. Following is a brief description of each
of the four databases.

The BAUM-2 multilingual database [57] consists of short
videos extracted frommovies. In our experiments, an image
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Fig. 4. Representation of the sample-generation process based on (a) FVs extracted from high-intensity images and neutral-face images, and (b) FVs extracted
from high-intensity images.

dataset, namely BAUM-2i, consisting of images with peak
expressions from the videos in BAUM-2, is considered.
There are 829 face images from 250 subjects in the BAUM-2i
static expression dataset, which express six basic emotions.
However, only 536 of them, which have their facial-feature
points provided, are considered in our experiments. Since
the BAUM-2 database was created by extracting images
frommovies, the images are close to real-life conditions (i.e.
under pose, age, illumination variations, etc.), and are more
challenging than those in acted databases.

The Extended Cohn-Kanade (CK+) [58] database con-
tains a total of 593 posed sequences across 123 subjects, of
which 304 of the sequences have been labeled with one of
the six discrete emotions, which are anger, disgust, fear,
happiness, sadness, and surprise. Each sequence starts with
a neutral face and ends with a frame of peak expression.
The last frame of each sequence, and the first frames of
the sequences that have unique subject labels, as well as
their landmarks provided, are used for recognition. There
are a total of 414 face images. Note that some of the first
frames are also discarded, because the expressed emotions
are of low intensity.We further split the selected images into
five folds, based on the identity information. The five-fold
identity-independent cross-validation strategy is adopted to
evaluate SLPM on CK+. Specifically, 80 of the images
are used for training, while the remaining 20 of images
are further split into two equal sub-sets for validation and
testing, respectively. The final performance is evaluated by
averaging the recognition accuracy over the five runs.

JAFFE [59] consists of 213 images from 10 Japanese
females, which express six basic emotions – anger, disgust,
fear, happiness, sadness, and surprise – and neutral. JAFFE
is also a widely used acted database, whichmeans that it was
recorded in a controlled environment. Similar to CK+, we
adopt the five-fold identity-independent cross-validation
strategy to evaluate the proposed algorithm on JAFFE.

The TFEID database [60] contains 268 images, with the
six basic expressions and the neutral expression, from 40
Taiwanese subjects. Similar to CK+ and JAFFE, TFEID is
also an acted database.

Each of the above-mentioned databases has its own char-
acteristics. Table 6 shows the number of images for each

Table 6. Comparison of the number of images for different expression
classes in the databases used in our experiments

Emotion BAUM-2 CK+ JAFFE TFEID

Anger 80 45 30 34
Disgust 32 59 29 40
Fear 35 25 32 40
Happiness 139 69 31 40
Sadness 68 28 31 39
Surprise 83 82 30 36
Neutral 99 106 30 39
Total 536 414 213 268

expression class for the different databases. Although some
of the databases also have the contempt expression, only the
six basic prototypical facial expressions (i.e. anger, disgust,
fear, happiness, sadness, and surprise), as well as the neutral
facial expression, are considered in our experiments. Note
that neutral facial expression has been used only for creating
FVs of low-intensity expressions.

Subspace-learning methods are often applied to FVs
formed by the pixel intensities of face images. In our
method, features are first extracted using the state-of-the-
art local descriptors, and then a subspace-learning method
is applied for manifold learning and dimensionality reduc-
tion. The usual way of using local descriptors is to divide a
face image into a number of overlapping or non-overlapping
regions, then extract features from these regions, and finally
concatenate them to form a single FV. In this way, local
information, as well as spatial information, can be obtained.
Another way of using local descriptors is to consider only
the regions that have more salient information about the
considered expression classes. Following this idea, fea-
tures extracted from the eye and mouth regions are used
in [61], which showed that features extracted from these
regions only can achieve higher recognition rates than those
extracted by dividing face images into sub-regions.

In the experiments for evaluating SLPM, the face images
from the different databases are all scaled to the size of
126 × 189 pixels, with a distance of 64 pixels between the
two eyes. To determine the eye and mouth windows, the
facial landmarks, i.e. the eyes and mouth corners, are used.
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If facial landmarks are not provided for a database, the
required facial-feature points are detected by the face align-
ment method [62]. The eye window and themouth window
are further divided into 12 and 8 sub-regions, respectively.
The nearest neighbor classifier and SVM with linear kernel
are used in the experiments.

B) Implementation details of SLP-CNN
Different from of SLMP, the facial images, used to train and
evaluate SLP-CNN, are aligned by the method in [62]. Each
aligned face is cropped and resized to 100 × 100. The train-
ing samples are generated by randomly cropping a 90 × 90
region from each aligned facial image. Random rotation at
{5◦, 10◦, 15◦, −5◦, −10◦, −15◦} and random mirroring are
applied to the cropped images for data augmentation.

We implement SLP-CNN with PyTorch [63], based on
the network architecture presented in Table 5. We adopt the
stochastic gradient descent [64] optimizer to minimize the
objective function defined in equation (44), with the hyper-
parameters λ, β , and kw = kb = k empirically set to 0.1,
0.5, and 20, respectively. The weight decay and momentum
are set to 0.005 and 0.9, respectively. We train SLP-CNN
for 600 epochs on a Nvidia GEFORCE GTX 2080 Ti GPU
with the batch size of 128. The learning rate is initialized
to 10−2, and is decreased by a factor of 10 at the 200-th
and the 400-th epoch. We detach the last softmax layer
in the trained network, and employ the remaining parts
as a feature extractor for the facial samples. Finally, linear
SVMswith a one-against-one strategy, implemented by Lib-
SVM [65], are applied for classification. Since the selected
databases are relatively small, a trained deep neural net-
work is easy to overfit on the training samples. Thus, we
first pretrain the base network on a large-scale database,
i.e. the Real-world Affective Faces database (RAF-DB) [27].
The RAF-DB database consists of over 30k greatly diverse
facial expression images collected from the Internet, with
the emotion labels provided. In the pretraining phase, we
only utilize the images with one of the seven basic expres-
sions from the training set of RAF-DB. In addition, we
adopt the same pre-processing, augmentation, and training
settings mentioned above to obtain the pretrained models.

To make fair comparisons, all the above-mentioned set-
tings, including the network architecture, the optimizer, the
learning rate, etc., are uniformly used in all the comparison
methods. The hyperparameters of the comparisonmethods
are set to the default values, according to the implementa-
tion provided by the original authors.

C) Experimental results
1) Evaluation on SLPM
In this section, we evaluate the performances of our pro-
posed SLPM, using four different descriptors, on the four
different databases. We also compare our method with four
subspace-learning methods, as well as without using any
subspace-learning method.

Fig. 5. Recognition rates of the different subspace methods, with different local
descriptors, based on a combined dataset of BAUM-2, CK+, JAFFE, andTFEID.

First, the four acted databases, i.e. BAUM-2, CK+,
JAFFE, and TFEID, are combined to form a single dataset,
called COMB4, so that we can better measure the general
performances of the different subspace-learning methods
and the descriptors.

Figure 5 shows that MFA, SDM, and SLPM are the three
best subspace-learning methods, which outperform the
other subspace-learning methods. The LPQ local descrip-
tor achieves the highest recognition rates, for the differ-
ent subspace-learning methods, on COMB4. Therefore,
the subspace-learning methods, MFA and SDM, with the
local descriptor, LPQ, are chosen to further compare to
the performance of the proposed method on each of the
individual datasets. In Fig. 5, we can observe that SDM out-
performs most of the subspace-learning methods, except
SLPM, because the intra-class spread is adjustable. Further-
more, SDM is also computationally simpler than the other
compared methods, but it does not incorporate the local
geometry of the data. In our proposedmethod, information
about local structure is incorporated into the objective func-
tion. Thus, SLPM can achieve higher recognition rates than
SDM.

Figure 6 shows the recognition rates of SLPM on
COMB4, with the dimensionality of the subspace varied.
The results show that SLPM has converged to its highest
recognition rate, when the dimensionality is lower than 10.
In other words, our method is still very effective even at
a low dimensionality. Based on these results, we set the
subspace dimensionality at 11 in the rest of the experiments.

To investigate the effect of the use of images of expres-
sion with low intensities, several experiments have been
conducted on the CK+ database. As shown in Table 7, the
recognition rate is the highest when ξ = 0.9. Tables 8 and
9 show the recognition rates of the three subspace-learning
methods, MFA, SDM, and SLPM, as well as SLPM, using
feature generation with different θexp and θne values, with
the LPQdescriptor, on the four different databases using the
nearest neighbor classifier and SVM classifier, respectively.
It can be found that SLPM achieves the best classification
performance again, when compared to the other meth-
ods. The classification performance is further improved by
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Fig. 6. Recognition rates of our proposed method in terms of different dimen-
sions.

Table 7. Comparison () of recognition rates obtained by using
low-intensity images with different ξ values on the CK+ database, using

the LPQ feature

Methods CK+
SLPM 94.81
SLPM with ξ = 0.9 94.81
SLPM with ξ = 0.8 95.45
SLPM with ξ = 0.7 94.16
SLPM with ξ = 0.6 91.88

Table 8. Comparison () of subspace learning methods on different
datasets, with the LPQ descriptor being used with the nearest neighbor

classifier

BAUM-2 CK+ JAFFE TFEID

MFA [11] 62.01 93.83 89.07 91.70
SDM [7] 62.01 93.51 89.07 92.58
SLPM 62.93 94.81 90.71 93.45
SLPM with θexp = 0.9, θne = 0.9 63.62 94.81 91.26 93.45
SLPM with θexp = 0.8, θne = 0.8 62.93 96.10 91.26 94.32
SLPM with θexp = 0.7, θne = 0.7 63.13 95.13 91.80 93.89
SLPM with θexp = 0.6, θne = 0.6 62.01 94.16 90.71 93.45

The best results are highlighted in bold.

up to 2, when feature generation is employed. Further-
more, as observed in Tables 8 and 9, the nearest neighbor
classifier outperforms the SVM classifier in most of the
databases. Finally, additional experiments were conducted
to validate the efficiency of the proposed subspace learning
methods. Table 10 tabulates the runtimes in milliseconds
for each of the subspace learning methods. We can see that
SLPM is twice as fast as MFA, which solves the general-
ized eigenvalue problem instead of calculating eigenvalue
decomposition like SLPM. SDM is much slower than MFA
and SLPM.

2) Evaluation on SLP-CNN
Comparison with state-of-the-art methods:

We first evaluate SLP-CNN by comparing it with other
state-of-the-art deep subspace-learning methods. Specifi-
cally, we compare the proposed SLP loss with the other
regularizers, including the Center loss [28], the Island loss

Table 9. Comparison () of subspace learning methods on different
datasets, with the LPQ descriptor being used with the SVM classifier

BAUM-2 CK+ JAFFE TFEID

MFA [11] 61.10 92.21 91.26 91.70
SDM [7] 60.18 92.21 89.62 92.58
SLPM 63.16 92.53 89.62 93.01
SLPM with θexp = 0.9, θne = 0.9 63.84 92.86 91.26 94.76
SLPM with θexp = 0.8, θne = 0.8 62.47 93.83 91.26 95.20
SLPM with θexp = 0.7, θne = 0.7 62.24 94.48 89.07 94.32
SLPM with θexp = 0.6, θne = 0.6 61.56 94.48 88.52 94.32

The best results are highlighted in bold.

Table 10. Comparison of the runtimes (in ms) required by the different
subspace learning methods (MFA, SDM, and SLPM) on different

datasets, with the LPQ descriptor used

BAUM-2 CK+ JAFFE TFEID

MFA [11] 96 69 45 51
SDM [7] 151 133 120 118
SLPM 65 37 23 25

The best results are highlighted in bold.

[26], and the LP loss [27]. The results are summarized in
Table 11, in which the reference model, i.e. Base-CNN, is
trained under the standard softmax loss. It can be observed
that SLP-CNN consistently outperforms Base-CNN on the
four selected databases, which demonstrates that the SLP
loss can effectively enhance the discriminative power of the
learned features. Compared with the other deep subspace
learning regularizers, SLP-CNN surpasses the Center loss
and the LP loss by about 2 and 0.5 on the four databases,
respectively. This is because the Center and the LP regular-
izers only penalize the intra-class distance, while the SLP
loss considers both the intra-class and the inter-class vari-
ations. However, SLP-CNN performs slightly worse than
the Island regularizer. The Island loss characterizes the
class spread across the whole dataset, while the SLP loss
mainly focuses on the local neighborhoods. Therefore, as
introduced in Section II.B), the Island loss learns more dis-
criminative features, while the SLP loss can enhance the
model generalization. We will further validate this point in
the following sections. To better illustrate the performance
of the deep subspace regularizers, we visualize the learned
deep features of the CK+ testing images. The results are
presented in Fig. 7. We adopt t-SNE [66] to show the 2000-
dimensional deep features. It is obvious from the figure
that the subspace-learning methods can force the samples
with the same expression closer to each other in the latent
space, which shows the effectiveness of subspace learning in
enhancing the feature discriminative power.

Generalization test:
To show the generalization ability of the proposed

algorithm, we further conduct the generalization test on
SLP-CNN. Specifically, we pretrain the CNN model on the
RAF-DB database, and directly employ it to extract features
from the images in the four selected databases without fine-
tuning. Thus, this is a cross-database evaluation. We also
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Fig. 7. Visualization of the deeply learned features extracted from the samples of one testing fold in CK+, based on the different methods. (a) Softmax. (b) Center.
(c) Island. (d) LP. (e) SLP.

Table 11. Comparison in terms of the recognition rates () of the deep
subspace-learning methods on different datasets

BAUM-2 CK+ JAFFE TFEID Ave.

Base-CNN 63.84 92.53 90.71 94.32 85.35
Center loss [28] 65.25 94.48 92.35 95.20 86.82
Island loss [26] 67.03 96.73 94.52 96.07 88.58
LP loss [27] 66.37 96.10 92.35 94.76 87.39
SLP loss 66.61 96.42 93.44 95.64 88.03

The best results are highlighted in bold.

compare the deep subspace-learning methods with other
FER algorithms that train and test on the same databases. In
other words, we evaluate and compare the deep subspace-
learning methods in a more challenging condition. The
results are tabulated in Table 12.

It can be seen that those deep subspace models, without
fine-tuning their feature extraction CNNs, still generalize
well on the target datasets. More importantly, the locality-
preserving strategy, i.e. the LP and SLP losses, can obtain
better generalization ability than the center-basedmethods,
i.e. the Center loss and the Island loss, as the LP and SLP
CNNs consistently outperform the Center and IslandCNNs
on the four target databases. Compared with the other FER
methods that train and test on the same domain, the pro-
posed SLP-CNN can produce comparable or even higher

recognition accuracy, which demonstrates its effectiveness
when facing cross-domain samples in real-world scenarios.

Hyperparameters’ sensitivity analysis: We investigate the
sensitivity of the hyperparameters k, λ, and β in equations
(43) and (44), which significantly affect the trade-off per-
formance. We first fix λ = 0.1 and β = 0.5, and explore the
effect of k, which controls the number of nearest-neighbor
samples used to compute the SLP loss in amini batch. Figure
8 reports the results of the recognition accuracy on the four
databases, as well as the averaged accuracy over the four
databases, in terms of different values of the different hyper-
parameters.We can observe fromFig. 8(a) that the optimal k
appears at around 20. Similarly, we explore themodel sensi-
tivity toλ andβ , and present the results in Figs 8(b) and 8(c),
respectively. Based on the results, we obtain the settings for
the hyperparameters as we introduced in Section V.B), i.e.
k = 20, λ = 0.1, and β = 0.5.

V I . CONCLUS ION

In this paper, we have given an overview of subspace anal-
ysis methods, and extended them to deep learning. We
have proposed a subspace-learning method, named SLPM,
which uses the neighborhood and class information to con-
struct a projection matrix for mapping high-dimensional
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Table 12. Generalization test () on the different deep subspace regularizers

Methods BAUM-2 Methods CK+ Methods JAFFE Methods TFEID

WLD [67] 54.51 3DCNN [70] 92.4 Sobel [73] 92.60 REC [76] 85.45
LBP [68] 58.32 DTGN [71] 92.35 SAE [74] 94.10 LMBP [77] 90.49
LDP [69] 58.99 IACNN [72] 95.37 DCNN [75] 97.71 MPC [78] 92.54
Base CNN 57.65 Base CNN 89.37 Base CNN 87.43 Base CNN 88.62
Center loss 59.47 Center loss 92.86 Center loss 89.62 Center loss 89.94
Island loss 60.63 Island loss 94.48 Island loss 90.17 Island loss 91.25
LP loss 61.18 LP loss 95.78 LP loss 91.26 LP loss 93.01
SLP loss 62.24 SLP loss 95.78 SLP loss 91.26 SLP loss 93.89

The deep subspace-learning methods are pretrained on RAF-DB [27] without further fine-tuning the CNN feature extractors on the target databases. The
best results are highlighted in bold.

Fig. 8. Sensitivity analysis on the hyperparameters in the proposed SLP loss. (a) Effect of k. (b) Effect of λ. (c) Effect of β .

data to a meaningful low-dimensional subspace. We fur-
ther reformulate the SLPM algorithm, and employ it as
an additional regularization term for training a DCNN,
named SLP-CNN, to enhance the discriminative power
and generalization of the learned deep features. The differ-
ence between the within-class and between-class matrices
is used to define the objective function, rather than the
Fisher criteria, in order to avoid the singularity problem.
Furthermore, a parameter β is added to control the within-
class spread, so that the overfitting problem can be solved.
The robustness and the generalizability of SLPM and SLP-
CNN have been analyzed on four different databases, using
four different state-of-the-art descriptors and two differ-
ent classifiers, and SLPM has been compared with other
subspace-learning methods. Moreover, we have proposed
using the features of low-intensity expression images to
learn a better manifold for each expression class. By taking
advantage of domain-specific knowledge, we have proposed
twomethods of generating new low-intensity features in the
subspace. Our experiment results have shown that SLPM
outperforms the other subspace-learning methods, and is
a good alternative to performing dimensionality reduction
on high-dimensional datasets. Our experiment results have
also shown that the proposed feature-generation method
can further increase the recognition rates.
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