
SIP (2021), vol. 10, e2, page 1 of 13 © The Author(s), 2021. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the
original work is properly cited.
doi:10.1017/ATSIP.2021.2

original paper

Laplacian networks: bounding indicator
function smoothness for neural networks
robustness
carlos lassance,1 vincent gripon1 and antonio ortega2

For the past few years, deep learning (DL) robustness (i.e. the ability to maintain the same decision when inputs are subject
to perturbations) has become a question of paramount importance, in particular in settings where misclassification can have
dramatic consequences. To address this question, authors have proposed different approaches, such as adding regularizers or
training using noisy examples. In this paper we introduce a regularizer based on the Laplacian of similarity graphs obtained
from the representation of training data at each layer of the DL architecture. This regularizer penalizes large changes (across
consecutive layers in the architecture) in the distance between examples of different classes, and as such enforces smooth varia-
tions of the class boundaries.We provide theoretical justification for this regularizer and demonstrate its effectiveness to improve
robustness on classical supervised learning vision datasets for various types of perturbations. We also show it can be combined
with existing methods to increase overall robustness.

Keywords: Machine learning, Robustness, Graph signal processing, Laplacian, Adversarial attacks

Received 16 January 2020; Revised 04 January 2021

I . I NTRODUCT ION

Deep learning (DL) networks provide state-of-the-art per-
formance for many machine-learning tasks [1, 2]. Their
ability to achieve good generalization is often explained by
the fact they use very few priors about data [3]. On the
other hand, their strong dependency on data may lead to
selection of biased features of the training dataset, result-
ing in a lack of robustness in classification performance.
Here robustness refers to the ability of a classifier to infer
correctly even when the inputs (or the parameters of the
classifier) are subject to perturbations. These perturbations
can be due to general factors – such as noise, quantization
of inputs or parameters, and adversarial attacks – as well
as application specific ones – such as the use of a different
camera lens, brightness exposure, or weather, in an imaging
task.

An often studied case is that of adversarial attacks, where
very small (imperceptible) changes on the input of a trained

1Département Électronique, IMTAtlantique, 655Avenue duTechnopôle, Brest 29280,
France
2Department of Electrical and Computer Engineering, Signal and Image Process-
ing Institute, University of Southern California, 3740 McClintock Ave., EEB 436, Los
Angeles, CA 90089-2564, USA

Corresponding author:
Carlos Lassance
Email: cadurosar@gmail.com

DL network have been shown to result in its misclassifi-
cation [4, 5], thus providing evidence that DL networks
may not be as robust to perturbations as the test accuracy
would lead one to believe. In practice, in many applications
it is unlikely that there would be adversaries, and in par-
ticular adversaries having access to the network parameters
that are required to build these perturbations. This is why
recent study advocates focusing on more realistic robust-
ness [6], i.e. considering perturbations that are not linked
to adversarial (or deliberate) noise [7].

Proposed approaches to improve robustness can be
roughly divided into three classes: (i) changes in the
inference methods, (ii) introduction of regularizers, and
(iii) ad-hoc data augmentation. Inference methods use a
procedure for prediction that differs from the one the net-
work has been trained on (i.e. unlike the classic argmax
classifier), e.g. based on a model ensemble composed of
k-nearest neighbors classifiers for each layer [8]. Methods
introducing regularizers range fromminimizing the squared
norm Jacobian [9] to controlling the Lipschitz constant of
the network function via regularization [10, 11]. Note that
bounding the Lipschitz constant of the network as proposed
in these studies can be inconsistent with the training objec-
tive.We discuss this in further detail in Section II.A. Finally
data-augmentationmethods revolve around using deformed
inputs during the training phase so that the network func-
tion generalizes better to the corresponding perturbations
[5, 12–15]. However, there is no guarantee that training to

1

https:{/}{/}orcid.org{/}0000-0002-7754-6656
mailto:cadurosar@gmail.com

2 c. lassance, et al.

be robust to some perturbations can universally increase
robustness to all types of perturbations, even if using adver-
sarial examples during training.

Our proposed method fits in the second category: we
introduce a regularizer that penalizes large deformations of
the class boundaries throughout the network architecture,
independently of the types of perturbations that we expect
to face when the system is deployed. It also enforces a large
margin r (i.e. mid-distance between examples of distinct
classes) at each layer of the architecture.

To understand the intuition behind our proposed reg-
ularizer, first note that networks are typically trained with
the objective of yielding zero error for the training set. If
error on the training set is (approximately) zero then any
two examples with different labels can be separated by the
network, even if these examples are close to each other in the
original domain. This means that the network function can
create significant deformations of the space (small distances
in the original domain map to larger distances in the final
layers) and explains how an adversarial attack with small
changes to the input can lead to class label changes. Our
proposed regularizer penalizes big changes at the bound-
aries between classes. By forcing boundary deformations to
evolve smoothly across the architecture, and at the same
time by maintaining a large margin, the proposed regu-
larizer therefore favors smooth variations instead, leading
to better robustness. We will empirically demonstrate this
claim on classical vision datasets.

The proposed regularizer is based on a series of graphs,
one for each layer of the DL architecture, where each graph
captures the similarity between training examples given
their intermediate representation at that layer. Our regular-
izer favors small changes, from one layer to the next, in the
distances between pairs of examples in different classes.1 It
achieves so by penalizing large changes in the smoothness
(computed using the Laplacian quadratic form) of the class
indicator vectors (viewed as “graph signals”). As a result, the
margin is kept almost constant across layers, and the defor-
mations of space are controlled at the boundary regions, as
illustrated in Fig. 1. This draws heavily from previous stud-
ies of some of the authors [16, 17], and uses the robustness
definition that was introduced in [18], which was inspired
from preliminary versions of this study [19]. More gener-
ally, combining graphs and DL analysis has sparked a lot
of interest recently. For example, Anirudh et al. [20] intro-
duced different quantities related to graph signal processing
(GSP) that can be used to extract interpretable results from
DL networks, but, unlike our study, does not tackle robust-
ness. Another example is [21] where the authors exploit
graph convolutional layers [22], smoothing the latent rep-
resentations of the inferred images using images from the
training set, in order to increase the robustness of the net-
work. Note that this could be described as a denoising of

1Note that the distance between any two examples at a certain layer
depends on their positions in the original domain and the network func-
tion applied up to that layer. Thus, constraints on the distances lead to
constraints on the parameters of the network function.

the inference (test) image, using the training ones. This dif-
fers from our study, which focuses on generating a smooth
network function.

In Section III we demonstrate, using readily-available
image classification datasets, the robustness of the proposed
regularizer to common perturbations studied in the litera-
ture: (i) noise [7, 10], for which we show reductions in rel-
ative error increase, (ii) adversarial attacks [4, 5], for which
the median defense radius [14] is increased by 50 in com-
parison with the baseline and by 12 in comparison with
another method in the literature [11], and (iii) implemen-
tation defects, which result in only approximately correct
computations [23], for which we increase the median accu-
racy by 48 relative to the baseline and 26 relative to
another method in the literature [11].

The outline of the paper is as follows. In Section II we
introduce the proposed regularizer and our definition of
robustness. In Section III we evaluate the performance of
our proposed method in various conditions and on vision
benchmarks. Section IV summarizes our conclusions.

I I . METHODOLOGY

A) Robustness definition
A deep neural network architecture is entirely described by
its associated “network function.” This network function f
receives an input x (e.g. a tensor representing the pixel val-
ues of an image, normalized so that standard deviation is
1) and outputs a class-wise classification score f (x). Typi-
cally this output is a vector with as many coordinates as the
number of classes in the problem, where the highest valued
coordinate is the decision of the network (i.e. argmax clas-
sifier). This function is constructed via the composition of
multiple intermediate functions f �:

f = f L ◦ f L−1 ◦ · · · ◦ f 1, (1)

where each function f � is highly constrained, typically as the
concatenation of a parameter-free nonlinear function with
a parameterized linear function.

The function f is typically obtained based on a very large
number of parameters, which are tuned during the learning
phase. During this phase, a loss function is minimized over
a set of training examples using a variant of the stochastic
gradient descent algorithm. At the end of the training pro-
cess, each training example is associated through f with a
vector whose largest value is the actual class of that exam-
ple, leading to an accuracy close to 100 on the training
set. Importantly, the loss function usually targets a specific
margin in the output domain. For example, when using the
classical cross-entropy loss, the loss function is minimized
when the output of the training examples are the one-hot-bit
vectors of their corresponding class [3, 24], which corre-
sponds to a margin in the output domain of about

√
2/2 for

the L2 norm.
We define network robustness following the ideas in our

previous study [18] as:

laplacian networks: bounding indicator function smoothness for neural networks robustness 3

Fig. 1. Illustration of the effect of our proposed regularizer. In this example, the goal is to classify circles and crosses (top). Without use of regularizers (bottom left),
the resulting embedding may considerably stretch the boundary regions. Consequently, the risk is to obtain sharp transitions in the network function (that would
correspond to a large value of α in equation (2)). Another possible issue would be to push inputs closer to the boundary (bottom center), thus reducing the margin
(that would correspond to a small value of r in equation (2)). Forcing small variations of smoothness of label signals (bottom right), we ensure the topology is not
dramatically changed in the boundary regions.

Definition 1. A network function f is α-robust over a
domain R and for r > 0, which we denote f ∈ Robustα(R, r),
if f is locally α-Lipschitz within a radius r of any point in
domain R. Recall that a function f is α-Lipschitz if ‖f (x+
ε)− f (x)‖ ≤ α‖ε‖,∀x,∀ε. Formally, f ∈ Robustα(R, r) if
we have:

‖f (x + ε)− f (x)‖ ≤ α‖ε‖,
∀x ∈ R,∀ε s.t. ‖ε‖ < r .

(2)

Obviously, we would like to obtain a function f that is
α-robust for any valid input. But since we only have access
to training samples, we only enforce the property over the
training set.

In our definition, robustness captures a compromise
between margin (represented by r) and slope (represented
by α) of the network function. This is in contrast to other
studies [11] where robustness is directly linked to the Lip-
schitz constant of the network function. The proposed
definition is less strict in the sense that f α-Lipschitz implies
that f ∈ Robustα(r),∀r, but conversely f ∈ Robustα(r) for
some r does not guarantee the function will be α-Lipschitz.
Themainmotivation for introducing this weaker definition
of robustness is that we do not want network functions to be
contractive everywhere. Indeed, if all mappings are contrac-
tive everywhere we cannot hope to separate some samples
in different classes.

Since DL functions are compositional, it is possible to
achieve the robustness of Definition 1 by enforcing that
property for each of its elementary entities. Denote f � an
elementary function and xci the input of f

� corresponding
to the i-th example of class c. Denote μr = {(xci , xc

′
j), ‖xci −

xc′j ‖ ≤ r ∧ c
= c′} the set of pairs of examples of distinct
classes that are at distance at most r. Then the following
necessary condition is easily derived:

f � ∈ Robustα(r)⇒
⎧⎨
⎩

μr = ∅ or
α ≥ max(x,x′)∈μr

‖f �(x)− f �(x′)‖
‖x − x′‖

(3)
Selecting a different α at each layer could prove challeng-

ing in practice. A simpler option is to target the same α at

each layer of the architecture. Up to normalization at the
input or at the output, we can therefore target α = 1 at each
layer, which translates into a simpler necessary condition:

Property 1. Distances between examples of distinct classes
should remain approximately constant on average throughout
the network architecture.

In what follows, we introduce regularizers that enforce
this property using similarity graphs.

B) Intermediate representation graphs
First let us introduce notations and intermediate represen-
tation graphs, following the ideas in our previous study
[16]. Consider a DL network architecture. Such a network
is obtained by assembling layers of various types. A layer
can be represented by a function f � : x� �→ x�+1 where x�

is the intermediate representation of the input at layer �.
Assembling can be achieved in various ways: composition,
concatenation, sums, etc. so that we obtain a global func-
tion f that associates an input tensor x0 to an output tensor
y = f (x0). In practice a batch of b inputs X = {x1, . . . , xb}
is processed concurrently.

Given a (meaningful) similarity measure s on tensors,
we can define the similarity matrix of the intermediate
representations at layer � as:

M�[i, j] = s(x�+1
i , x�+1

j),∀1 ≤ i, j ≤ b, (4)

where M�[i, j] denotes the element at line i and column j
in M�. In our experiments we mostly focus on the use of
cosine similarity, which is widely used in computer vision.
It is often the case that the output x�+1 is obtained right
after using a ReLU function, that forces all its values to be
nonnegative, so that all values in M� are also nonnegative.
We then use M� to define a weighted graph G� = 〈V ,M�〉,
where V = {1, . . . , b} is the set of vertices.

4 c. lassance, et al.

C) Smoothness of label signals
Given a weighted graph: G� = 〈V ,M�〉, the Laplacian of G�

is the matrix:

L� = D� −M� = F�F� (5)

where D� is the diagonal degree matrix of M�. Consider a
vector s ∈ R

b, we define ŝ the graph Fourier transform of s
on G� as [25]:

ŝ = F�s. (6)

Assume the order of the eigenvectors (F) is chosen so that
the corresponding eigenvalues are in ascending order. If
only the first few entries of ŝ are nonzero then s is low fre-
quency (smooth). In the extreme case where only the first
entry of ŝ is nonzero we have that s is constant (maximum
smoothness). From this definition we derive a measure
called smoothness σ �(s) of a signal s. The smoothness is
measured using the Laplacian quadratic form:

σ �(s) = s�L�s =
b∑

i,j=1
M�[i, j](s[i]− s[j])2 (7)

where we note that s is smoother when σ �(s) is smaller.
In this paper we are particularly interested in smooth-

ness of the label signals. We call label signal sc associated
with class c a binary ({0, 1}) vector whose nonzero coordi-
nates are the ones corresponding to input vectors of class c.
In other words, for any i, 1 ≤ i ≤ b:

sc[i] = 1⇔ (xi is in class c). (8)

From equation (7), we can see that the smoothness of label
signal sc is the sum of similarities between examples in dis-
tinct classes (since (s[i]− s[j]) is zero when i and j have the
same label). Thus, a total smoothness of 0 means that all
examples in distinct classes have 0 similarity.

Next we introduce a regularizer that limits howmuch σ �

can vary from one layer to the next, thus leading to a net-
work that is more in line with Property 1. This will be shown
to improve robustness in Section III.

D) Proposed regularizer
1) Definition
We propose to measure the deformation induced by a given
layer � by computing the difference between label signal
smoothness before and after the layer for all labels:

δ�
σ =

∑
c

∣∣σ �(sc)− σ �−1(sc)
∣∣. (9)

These quantities are used to regularize modifications
made by each of the layers during the learning process.
The pseudo-code of Algorithm 1 describes how we use the
proposed regularizer to compute the loss.

Illustrative example:
In Fig. 1 we depicted a toy illustrative example to moti-

vate the proposed regularizer. We consider here a one-
dimensional two-class problem. To linearly separate circles
and crosses, it is necessary to group all circles. Without
regularization the resulting embedding is likely to either
considerably increase the distance between examples in dif-
ferent classes (case (a)), thus producing sharp transitions in
the network function, or to reduce the margin (case (b)). In
contrast, by penalizing large variations of the smoothness of
label signals (case (c)), the average distance between exam-
ples in different classes must be preserved in the embedding
domain, resulting in a more precise control of distances
within the boundary region.

Remark 1. Since we only consider label signals, we solely
depend on the similarities between examples of distinct
classes. As such, the regularizer only focuses on the bound-
ary, and does not vary if the distance between examples of the
same label grows or shrinks.

Remark 2. Compared with [11], there are key differences that
characterize the proposed regularizer:

(i) Only pairwise distances between examples are taken into
account. This has the effect of controlling space deforma-
tions only in the directions of training examples.

(ii) The network is forced to maintain a minimum margin by
keeping the smoothness small at each layer of the architec-
ture, thus controlling both contraction and dilatation of
space at the boundary. This is illustrated in Fig. 1, where
[11] is represented by b) and our method by c).

(iii) The proposed criterion is an average (sum) over all dis-
tances, rather than a stricter criterion (e.g. maintaining a
small Lipschitz constant), which would force each pair of
vectors (xi, xj) to obey the constraint.

In summary, by enforcing small variations of smoothness
across the layers of the network, the proposed regularizer
maintains a large enough r so that equation (3) can hold,
while also controlling dilatation. Combining it with Parse-
val [11] would allow for a better control of the α parameter
in the other directions of the input space.

E) Relations to label signal bandwidth and
powers of the Laplacian
Recent study [17] develops an asymptotic analysis of the
bandwidth of label signals, BW(s), where bandwidth is
defined as the highest non-zero graph frequency of s, i.e.
the nonzero entry of ŝ with the highest index. An estimate
of the bandwidth can be obtained by computing:

BWm(s) =
(
s�Lms
s�s

)(1/m)

(10)

for large m. This can be viewed as a generalization of the
smoothness metric of (7). Anis et al. [17] show that, as the

laplacian networks: bounding indicator function smoothness for neural networks robustness 5

Algorithm 1 Loss function of the regularized network
1: Inputs:
2: x: list of all the representations of the network.
3: ReLUs, the list containing the positions of all the ReLU
activations on f .

4: y, the output of the network
5: s, the label signal of the batch, i.e., the ground truth
labels of the examples of the batch

6: m, the power of the Laplacian for which we wish to
compute the smoothness;

7: γ , the scaling coefficient of the regularizer loss.
8:
9: procedure Loss(x, ReLUs, y, s,m, γ)
10: for � ∈ ReLUs do
11: σ �← Smoothness(x�, s,m)

12: end for
13: 	←

∑
�∈ReLUs δ

�
σ

||ReLUs||−1 (cf. equation (9))
14: return CategoricalCrossEntropy(s, y)+ γ	

15: end procedure
16: procedure Smoothness(x�, s,m)
17: M�← Pairwise similarity of x� (we use cosine sim-

ilarity in our study)
18: D�← Diagonal degree matrix ofM�

19: L�← D� −M�

20: σ �← Trace(sᵀ(L�)ms)
21: return σ �

22: end procedure

number of labeled points x (assumeddrawn fromadistribu-
tion p(x)) grows asymptotically, the bandwidth of the label
signal converges in probability to the supremum of p(x) in
the region of overlap between classes. This motivates our
study in three ways.

First, it provides theoretical justification to use σ �(s) for
regularization, since lower values of σ �(s) are indicative of
better separation between classes. Second, the asymptotic
analysis suggests that using higher powers of the Lapla-
cian would lead to better regularization, since estimating
bandwidth using BWm(s) becomes increasingly accurate
as m increases. Finally, our regularization can be seen to
be protective against specializing by preventing σ �(s) from
decreasing “too fast.” For most problems of interest, given a
sufficiently large amount of labeled data available, it would
be reasonable to expect the bandwidth of s not to be arbi-
trarily small, because the classes cannot be exactly sepa-
rated, and thus a network that reduces the bandwidth too
much could be unreliable (i.e. biased by the training set).
After trying multiple values of m, we found that using
m = 2 usually led to close to the best performance in our
experiments.

I I I . EXPER IMENTS

In the following subsections, we evaluate the proposed
method using various tests. We use the well-known CIFAR-
10 dataset [26] as a first benchmark andwe demonstrate that

Fig. 2. Estimations of αmin(r) obtained for different radii r over training exam-
ples. The proposed regularizer allows for smaller α values when r increases.

our proposed regularizer can improve robustness as defined
in Section II.A.

In summary, in subsection A) we first verify that the
proposed regularizer favors Definition 1. We then show in
subsection B) that by using the proposed regularizer we are
able to increase robustness for random perturbations and
weak adversarial attacks. In subsection C), we challenge our
method on more competitive benchmarks. Finally, in sub-
section D) we extend the analysis to CIFAR-100 [26] and
Imagenet32x32 [27] to validate the generality of themethod.
These experiments demonstrate thatDNNs trainedwith the
proposed regularizer lead to improved robustness.

To measure accuracy, we average over 10 runs each time,
unless mentioned otherwise. In all reports, P stands for Par-
seval [11] trained networks, R for networks trained with the
proposed regularizer, and V for Vanilla (i.e. baseline) net-
works. Note that the network architecture is the same for all
networks and that Vanilla refers to the network architecture
trained without any regularizer. The network architecture is
depicted in Fig. A1. Training hyperparameters and details of
our implementation of the Parseval method can be found
in the Appendix. The corresponding code is available at
https://github.com/cadurosar/laplacian_networks.

A) Robustness of trained architectures
First we verify that the proposed regularizer improves
robustness as defined in Section II.A. For various values of
r, we estimateαmin(r) = argminα { f ∈ Robustα(r)}.We use
1000 training examples and generate 100 uniform noises to
estimate αmin(·). Results are shown in Fig. 2. We observe
that networks trained with the proposed regularizer allow
for smaller α values when the radius r increases. The Parse-
val method achieves better Lipschitz constant than Vanilla,
as suggested by the large values of r. However, we observe
that αmin grows fast when using Parseval, suggesting that
sharp transitions are allowed in the vicinity of trained
examples.

https://github.com/cadurosar/laplacian_networks

6 c. lassance, et al.

Fig. 3. Illustration of the 15 perturbations from [7]. Best viewed in color.

B) Experiments on perturbations and
adversarial attacks
In this subsection we verify the ability of the proposed reg-
ularizer to increase robustness, while retaining acceptable
accuracy on the clean test set, on the CIFAR-10 dataset
without any type of data augmentation.

1) Clean test set
Before checking the robustness of the network, we first test
the performance on clean examples. In the second column
of Table 1, we show the baseline accuracy of the models on
the clean CIFAR-10 test set (no perturbation is added at
this point). These experiments agree with the claim from
[11] where the authors show that they are able to increase
the performance of the network on the clean test set. We
observe that the proposedmethod leads to aminor decrease
of performance on this test. However, we see in the follow-
ing experiments that this is compensated by an increased
robustness to perturbations. The fact that it is difficult to
avoid such a trade-off between robustness and accuracy has
already been discussed in the literature [28].

2) Perturbation robustness
In order to assess the effectiveness of the various methods
when subject to perturbations, we use the benchmark pro-
posed in [7] which consists of 15 different perturbations,
with five levels of severity each (note that they are referred
to as “corruptions” in [7]). Perturbations test the robustness
of the network to noise when compared to its clean test set
performance. We illustrate each perturbation in Fig. 3.

In more detail, we are interested in the mean relative
error inflation (mREI). To define it, consider Eper,sevnet the
error rate of a network net (V,P,R or P+R), under pertur-
bation type per and severity sev. Denote Enet the error rate
of the network net on the clean set. We first define Error
Inflation (EI) as:

EIper,sevnet = Eper,sevnet

Enet
.

Then the REI is defined as:

REIper,sevnet = EIper,sevnet − EIper,sevV .

Ta
bl
e
1.

N
et
w
or
k
m
RE

Iu
nd

er
di
ffe
re
nt

ty
pe
so

fp
er
tu
rb
at
io
ns

N
oi
se

Bl
ur

W
ea
th
er

D
ig
ita
l

N
et
w
or
k

C
le
an

se
t

m
R
EI

G
au
ss
.

Sh
ot

Im
pu

lse
D
ef
oc
us

G
la
ss

M
ot
io
n

Zo
om

Sn
ow

Fr
os
t

Fo
g

Br
ig
ht

C
on

tr
as
t

El
as
tic

Pi
xe
l

JP
EG

Va
ni
lla

(V
)

11
.9


0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

Pa
rs
ev
al
(P
)

10
.3

0.
29

0.
71

0.
48

0.
57

0.
10

1.0
1

0.
15

0.
11

0.
16

0.
17

−0
.0
2

0.
04

0.
13

0.
14

0.
25

0.
28

Re
gu
la
ri
ze
r(
R)

13
.2


−0
.2
9

−1
.12

−0
.8
6

0.
10

−0
.0
3

−0
.6
5

−0
.0
9

−0
.19

−0
.30

−0
.6
1

0.
17

0.
01

0.
40

−0
.15

−0
.50

−0
.50

P+
R

12
.8


−0
.35

−1
.33

−1
.0
0

0.
05

−0
.0
9

−0
.7
5

−0
.18

−0
.31

−0
.4
1

−0
.6
7

0.
13

0.
04

0.
48

−0
.17

−0
.4
7

−0
.53

m
C
D
10
−3

18
16

37
5

24
15

17
15

20
51

14
57

14
6

3

Bo
tto

m
lin

e
re
pr
es
en
ts
th
e
co
rr
es
po

nd
in
g
m
ed
ia
n
C
os
in
e
D
ist
an
ce

(m
C
D
)(
at
th
e
hi
gh
es
tp

er
tu
rb
at
io
n
se
ve
rit
y)

be
tw
ee
n
co
rr
up

te
d
an
d
cl
ea
n
im

ag
es
.

laplacian networks: bounding indicator function smoothness for neural networks robustness 7

Finally, mREI is obtained by averaging over all severities.
The results are described in Table 1 for the CIFAR-10

dataset. The raw error rates under each type of perturba-
tion can be found in theAppendix.We observe that Parseval
alone is not able to help with the mREI, despite reducing
the clean set error. On the other hand, the proposed regu-
larizer and its combination with Parseval training decreases
the clean set accuracy but increases the relative performance
under perturbations by a significant amount.

This experiment supports the fact that the proposed reg-
ularizer can significantly improve robustness to most types
of perturbations introduced in [7]. It is worth pointing out
that this finding does not hold for Impulse Noise, Fog, and
Contrast. Lookingmore into detail, we observe that Impulse
noise shifts some values on the image to either itsmaximum
possible value or the minimum possible value, while Fog
and Contrast perform a re-normalization of the image. In
those cases perturbations have the effect of creating noisy
inputs that are far away (in terms of the cosine distance)
from the original images, as supported by the last line of
the table. This is in contrast to the other types of perturba-
tions in the experiment. Because they can be far away, these
perturbations do not fulfill the definition of equation (2),
where there is a maximum radius r for which robustness is
enforced around the examples. In other words, our robust-
ness definition is focusing on small deviations/distances as
those are more likely to characterize noise (i.e we focus on
distances that are too small to change the class of the image).

3) Adversarial robustness
We next evaluate robustness to adversarial inputs, which are
specifically built to fool the network function. Such adver-
sarial inputs can be generated and evaluated in multiple
ways. Here we implement three approaches: first a mean
case of adversarial noise, where the adversary can only use
one forward and one backward pass to generate the pertur-
bations, second a worst case scenario, where the adversary
can use multiple forward and backward passes to try to find
the smallest perturbation that will fool the network, third
a compromise between the mean case and the worst case,
where the adversary can do a predefined number of forward
and backward passes with a perturbation threshold limit.

For the first approach, we add the scaled gradient sign
(called the fast gradient signal method or FGSM) to the
input [13], so that we obtain a target signal-to-noise ratio
(SNR) of 33. This is in line with previous studies [11].
Obtained results are introduced in the left and center plots
of Fig. 4. In the left plot the noise is added after normalizing
the input, whereas on themiddle plot it is added before nor-
malizing it. As with the perturbation tests, a combination of
the Parseval method and our proposed approach yields the
most robust architecture.

With regard to the second approach, where a worst case
scenario is considered, we use the Foolbox [29] implemen-
tation of DeepFool [14]. Due to time constraints we sample
only 1/10 of the test set images for this test. The conclu-
sions we can draw are similar (right plot of Fig. 4) to those
obtained for the first adversarial attack approach. Finally,

Table 2. Median test set accuracy on the CIFAR-10 dataset against the
PGD attack

Model PGD accuracy ()

V 1.18
P 1.72
R 5.2
P+R 5.6

Table 3. Comparison of CIFAR-10 test set accuracy under the black box
FGSM attack

Source

Target V P R P+R
V X 60.74 61.49 72.51
P 57.82 X 68.21 73.87
R 69.72 74.96 X 73.56
P+R 75.35 76.11 70.22 X

The most robust target for a given source is bolded, while the strongest
source for a target is in italic.

for the third approach we use the PGD (projected gradient
descent) attack introduced in [15]. PGD is an iterative ver-
sion of FGSM, which loops for a maximum number of it
iterations. For each iteration it moves by a distance of step
in the direction of the gradient, provided it does not move
away from the original image by a distance greater than ε.
Our experiments (described in Table 2) show that the
proposed regularizer increases robustness against a PGD
attack, for an epsilon corresponding to an SNR of about 33
(it = 20, step = 0.002, ε = 0.01).

A common pitfall in evaluating robustness to adversarial
attacks comes from the fact the gradient of the architecture
can be masked due to the introduced method. As a con-
sequence, generated attacks become weaker compared to
those on the vanilla architecture. So, to further verify that
the obtained results are not only due to gradient masking,
we perform tests with black box FGSM, where the target
attacked network is not the same as the source of the adver-
sarial noise. This way, all networks are tested against the
same attacks.

For this test we continue to use an SNR of about 33 with
the FGSM method. We choose the network with the best
performance for each of the tested methods. The results
are depicted in Table 3. In our experiments, we found that
the combination of our method with Parseval is the most
robust to noise coming from other sources. This demon-
strates that the improvements are not caused by gradient
masking, but are caused by the increased robustness of the
proposed method and Parseval’s. Interestingly, the noise
created by both Parseval and our method did not challenge
the other methods as well as the one created by Vanilla,
justifying a posteriori the interest of this experiment.

4) Robustness to parameter and activation
noises
In a third series of experiments we aim at evaluating the
robustness of the architecture to noise on parameters and

8 c. lassance, et al.

activations. We consider two types of noises: (i) erasures of
the memory (dropout), and (ii) quantization of the weights
[23].

In the dropout case, we compute the test set accuracy
when the network has a probability of either 25 or 40 of
dropping an intermediate representation value after each
block of computation in the architecture. We average over
a run of 40 experiments. Results are depicted in the left and
center plots of Fig. 5. It is interesting to note that the Parse-
val trained functions seem to collapse as soon as we reach
40 probability of dropout, providing an average accuracy
smaller than the vanilla networks. In contrast, the proposed
method is the most robust to these perturbations.

For the quantization of the weights, we aim at com-
pressing the network size in memory by a factor of 6.
We therefore quantize the weights using 5 bits (instead of
32) and re-evaluate the test set accuracy. The right plot of
Fig. 5 shows that the proposed method is providing a better
robustness to this perturbation than the tested counterparts.

Overall, these experiments confirm previous ones in
the conclusion that the proposed regularizer obtains the
best robustness compared to Parseval and Vanilla networks.
Note that in this case (parameter and activation noise) there
is a drop of performancewhen combining the proposed reg-
ularizer with the Parsevalmethod. Althoughwe do not have
direct theoretical justification for this, the fact that the pro-
posed regularizer and Parseval present conflicting strategies
(smoothness versus contraction) could explain the drop in
accuracy when the two methods are combined.

C) Experiments on challenging benchmarks
In this subsection we verify the ability of the proposed regu-
larizer to increase robustness on the CIFAR-10 dataset while
being combined with recent techniques of adversarial data
augmentation. This is important as those methods are seen
as the state of the art for adversarial robustness. Adversar-
ial data augmentation consists of augmenting the training
set during the training stage by using the same kind of
attacks as those described in the last subsection. We refer to
techniques using adversarial data augmentation using the
letter A.

1) Tests with FGSM adversarial data
augmentation
We first perform experiments with adversarial data aug-
mentation as suggested in [13]. To be more precise we
use the method they advise which is called “step1.1” using
ε = 8/255.

A first test consists of measuring the accuracy when
inputs are modified with additive Gaussian noise with var-
ious SNRs. As expected, we observe in Fig. 6 that train-
ing with adversarial examples helps in this case, as it adds
more variation to the training set. Yet it reduces the accu-
racy on the clean set (left plot). Note that combining our
method with adversarial training results in the best median
accuracy.

Table 4. Test set accuracy results on the CIFAR-10 dataset with PGD
training

Clean () Gaussian () PGD () Dropout ()

A 76.39 71.25 32.78 35.20
A+ R 76.36 72.26 33.72 55.63

About robustness to adversarial attacks, the obtained
results are depicted in Fig. 7. We observe that adding FGSM
adversarial training does not generalize well to other types
of attacks (which is readily seen in the literature [15]). Over-
all, the models using the proposed regularizer are the most
robust again.

Finally, when considering implementation related per-
turbations, the results depicted in Fig. 8 are consistent with
the ones from the previous section, in which is shown that
the proposed regularizer helps improving robustness to this
type of noise.

In summary, even when adding adversarial training, the
proposed regularizer is either themost robust inmedian, or
capable of improving the robustness when combined with
the other methods.

2) Tests with PGD adversarial data
augmentation
Most of our adversarial tests are performed with FGSM
because of its simplicity and speed, even though it has
already been shown (e.g. [15]) that FGSM is weak as an
attack and as a defense mechanism. Despite the fact we
do not only target adversarial defense, we further stress
the ability of the proposed regularizer to improve it and
to combine with other methods. To this end we perform
experiments against the PGD attack.

As the proposed regularizer can be combinedwith FGSM
defense, it is natural to also test it alongside PGD train-
ing. We use the parameters advised in [15]: seven iterations
with step = 2/255, and ε = 8/255. The results depicted in
Table 4 show that using our regularizer increases robust-
ness of networks trained with PGD. Note that Dropout and
Gaussian noise were applied 10 times to each of the net-
works and the results are displayed as the mean test set
accuracy under these perturbations. A rate of 40 was used
for dropout. The PGD attack uses the following parameters:
it = 20, step = 2/255, ε = 8/255.

D) Experiments with other datasets
In this final subsection, we test the generality of the method
using the CIFAR-100 and ImageNet32x32 datasets, with a
subset of the perturbations used for CIFAR-10. Gaussian
noise is applied 10 times to each of the networks for a
total of 30 different runs. An SNR of 33 is used for FGSM
and 15 for Gaussian noise. Images are normalized in the
same way as the experiments with CIFAR-10. Standard data
augmentation is used for CIFAR-100.

Results on CIFAR-100 are shown in Table 5 as the mean
over three different initializations. We observe that as it was

laplacian networks: bounding indicator function smoothness for neural networks robustness 9

Fig. 4. Robustness against an adversary measured by the test set accuracy under FGSM attack in the left and center plots and by the meanL2 pixel distance needed
to fool the network using DeepFool on the right plot.

Fig. 5. CIFAR-10 test set accuracy under different types of implementation related noise.

Fig. 6. Test set accuracy under Gaussian noise with varying SNRs.

Fig. 7. Robustness against an adversary measured by the test set accuracy under FGSM attack in the left and center plots and by the meanL2 pixel distance needed
to fool the network using DeepFool on the right plot.

Fig. 8. Test set accuracy under different types of implementation related noise.

10 c. lassance, et al.

Table 5. Test set accuracy results on the CIFAR-100 dataset

Model Clean set () Gaussian noise () FGSM ()

Vanilla (V) 78.7 12.6 20.5
Parseval (P) 80.1 14.8 22.0
Regularizer (R) 79.4 15.9 23.0
P+R 79.5 19.1 24.4

Table 6. Test set accuracy results on the Imagenet32x32 dataset

Model Clean () Gaussian noise () Dropout ()

Vanilla (V) 52.1 36.8 2.3
Parseval (P) 48.1 34.10 3.71
Regularizer (R) 52.4 37.4 7.0
P+R 43.80 29.87 5.0

the case on CIFAR-10, the proposed method and the com-
bination of the methods is the most robust on these test
cases.

We then use Imagenet32x32, a downscaled version of
Imagenet [30]which can be used as an alternative toCIFAR-
10 while maintaining a similar computational budget [27].
We use the same network and training hyperparameters
of the original paper. Further description can be found in
the Appendix. Gaussian noise and Dropout are applied 40
times to each of the networks. Gaussian noise is appliedwith
SNR = 33 whereas Dropout is applied with 15.

Results are shown inTable 6.Weobserve that as it was the
case on CIFAR-10 and CIFAR-100, the proposed method
provides more robustness in all of these test cases. Note that
we had trouble fine-tuning the β parameter for the Parseval
criterion, explaining the poor performance of Parseval and
its combination with our proposed regularizer.

I V . CONCLUS ION

In this paper we have introduced a definition of robust-
ness alongside an associated regularizer. The former takes
into account both small variations around the training set
examples and the margin. The latter enforces small varia-
tions of the smoothness of label signals on similarity graphs
obtained at intermediate layers of a DL network architec-
ture. We have empirically shown with our tests that the
proposed regularizer can lead to improved robustness in
various conditions compared to existing counterparts. We
also demonstrated that combining the proposed regularizer
with existing methods can result in even better robustness
for some conditions.

Future study includes a more systematic study of the
effectiveness of the method with regards to other datasets,
models, and perturbations. Recent studies have shown that
adversarial noise is partially transferable between models
and dataset [31, 32] and therefore we are confident about the
generality of the method in terms of models and datasets.

F INANC IAL SUPPORT

This study was funded in part with the support of Région
Bretagne and computations were performed with the use of
Nvidia GPUs, courtesy of Nvidia.

CONFL ICT OF INTEREST

None.

REFERENCES

1 He, K.; Zhang, X.; Ren, S.; Sun, J.: Identity mappings in deep resid-
ual networks, in European Conference on Computer Vision, Springer,
2016, 630–645.

2 Wu, Y.; Schuster, M.; Chen, Z.; Le, Q.V.; Norouzi, M.; Macherey, W.;
Krikun, M.; Cao, Y.; Gao, Q.; K. Macherey, et al.: Google’s neural
machine translation system: Bridging the gap between human and
machine translation. arXiv preprint arXiv:1609.08144, 2016.

3 LeCun, Y.; Bengio, Y.; Hinton, G.: Deep learning. Nature, 521 (7553)
(2015), 436.

4 Szegedy, C. et al..: Intriguing properties of neural networks. arXiv
preprint arXiv:1312.6199, 2013.

5 Goodfellow, I.J.; Shlens, J.; Szegedy, C.: Explaining and harnessing
adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

6 Gilmer, J.; Adams, R.P.; Goodfellow, I.; Andersen, D.; Dahl, G.E.:
Motivating the rules of the game for adversarial example research.
arXiv preprint arXiv:1807.06732, 2018.

7 Hendrycks, D.; Dietterich, T.: Benchmarking neural network robust-
ness to common corruptions and perturbations. Proceedings of the
International Conference on Learning Representations, 2019.

8 Papernot, N.; McDaniel, P.D.: Deep k-nearest neighbors: Towards
confident, interpretable and robust deep learning. CoRR, vol.
abs/1803.04765, 2018.

9 Gu, S.; Rigazio, L.: Towards deep neural network architectures robust
to adversarial examples. arXiv preprint arXiv:1412.5068, 2014.

10 Mallat, S.: Understanding deep convolutional networks. Phil. Trans.
R. Soc. A, 374 (2065) (2016), 20150203.

11 Cisse, M.; Bojanowski, P.; Grave, E.; Dauphin, Y.; Usunier, N.:
Parseval networks: improving robustness to adversarial exam-
ples, in International Conference on Machine Learning, 2017,
854–863.

12 Pezeshki, M.; Fan, L.; Brakel, P.; Courville, A.; Bengio, Y.: Decon-
structing the ladder network architecture, in International Conference
on Machine Learning, 2016, 2368–2376.

13 Kurakin, A.; Goodfellow, I.; Bengio, S.: Adversarial machine learning
at scale. arXiv preprint arXiv:1611.01236, 2016.

14 Moosavi Dezfooli, S.M.; Fawzi, A.; Frossard, P.: Deepfool: a simple
and accurate method to fool deep neural networks, in Proceedings of
2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

15 Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; Vladu, A.: Towards
deep learning models resistant to adversarial attacks, in International
Conference on Learning Representations, 2018.

16 Gripon, V.; Ortega, A.; Girault, B.: An inside look at deep neural net-
works using graph signal processing, in Proceedings of ITA, February
2018.

17 Anis, A.; ElGamal, A.; Avestimehr, S.; Ortega, A.: A sampling
theory perspective of graph-based semi-supervised learning. IEEE

laplacian networks: bounding indicator function smoothness for neural networks robustness 11

Transactions on Information Theory, 65 (4) (2019), 2322–2342.
doi:10.1109/TIT.2018.2879897.

18 Lassance, C.; Gripon, V.; Tang, J.; Ortega, A.: Structural robustness
for deep learning architectures, in 2019 IEEE Data Science Workshop
(DSW), June 2019, 125–129.

19 Lassance, C.E.R.K.; Gripon, V.; Ortega, A.: Laplacian power net-
works: Bounding indicator function smoothness for adversarial
defense’. CoRR, vol. abs/1805.10133, 2018.

20 Anirudh, R.; Thiagarajan, J.J.; Sridhar, R.; Bremer, T.: Influential sam-
ple selection: A graph signal processing approach’. arXiv preprint
arXiv:1711.05407, 2017.

21 Svoboda, J.;Masci, J.;Monti, F.; Bronstein,M.M.; Guibas, L.: Peernets:
Exploiting peer wisdom against adversarial attacks’. arXiv preprint
arXiv:1806.00088, 2018.

22 Bronstein, M.M.; Bruna, J.; LeCun, Y.; Szlam, A.; Vandergheynst, P.:
Geometric deep learning going beyond Euclidean data. IEEE Signal
Process. Mag., 34 (4) (2017), 18–42.

23 Hubara, I.; Courbariaux, M.; Soudry, D.; El-Yaniv, R.; Bengio, Y.:
Quantized neural networks Training neural networks with low pre-
cision weights and activations. J. Mach. Learn. Res., 18 (2017),
187–1.

24 Goodfellow, I.; Bengio, Y.; Courville, A.: Deep learning, 1, MIT Press,
Massachusetts, USA, 2017.

25 Shuman, D.I.; Narang, S.K.; Frossard, P.; Ortega, A.; Vandergheynst,
P.: The emerging field of signal processing on graphs. Extending high-
dimensional data analysis to networks and other irregular domains.
IEEE Signal Process. Mag., 30 (3) (2013), 83–98.

26 Krizhevsky, A.; Hinton, G.: Learning multiple layers of fea-
tures from tiny images. https://www.cs.toronto.edu/kriz/learning-
features-2009-TR.pdf, 2009.

27 Chrabaszcz, P.; Loshchilov, I.; Hutter, F.: A downsampled variant
of imagenet as an alternative to the CIFAR datasets. arXiv preprint
arXiv:1707.08819, 2017.

28 Fawzi, A.; Fawzi, O.; Frossard, P.: Analysis of classifiers’ robust-
ness to adversarial perturbations. Mach. Learn., 107 (3) (2018),
481–508.

29 Rauber, J.; Brendel, W.; Bethge, M.: Foolbox: a python toolbox
to benchmark the robustness of machine learning models. arXiv
preprint arXiv:1707.04131, 2017.

30 Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L.: ImageNet:
a Large-Scale Hierarchical Image Database, in CVPR09, 2009.

31 Moosavi-Dezfooli, S.-M.; Fawzi, A.; Fawzi, O.; Frossard, P.: Universal
adversarial perturbations. arXiv preprint, 2017.

32 Papernot, N.;McDaniel, P.; Goodfellow, I.: Transferability inmachine
learning: from phenomena to black-box attacks using adversarial
samples. arXiv preprint arXiv:1605.07277, 2016.

33 Kovačević, J.; Chebira, A.: An introduction to frames. Found. Trends
Signal Process., 2 (1) (2008), 1–94.

34 Zagoruyko, S.; Komodakis, N.: Wide residual networks. arXiv
preprint arXiv:1605.07146, 2016.

APPENDIX

PARSEVAL TRA IN ING

We compare our results with those obtained using the method
described in [11]. There are three modifications to the normal
training procedure: orthogonality constraint, convolutional
renormalization, and convexity constraint.

For the orthogonality constraint we enforce Parseval tight-
ness [33] as a layer-wise regularizer:

Rβ(W�) = β

2
‖W��W� − I‖22, (A.1)

whereW� is the weight tensor at layer �. This function can be
approximately optimized with gradient descent by doing the
operation:

W� ← (1+ β)W� − βW�W��W�. (A.2)

Given that our network is smaller we can apply the optimiza-
tion to the entirety of theW, instead of 30 as per the original
paper, this increases the strength of the Parseval tightness.

For the convolutional renormalization, each matrix W� is
reparameterized before being applied to the convolution as
W�/
√
2klkw + 1, where kw is the kernel width and kh is the

kernel height.
For our architecture the inputs from a layer come from

either one or two different layers. In the case where the inputs
come fromonly one layer,α the convexity constraint parameter
is set to 1.When the inputs come from the sum of two layers we
useα = 0.5 as the value for both of them,which constraints our
Lipschitz constant, this is softer than the convexity constraint
from the original paper.

HYPERPARAMETERS

We train our networks using classical stochastic gradient
descent with momentum (0.9), with batch size of b = 100
images and using a L2-norm weight decay with a coefficient
of λ = 0.0005.

We use the mean of the difference of smoothness between
successive layers in our loss function. Therefore in our loss
function we have:

L = CE+ λWD+ γ	 (A.3)

where 	 = (1/(d − 1))
∑d

�=1 |δ�
σ |, CE is the cross entropy

function and WD is weight decay.

CIFAR-10
For the CIFAR-10 dataset we do a 100 epoch training. Our
learning rate starts at 0.1. After half of the training (50 epochs)
the learning rate decreases to 0.001. We do not add data aug-
mentation, as it can interfere with some of the perturbations
(elastic transformations for example).

We tested multiple parameters of β , the Parseval tight-
ness parameter, γ the weight for the smoothness difference
cost, and m the power of the Laplacian. We found that the
best values for this specific architecture, dataset, and training
scheme were: β = 0.01, γ = 0.0001,m = 2. The PreActRes-
Net18 network depicted in Fig. A1 is used in all experiments
for CIFAR-10.

CIFAR-100
We perform experiments using the WideResNet28-10 [34]
architecture, and we added standard data augmentation (ran-
dom crops and random horizontal flipping) and dropout with
probability of 30 after the first convolution of each residual

https://www.cs.toronto.edu/kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/kriz/learning-features-2009-TR.pdf

12 c. lassance, et al.

Fig. A1. Depiction of the studied network.

block. We train for 200 epochs, starting with a learning rate of
0.1 and divide the learning rate by 5 in epochs 60, 120, and 160.
Momentum of 0.9 is used and weight decay of 5× 10−4.

We tested multiple parameters of β , the Parseval tight-
ness parameter, γ the weight for the smoothness difference
cost, and m the power of the Laplacian. We found that the
best values for this specific architecture, dataset and training
scheme were: β = 0.0003, γ = 0.01,m = 2. FGSM is applied
after normalization of the input.

IMAGENET32x32
Weperformexperiments using theWideResNet28-5 [34] archi-
tecture, and we added standard data augmentation (random
crops and random horizontal flipping). We follow the train-
ing procedure from [27], where training is done for 30 epochs,
starting with a learning rate of 0.1 and divide the learning rate
by 5 in epochs 10 and 20. Momentum of 0.9 is used and weight
decay of 5× 10−4.

We tested multiple parameters of β , the Parseval tightness
parameter, γ theweight for the smoothness difference cost, and
m the power of the Laplacian. We found that the best values
for this specific architecture, dataset and training scheme were:
β = 10−6, γ = 0.01,m = 2.

DEP ICT ION OF THENETWORK

Figure A1 depicts the network we call PreActResNet18, f =
64 is the filter size of the first layer of the network. Conv
layers are 3× 3 layers and are always preceded by batch
normalization and ReLU (except for the first layer which
receives just the input). The smoothness is calculated after each
ReLU.

PERTURBAT IONROBUSTNESS

Table A1 contains the mean test error under each type of
perturbation.

Ta
bl
e
A
1.

N
et
w
or
ks

er
ro
ru

nd
er

di
ffe
re
nt

ty
pe
so

fp
er
tu
rb
at
io
ns

N
oi
se

Bl
ur

W
ea
th
er

D
ig
ita
l

N
et
w
or
k

Er
ro
r

M
ea
n

Er
ro
r

G
au
ss
.

Sh
ot

Im
pu

lse
D
ef
oc
us

G
la
ss

M
ot
io
n

Zo
om

Sn
ow

Fr
os
t

Fo
g

Br
ig
ht

C
on

tr
as
t

El
as
tic

Pi
xe
l

JP
EG

V
11
.9


32
48

39
41

24
56

30
30

29
32

20
13

31
25

31
25

P
10
.3

31
50

40
42

22
59

28
27

27
30

17
12

30
23

30
24

R
13
.2


31
39

32
47

26
54

32
31

28
26

25
15

41
25

26
21

P+
R

12
.8


29
35

29
45

24
51

30
28

25
25

23
15

41
24

26
20

laplacian networks: bounding indicator function smoothness for neural networks robustness 13

Table A2. Comparison of the total time that it takes to train each
method

Network
Time per
epoch (s)

Time to train
the network

(min)
Normalized

time per epoch

V 47.4 79 1.00
P 55.3 92 1.17
R 81 135 1.71
A 95 158 2.00
PGD 369 615 7.78

T IME REQU IRED TO TRA IN THE
NETWORKS

The proposed regularizer requires the computation of a simi-
larity matrix and therefore increases the overall training time.
The same happens for the other methods that we compare to
in this study (Parseval, FGSM, and PGD trainings).

To better understand the impact of each consideredmethod
on the training time, we report in Table A2 the training times.
We note that the proposed regularizer has a greater compu-
tation cost than the Parseval method, but it is significantly
faster than the adversarial trainingmethods.Overall, the added
training time of the proposed regularizer remains very limited.

Carlos Lassance received an engineering double-degree from
PUC-Rio and IMTAtlantique in 2017, and he received his Ph.D.
degree inmachine learning and graphs from IMTAtlantique in
2020. He was recently an intern at Mila (2018–19) and started
reviewing for IEEE journals. His main research interests are
GSP and deep neural networks.

Vincent Gripon is a permanent researcher with IMT Atlan-
tique, a French top technical university. He obtained his M.S.
from École Normale Supérieure Paris-Saclay in 2008 and his
Ph.D. from IMT Atlantique in 2011. He spent 1 year as a visit-
ing scientist at McGill University between 2011 and 2012 and 1
year as an invited Professor atMila andUniversité deMontréal.
His research mainly focuses on efficient implementation of
artificial neural networks, graph signal processing, deep learn-
ing robustness and associative memories. He has co-authored
more than 70 papers in these domains in prestigious venues.

Antonio Ortega received his undergraduate and doctoral
degrees from the Universidad Politécnica de Madrid, Madrid,
Spain and Columbia University, New York, NY, respectively.
In 1994 he joined the Electrical and Computer Engineering
department at the University of Southern California (USC),
where he is currently a Professor and has served as Associate
Chair. He is a Fellow of the IEEE and EURASIP, and a mem-
ber of ACMandAPSIPA.Hewas the inaugural Editor-in-Chief
(EiC) of the APSIPA Transactions is the EiC of the IEEE Trans-
actions of Signal and Information Processing over Networks.
He recently served as a member of the Board of Governors
of the IEEE Signal Processing Society. He has received several
paper awards, including the 2016 Signal Processing Magazine
award. His recent research work is focusing on graph signal
processing, machine learning, multimedia compression, and
wireless sensor networks. Over 40 Ph.D. students have com-
pleted their thesis under his supervision and his work has
led to over 400 publications in international conferences and
journals, as well as several patents.

	I. INTRODUCTION
	II. METHODOLOGY
	A) Robustness definition
	B) Intermediate representation graphs
	C) Smoothness of label signals
	D) Proposed regularizer
	1) Definition

	E) Relations to label signal bandwidth and powers of the Laplacian

	III. EXPERIMENTS
	A) Robustness of trained architectures
	B) Experiments on perturbations and adversarial attacks
	1) Clean test set
	2) Perturbation robustness
	3) Adversarial robustness
	4) Robustness to parameter and activation noises

	C) Experiments on challenging benchmarks
	1) Tests with FGSM adversarial data augmentation
	2) Tests with PGD adversarial data augmentation

	D) Experiments with other datasets

	IV. CONCLUSION

