
SIP (2021), vol. 10, e4, page 1 of 15 © The Author(s), 2021. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution,
and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for
commercial re-use or in order to create a derivative work.
doi:10.1017/ATSIP.2021.3

industrial technology advances

Demystifying data and AI for manufacturing:
case studies from a major computer maker
yi-chun chen,1 bo-huei he,2 shih-sung lin,2 jonathan hans soeseno,1
daniel stanley tan,1 trista pei-chun chen1 and wei-chao chen1,2

In this article, we discuss the backgrounds and technical details about several smart manufacturing projects in a tier-one elec-
tronics manufacturing facility. We devise a process to manage logistic forecast and inventory preparation for electronic parts
using historical data and a recurrent neural network to achieve significant improvement over current methods. We present a
system for automatically qualifying laptop software for mass production through computer vision and automation technology.
The result is a reliable system that can save hundreds ofman-years in the qualification process. Finally, we create a deep learning-
based algorithm for visual inspection of product appearances, which requires significantly less defect training data compared to
traditional approaches. For production needs, we design an automatic optical inspection machine suitable for our algorithm
and process. We also discuss the issues for data collection and enabling smart manufacturing projects in a factory setting, where
the projects operate on a delicate balance between process innovations and cost-saving measures.

Keywords: Smart manufacturing, Order forecast, Functional testing, Defect detection

Received 26 March 2020; Revised 20 January 2021

I . I NTRODUCT ION

We are on the cusp of the rapid transformation from
automation to intelligence in manufacturing, with the help
of the industrial Internet-of-Things to create digital twins
of the factories and manage digital data flow, and the use
of Artificial Intelligence (AI) technology to reason the data.
Recent surveys amongst companies in the field indicate an
overwhelming belief that AI-related technologies will make
a practical and visible impact, withmanufacturing projected
to be leading other industries in terms of AI market size [1].
While the volume of data created annually in manufactur-
ing is leading other industries such as government, media,
banking, retail, and healthcare, the data can be fragmented
and difficult to acquire for external parties to process and
analyze, owing to the nature of the industry. That is one of
the reasons why it remains a challenging, lengthy, and mys-
terious process for external parties or technology providers
when it comes to enabling AI within manufacturing facili-
ties. In this article, we focus on several case studies related to
our efforts in enabling AI and computer vision technology
in a tier-one electronics maker, Inventec Inc. In this pro-
cess, we hope to bring some light to the intricacies related

1AI Center, Inventec Corp., Taipei, Taiwan
2Skywatch Innovation Inc., Taipei, Taiwan

Corresponding author:
W.-C. Chen
Email: chen.wei-chao@inventec.com

to acquiring relevant data, defining valuable problems, and
enabling smart manufacturing projects.

Inventec Inc. [2], founded in 1975 with headquarter
located in Taipei, Taiwan, is a tier 1 original design electron-
ics manufacturer, with annual revenue exceeding USD$16
billion in 2019. In addition to the facilities in Taiwan,
Inventec operates production campuses around the world,
including Shanghai, Nanjing, Chongqing (China), Brno
(Czech Republic), and Juarez (Mexico), with regional office
presence in Bay Area (California), Austin (Texas), and
Tokyo (Japan). The company develops various kinds of
products with its customers, ranging from personal com-
puters, laptops, data center servers, mobile phones, smart
devices, and medical devices. In Taiwan, it leads all other
companies and research universities in terms of the num-
ber of global AI-related patents and intellectual properties
as of 2018, as surveyed by the government-funded Industrial
Technology Research Institute (ITRI) [3].

On average, Inventec produces over 20 million laptops,
4 million servers, and 75 million smart devices annually.
Naturally, at this scale, it is imperative to have a sufficient
level of automation to ensure quality consistency and cost
efficiency to lower labor-related risks, including cost, avail-
ability, and, more recently, public health due to the COVID-
19 global pandemic. The company has been very successful
in this regard, by continuously optimizing the workflow
and build process of the products. For example, the direct
labor cost required to assemble a laptop has been reduced
by more than half between 2017 and 2019 through careful

1

http://creativecommons.org/licenses/by-nc-nd/4.0/
https:{/}{/}orcid.org{/}0000-0003-4036-4645
https:{/}{/}orcid.org{/}0000-0002-6165-7706
mailto:chen.wei-chao@inventec.com

2 yi-chun chen et al.

optimization of the production line. However, parts of the
production process still require human judgment during
planning and manufacturing, and this remains the high-
est production risk according to internal surveys amongst
our production engineers and managers. Because identify-
ing and solving these problems are beyond the means of
traditional manufacturing automation vendors, it becomes
our mission at the Inventec AI Center is to discover, define,
and develop solutions to these problems. In the remainder
of the article, we shall discuss several critical problems that
we helped solve in a laptopmanufacturing facility, including

• A logistic management process for forecasting parts
needed for manufacturing the products,

• A system for automatically qualifying products for mass
production, and

• A methodology for creating visual inspection AI models
with a small amount of defect data.

Before we dive into details for each project, we shall
beginwith some additional backgrounds on how to identify,
enable projects with proofs-of-concept (POCs), and acquir-
ing the necessary resources to bring them to production.

I I . ENABL ING SMART
MANUFACTUR ING PROJECTS

An adequately managed manufacturing facility is cost-
conscious, whichmeans that, inmany cases, an outside pro-
cess innovation teammay have difficulty accessing the facil-
ities for experiments if these experiments cause potential
production disruptions. Even as an inside team with bless-
ings from themanagement, it remains crucial to ensure that
any potential process improvements minimize the impact
on the production lines while generating sufficient and
measurable impact.

Tomaximize impact and to ensure we are working on the
right problem, it would be necessary to view the manufac-
turing process holistically and define high-level goals before
diving into individual projects. A successful smart manu-
facturing project would require a clear problem definition,
with clean and unambiguous data blessed by the domain
experts. Once a project becomes technically feasible, it
can only enter production when it meets key return-on-
investment (ROI) requirements. We discuss these issues in
more detail in the following sections.

A) Problem Definition
A problem is defined correctly when multiple parties,
including the factory floor managers, information technol-
ogy officers, algorithm developers, mechanical engineers,
and managers, come to terms with the goals and impact of
the project. Bringing all parties to an agreement can be dif-
ficult, as the scope can be ambiguous, and the expectations
toward AI technology can often be overly broad. Further-
more, the ownership of the project can be tricky to define,
as it implies budgeting and personnel commitment, both

Fig. 1. Our roles within the company. Manufacturing data tend to scatter
throughout various IT systems, and part of our mission is to normalize the data
by enabling AI projects with apparent impacts for the business units. The arrow
indicates data flow.

of which can be difficult for cost-conscious manufacturing
facilities to commit to before demonstrating clear benefits
to the process.

As a result, we find that production-ready projects tend
to be the ones with early commitments from the facili-
ties, with tangible benefits (e.g. man-year saved) and pre-
cise requirements (e.g. process automation). These projects
often come from middle-level management who have def-
inite problems to solve but lack the technology or initial
budget blessing to get the projects started. Furthermore, the
case studies in this article focus on the projects that are dif-
ficult to implement using traditional, non-NN approaches,
and therefore a direct comparison with traditional meth-
ods would not be feasible. Part of the reason is that existing
automation and processes may have residual accounting
values and tend to become lower priority items in the
upgrade queue, unless if the new AI-based solution can
significantly disrupt the existing solution.

Once we identify the problems with written specifica-
tions, it is also essential to form a cross-department task
force to ensure that individual department KPIs do not
conflict with the project goals. Most facilities have clearly
defined goals (e.g. the pace of production, utility rate, labor
usage), and almost any process improvement would cause
temporary disruptions to these goals. Therefore, it is vital
to include project goals into facility KPIs so that each party
can communicate short-term negative impacts to the upper
management.

B) Data in Manufacturing
Many modern AI algorithms require usable data for train-
ing purposes. Many companies nowadays have centralized
Enterprise Resource Planning (ERP) systems. Therefore,
financially related data are often not difficult to acquire
from the ERP, and the size of the data is manageable for
remote transport purposes. Two other types of data are,
however, often siloed and challenging to acquire. These
includemachine state data from the factory floor and image
data from individual inspection sites. Figure 1 refers to a
high-level process where we enable the acquisition of these
additional data through projects.

demystifying data and ai for manufacturing 3

Machine state data, if available, would be stored in a
Production Management System (PMS), and a virtual net-
work often needs to be set up for remote access purposes.
Somemachine state data, such as the temperature of a reflow
machine, may only be visible from a panel on the machine
and have not been digitized for network access because of
budgeting concerns. In our experiences, we often need to
bring in external budgets to install sensors during the POC
stage of the project. These extra data can then enable more
projects down the road.

Image data, on the other hand, are often too large and not
stored in any centralized system. Network and storage con-
straints on factory floors also mean that the images would
not be stored unless we can justify the cost of handling
these data. We also need an efficient production line label-
ingmechanism to increase the data valuewithout increasing
the workload for the workers. Finally, with the rapid pace
of new product introduction, year-old image data may very
well represent products that are no longer in production,
adding doubts to whether it warrants the effort to store and
label them.

Finally, the interpretation can be elusive for users or
those who maintain the data. For example, which day
defines the first day of the week, or whether an image repre-
sents a class A or class C product. Therefore, in addition to
raw data and their labels, we need to bring domain experts
to interpret the data, whose limited availability means they
are more suited for designing the labeling policy or inter-
preting high-level results of the labels afterward.

C) Full Scale Production
Once a project is proven to be feasible and can generate
sufficient impact, it can exit the POC stage and enter pro-
duction. While the measurement of impact is subject to the
interpretation of each facility, the general guideline is the
investment need to justify a return of investment between
1 and 3 years. Indirect or qualitative impacts, such as cus-
tomer satisfaction or an increase in sales, are often not
included in the impact measurement.

A production system differs from a POC system in that
the build for any machine involved need to withstand long-
term usage with better cost and energy efficiency for large-
scale deployment. As anAI research and development team,
our focus is to ensure that the system can account for
any updates to the data corpus, or data bias introduced by
machine variance. With a continuous acquire-label-train-
deploy cycle, we need to employ standard software engi-
neering practices such as code review, continuous integra-
tion, and regression tests to ensure we meet the functional
and performance parameters for the facilities. The tests are
particularly important because deep neural network mod-
els can be sensitive to data noises and inadvertently subject
to model security issues [4–6].

Finally, a production system should take into account any
changes to the existing workflow. In addition to the physi-
cal aspects, such as the rearrangements of work stations or

production pipelines, a more subtle aspect involves work-
ing with the displaced personnel during the introduction of
new technology. AI-assisted process automation often leads
to a better work environment for the workers, who often
welcome the change to the existing process. On the other
hand, for projects involving cognitive insight [7], the dis-
placement of decision-making employeesmay create ripples
in the management structure, and a proper alignment is
imperative to reduce the friction during production.

I I I . LOG IST IC MANAGEMENT

Accurately forecasting customer demands is a non-trivial
problem. On the one hand, the inability to fulfill customer
demands due to the under-supply of parts can cause prob-
lems that cascade through the supply chain management
system. On the other hand, over-supply means the com-
pany needs to spend more on storing and managing the
inventory, increase unnecessary financial and management
risks. The ability to predict orders can reduce the mate-
rial inventory cost and significantly improve the company’s
profit.

To tackle the challenges for order prediction, we use a
forecasting model driven by data from a centralized ERP
system. We discuss the background for time-series fore-
casting in Section III.A), the training process in Section
III.B), the methodology for keeping the model up to date
in Section III.C), and finally the application of our forecast
results in Section III.D).

A) Time-Series Forecasting
Predicting future sales and demands falls into the long-
standing problem of time-series forecasting, where infor-
mation regarding the past and present sales could predict
the future. Traditional approaches revolved in constructing
statistical features to regress the future [8, 9]. Box and Jenk-
ins [10] proposed ARMA, where they decomposed a time-
series problem into AR (Auto-Regressive) andMA (Moving
Average). ARIMA improves ARMA by adding the ”I” (Inte-
grated) component [11] and is the classic machine learning
algorithm for univariate time-series data [12–14]. Despite
its accuracy, traditional machine learning algorithms scale
poorly with data complexity.

Because a manufacturing company has to deal with a
large data volume related to raw materials and finished
goods, we want our data-driven learning-based algorithm
to scale with the size of the data while retaining the tempo-
ral information. Neural networks thrive with large datasets
as it iteratively modifies its parameters through error gradi-
ents back-propagation. However, a standard feed-forward
neural network has no way to propagate the information
through time. Recurrent Neural Network (RNN) [15], on
the other hand, incorporates a memory module basing the
future predictions on the sequence of the input data, and
is, therefore, suitable for preserving temporal information.

4 yi-chun chen et al.

Fig. 2. The data-driven forecasting model uses both the historical sales data
and the forecasts from customers as input for each time step.

However, without any mechanism to alter the stored tem-
poral information, RNNs need to keep useful information
across the sequence. That is why vanilla RNNs scales poorly
given long sequences of data commonly seen in logistic
management. Two well-known problems with RNNs are
exploding and vanishing gradients [16]. In either of the
problems, the backward gradient accumulates toward infin-
ity or zero when the sequence length gets longer. Long-
Short Term Memory (LSTM) [17] (Figure 2) introduces,
updates, and forgets the mechanism that mitigates the issue
in learning dependencies over long sequences.

B) Learning with Forecast Data
We choose LSTM for its ability to update and for-
get unwanted sequence information. As a data-driven
approach, LSTM benefits from a large amount of data,
exactly what the centralized ERP system can provide. To
train the forecasting model, we use historical sales data
in conjunction with forecasts from customers. When cus-
tomers provide forecasts that overestimate the sales order
amount, it can lead to high inventory costs. We find that
customers can include non-market factors such as monthly
sales targets or goals from promotional events. For that rea-
son, we treat customer forecast as a hint to sales confidence,
and it then becomes straightforward for us to integrate both
historical sales data (hst) and forecasts from customers (cft)
as an input tensor, denoted by xt = (hst ⊕ cft), where ⊕
represents the element-wise concatenate operation and t
represents the time. The prediction ŷt is then

ht = LSTM(xt , ht−1),

ŷt = θ(ht).

Fig. 3. Our system automatically update the data-driven forecasting model
parameters through a RESTful API.

Here, θ represents fully connected layers that take in the
activation of a LSTM network, and ht−1 denotes the tempo-
ral state from the previous time-step. During training, we
use Adam optimizer to train θ by minimizing:

L = 1
T

T∑

t=1

(yt − ŷt)2.

In theory, it is possible to train a single forecastingmodel
for all stock commodities. However, in practice, we found
that training a single model that generalizes to multiple
commodities with various sales patterns requires a substan-
tial number of parameters and extensive effort. To make
the training process tractable, we train commodity-specific
forecasting models, and can successfully apply this data-
driven approach to predict foreseeable customer demand.

C) Periodic Model Updates
Because of the periodic update nature of sales forecasts, we
also update the model every time new sales data and fore-
casts are available. Because training a data-driven forecast-
ing model requires a substantial computational resource,
it is impractical to train the models in traditional ERP
machine clusters without GPU. The problem then shifts to
transferring sensitive data to another machine with more
computational resources.

To create a secure connection between the ERP system
and the training servers with GPUs, we set up an internal
server that has access to the ERP system and a RESTful API
(Figure 3). The API acts as a gatekeeper that moderates the
data access to the ERP system – for example, retrieving data
to train the forecasting model or displaying the latest sales
order prediction.

Every model update begins with the internal server
querying data from the ERP system. The internal server
then proceeds by sending the data to the GPU-accelerated
machine through theAPI.Once the training process is com-
plete, the GPU server sends new model parameters to the
internal server. Finally, the internal server inferences the
models and directly stores the predictions into the ERP sys-
tem. For a better machine-to-machine translation, the pre-
dictions are in the form of CSV (Comma Separated Values)
and JSON (JavaScript Object Notation).

demystifying data and ai for manufacturing 5

Fig. 4. Error comparison between our data-driven forecast model, customer’s
forecast, and ARIMA.

D) Application Results
The customers may have adjusted the forecasts using their
models before providing them to our manufacturing facil-
ities with social listening, customer relationship manage-
ment database, or historical order data for various manu-
facturing facilities. Therefore, it has been traditionally chal-
lenging to improve over the provided forecast as these data
are not accessible by our factories. We have nonetheless
achieved comparably higher accuracy with the data-driven
forecasting model described in this section.

Figure 4 compares our approach to the customer’s fore-
cast and a classical forecasting algorithm, ARIMA. As
expected, when we train the model once and never per-
form any update, it fails to capture sudden changes in sales
patterns, which eventually leads to a higher error than the
baselines provided by the customers. Using only the histor-
ical sales data, ARIMA provides a slight average improve-
ment over the customer’s forecast. In contrast, our approach
uses both the customer’s forecast and the historical sales
data to make the sales prediction. With frequent model
updates, our data-driven approach achieves the best pre-
diction, reducing the forecast error by roughly 20 and
making it a viable reference for logistic planning purposes.
Regardless of the accuracy, the sales order prediction still
needs corrections. In practice, because many physical and
unrecorded factors change dynamically, our models’ pre-
diction results are monitored and revised by experienced
logistic planning personnel.

For the future, we would like to investigate ways to tackle
the forecast of new commodities that have a smaller number
of historical sales data compared to older commodities, such
as using data from products with similar sales patterns [18].
Another exciting direction is to forecast the raw materials
by using hierarchical constraints [19], where many finished
goods may use the same raw materials.

I V . FUNCT IONAL VER I F ICAT ION

There are three primary stages for the manufacturing of
laptops, namely the production of circuit boards, machine
assembly, and testing. Figure 5 shows several pictures of

the assembly process. In a conventional production line, a
worker performs relatively small taskswithin short amounts
of time for higher production throughput. In an assembly
cell, a worker would instead be responsible for the entire
assembly task, making this setup more suitable for produc-
ing a wider variety of lower volume products. Both types
of assembly require the installation of the system software,
followed by a run-in period of several hours to ensure com-
pliance with the specifications provided by the customer. At
any given moment, different types of products can occupy
different parts of the assembly line based on the work order
assignments.

While the automatic run-in period can resolve individual
production issues, the process of verifying the correctness
for each type of machine image remains a labor-intensive
task marred with complicated processes that are prone to
error. For example, a verification engineer may need to
check the consistency of the version of the BIOS, which
requires rebooting themachine several times. Eachmachine
image takes more than 2 weeks to verify before it becomes
ready for run-in deployment, and the confidence level for
this highly manual process remains relatively low amongst
the management team. For the specific facility we work
with, there are over 200 verification engineers dedicated to
the task ofmachine image verification alone, and clearly, the
process can draw benefit from automation and computer
vision technology.

A) The Testing Robot
To reduce the labor cost and boost confidence, the quality
assurance team opts to replace humans with testing robots.
To simplify the problem, we build a robotic keyboard with
a configurable array of pneumatic actuators and attach it to
the laptop.Weuse standard industryAOI cameras to receive
visual feedback from the laptop screens, and control the cur-
sor via theUSB interface from a PCWorkstation, which acts
as a testing server. Figure 6 shows the overview of the sys-
tem, and Figure 7 shows the physical implementation of our
testing robot.

For the testing robot to function correctly, it needs to be
able to recognize the contents on the screen and perform
actions according to the test scripts. For this purpose, we
built a computer vision library with the following function-
alities using a combination of open-source [20, 21] as well
as routines developed in-house.

• Screen Calibration. Because we have calibrated the intrin-
sic parameters for the camera, we only need to find
the edges and corners of the laptop screen in order to
acquire the extrinsic transform between the camera and
the screen. In practice, this requires the use of edge detec-
tion routines followed by a 2D homography transforma-
tion. The calibration process is performed once per test
laptop and does not occur very frequently.

• GUI Localization. Often, a test script involves clicking an
icon from the desktop, navigating the GUI, and typing
correct keystrokes from the terminal. Because the robots

6 yi-chun chen et al.

Fig. 5. A laptop system assembly facility. Top: an assembly line for higher production rate. Bottom: an assembly cell for lower yield but higher product variety.

operate without controlled lighting, the color profile and
brightness on the screens may vary. Therefore, we adopt
a denoising routine to clean up the input camera image,
followed by a multi-scale template matching algorithm to
locate the icons or GUI elements requested by the test-
ing script.We can then actuate themouse pointer through
the USB controller interface to point and click on the ele-
ments, or activate the keyboard through either the USB
controller or the robotic keyboard.

• Output Recognition. Execution results of the tests often
come in the form of text. For this purpose, we use an
LSTM-based OCR engine [21] to extract text information
from the screen. To focus only on the interest regions of
the screen, we adopt a two-step process. First, we locate
user-specified GUI elements through localization. This

extracted element then serve as anchors for computing the
region of interest from the screen.

Figure 8 shows the testing robot in action, where the
machine on the right is the test server responsible for driv-
ing the test subject on the left. Typical steps such as reboot-
ing the system and running test programs can take up
to several minutes, wasting valuable time by the verifica-
tion engineers. Our system can execute these steps through
keyboard and mouse controls, detect the steps’ comple-
tion through the camera, and record the results onto the
spreadsheet on the testing server. Please refer to the video
talk in [22] for a complete example of the test execution
process.

demystifying data and ai for manufacturing 7

Fig. 6. The overview of the laptop functional testing system.

B) Managing Test Case Complexity
The test cases are stored either locally on the worksta-
tion, or more often on a remote testing server so that each
workstation receives the most up-to-date version of the
testing scripts. All in all, the number of test cases in the
scope is close to a million, which makes implementing and
maintaining the test cases a rather daunting task. To make
this more tractable and reduce the combinatorial explo-
sion of testing scripts, we identify common sub-scripts and
use them to form a basis to reconstruct the full scope of
tests.

Additionally, to ensure timely implementation of the test
cases, we adopt standard programming languages such as
Python as the baseline for the test scripts and add additional
language constructs for our parser to recognize the parts
of instructions specific to the control of the testing robots.
We found that, compared to the use of custom scripts with
recorder interface [23–25], the use of familiar programming
languages allow us to scale up the development effort, both
on-site or remotely, so that the overall development time
for the scripts lasts a relatively manageable timeframe of 18
months.

Also, while the logic of the testing scripts remains the
same, the appearance of GUI elements or icons may change
over time because of operating system software updates. For
this, we enhance our GUI Localization routine to include

multiple scales and versions of the same element to improve
the robustness of localization.

C) Practical Impact
With the introduction of the automated testing robot in
the functional verification workflow, we have managed to
reduce the number of active verification engineers by over
half, which translates to hundreds of people. The number of
projects handled by the factories has also increased during
the period. Since this is the only process improvement we
have implemented for functional verification, it is a direct
quantitative proof that this system has dramatically reduced
our verification labor costs. Its direct impact is estimated to
be 150 person-year of labor reduction and two million US
dollars of cost reduction per year in one factory alone.

In terms of management confidence, their additional
commitment to invest and deploy the system serves as a
qualitative proof for the impact of the project. Before intro-
ducing automation, multiple verification engineers may be
running on the same set of tests separately. This workforce
redundancy is similar to the problem exhibited with unre-
liable workers [26], and is an extra cost that business units
have to bear. The robots, with their high repeatability, can
serve as high-quality workers to augment human engineers.
The resulting workforce reduction is another qualitative
testament to improved management confidence.

V . APPEARANCE INSPECT ION

Appearance inspection is essential on assembly lines
because undetected defects can be costly in terms of
parts waste, product returns, and loss of customer trust.
The rapid advancement of automation technology enables
more sophisticated equipment for manufacturing, leading
to larger volumes of production at significantly shorter pro-
duction cycle time. On the other hand, appearance inspec-
tion largely remains a labor-intensive process, where human
inspectors are often required to visually qualify each prod-
uct against the acceptance criteria such as the number
of acceptable scratches, dents, and area of these defects,
all within tens of seconds. This labor-intensive process is

Fig. 7. (a) Keyboard Actuator. (b) Camera (side view). (c)Camera (back view). The production hardware for the function testing system.

8 yi-chun chen et al.

Fig. 8. Several typical test steps and their screen shots.

prone to human errors due to factors such as environmen-
tal conditions, distractions, and fatigue, making it chal-
lenging to maintain a consistent standard for inspection.
Existing automatic inspection systems are primarily rule-
based systems using traditional computer vision techniques
[27]. These systems can check against manually designed
rules for specific purposes, such as whether the logo is
in place through template matching [28] or the presence
of contours or holes through edge detection and shape
models [27]. While these systems perform well for specific
visual checks, they do not have the flexibility and adapt-
ability of human inspectors to detect defects outside of the
programmed rules. Often, it becomes too expensive and
time-consuming to deploy sufficient rules for a large variety
of products because of the significant manual engineering
efforts involved in writing rules for every type of defect
checks.

Ideally, we want an automatic inspection system that
can reduce the amount of engineering and time required
to deploy the system and that leads us to learning-based
methods that are adaptable to any products by automat-
ically learning these rules in a data-driven fashion. We
describe our experiences in employing fully supervised

object detection-based models (Section V.A), as well as our
transition to unsupervised auto-encoders (Section V.B)) to
address the limitations of object detectors.

A) Supervised Defect Detection
An automatic inspection system should be able to deter-
mine whether a product passes the acceptance criteria and
localize the defects for us to verify its predictions. A nat-
ural choice would be to use a deep learning-based object
detector that takes in an input product image and out-
puts bounding boxes around candidate defect regions. We
first share our experiences regarding annotating defects,
followed by details of the object detection model. Lastly,
we discuss how we decide whether a product passes the
acceptance threshold given the defect regions.

1) Annotating defects
In order to train an object detection model, we need to
collect examples of defective products and annotate the
defects with bounding boxes and labels. The quality of our
labeled training data and its representation heavily affect the

demystifying data and ai for manufacturing 9

Fig. 9. Some examples of defects. (a) Defects that are clearly defined and easily recognizable. (b) Ambiguous or unexpected defects that are confusing to annotate.
(c) Defect sample that illustrates the confusion in grouping defects. (d) Varying tightness of the bounding box.

performance of the detection model. Based on our experi-
ence, collecting and annotating defect data requires several
additional considerations compared to natural images. For
example, the defect classes, or types, are not clearly defined,
making it difficult to provide simple instructions for the
annotators. Also, defects can appear anywhere and take on
all forms, shapes, and sizes. Figure 9 shows some examples
of defects we encountered, and we discuss these common
challenges for annotating defects below. As a result, we
find it a significant effort to enforce a consistent annotation
standard, which is crucial for training and evaluating our
models.

• Ambiguous defects.Defects may appear differently on dif-
ferent product surface textures, making their class assign-
ment ambiguous. For example, in Figure 9(b), the dotted
textures that form lines similar to scratches can be indi-
vidual small scratches for one annotator, and a complete
dotted line for another.

• Unexpected defects. During the annotation process, there
will be cases of rare defects that do not belong to any of
the defect types listed in the annotation guidelines. Figure
9(b) shows one such example with an accidentally placed
sticker on the laptop.

• Grouping of defects. Disconnected defects are difficult to
group. For example, we can see in Figure 9(c) an example
of a scratch that was caused by a single stroke, but there
are gaps in themiddle of the scratch. Dowe consider them
multiple scratches or just a single scratch?

• Tightness of the bounding box. For some defects, the tight-
ness of bounding boxes heavily affect the performance of
themodel. Figure 9(d) shows an example of varying tight-
ness of bounding box annotations. Our initial intuition
favors tighter bounding boxes with less background infor-
mation. However, in practice, we find the background
information to be essential for classifying the patches,
particularly when the defects are circular or rectangular.

2) Detection model
For the object detection model, we employ Faster-RCNN
[29], which is known to be a relatively fast and accurate
detector. It consists of three components: a feature extrac-
tor network, a region proposal network, and a refinement
network (Figure 10). The feature extractor network – also
referred to as the backbone network – is responsible for
learning meaningful feature representations of the input
image. It outputs a tensor with a lower spatial resolution,
where each spatial location is a vector that encodes features
of a corresponding patch in the input image. This infor-
mation bottleneck forces it to extract only the most useful
information for the task. Its convolutional neural network
is pre-trained on a classification task such as ImageNet clas-
sification. Since classification and object detection are two
closely related tasks, the features extracted by the classi-
fier network also work for detection. Common architectural
choices include VGG [30] architecture or the ResNet [31]
architecture.

The region proposal network outputs a set of bounding
box proposals corresponding to candidate locations on the
image that may contain defects. We represent a bounding
box as a set {p̂x, p̂y, ŵ, ĥ}, where p̂x, p̂y represent its coordi-
nates and ŵ, ĥ represent its width and height, respectively.
These candidate bounding boxes and their related anchor
boxes act as prior knowledge on the sizes of objects found
in the dataset, allowing the network to output boxes of dif-
ferent scales and sizes since it only has to learn the relative
modifications from the anchor boxes.

Each candidate bounding box comes with a confidence
score of s ranging from 0 to 1, indicating how likely it is
to contain a defect. This score allows us to rank and filter
the bounding boxes according to a pre-defined threshold. At
this stage, we use a relatively lower threshold to increase the
chances of capturing the defects. The region proposal net-
work optimizes for two losses: the bounding box regression
loss Lbbox that minimizes the difference between the ground

10 yi-chun chen et al.

Fig. 10. Overview of the Faster-RCNN pipeline.

Fig. 11. Overview of the Auto-Encoder pipeline for defect detection.

truth box and the predicted box defined in Eq. 1, where the
variables with wa and ha are width and height of an anchor
box, and the score loss Ls, which is a standard binary cross-
entropy loss defined in Eq. 2, where y is a ground truth label
indicating whether the box contains a defect or not.

Lbbox = ‖ px
wa

− p̂x
wa

‖1+‖ py
ha

− p̂y
ha

‖1 (1)

+ ‖logw − log ŵ‖1+‖log h − log ĥ‖1

Ls = E[y log(s) + (1 − y) log(1 − s)] (2)

Finally, the refinement network further refines the esti-
mates from the region proposal network. It extracts the
feature tensors corresponding to the area defined by the
candidate bounding boxes, and performs region of interest
alignment (roiAlign) [32] to resize the feature tensors to a
pre-defined spatial resolution. These resized tensors enter
a series of convolutional layers to produce a set of refined
bounding boxes with adjusted defect scores.

3) Acceptance model
While the detector identifies and locates defects, we are
ultimately interested in a binary pass-or-fail decision. To
achieve this, we use a support vector machine (SVM) on
top of the features extracted by the object detector com-
bined with handcrafted features such as the area of defects,
counts of defects, and discrete cosine transform features.
The SVM essentially learns customer-specified acceptance
criteria from examples of products that passed the quality
assurance, as well as those that failed. Moreover, we can
easily change the threshold for classification to classify the
quality of the product, making the entire pipeline adjustable
for quality control purposes.

B) Unsupervised Defect Detection
In a production line, the majority of products will be nor-
mal since manufacturers will actively try to reduce the
factors that cause defects. That means the availability of
defect images tends to be rare and insufficient for the object
detector to learn. The imbalance of training data amongst
different defect classes also makes training sub-optimal. It
generally takes several months to gather sufficient labeled
images to achieve reasonable accuracy, which can be
impractical considering the relatively short life-cycle of
products.

To remove the significant bottleneck of collecting and
annotating defects, we seek to learn from normal data,
which are abundant and require no labeling or tagging.
Following this line of thought, we employ auto-encoders
[33–35] to learn and memorize only normal data (Section
V.B).B.1) and treat everything that deviates too far from
normal as defects (Section V.B).B.2).

1) Auto-encoder model
An auto-encoder is effectively a compression algorithm
where an encoder network learns a coded representation
of the input, and a decoder network reconstructs an out-
put from this code similar to the original input (Figure 11).
We achieve this goal by minimizing the mean squared error
between the input x and the reconstruction x̂, as shown
below,

Lae = 1
HW

∑

h,w

(x − x̂)2, (3)

where H,W denote the height and width of the input
image. Forcing the code to a lower dimension then the
input enables the encoder to extract only the most essential
features necessary for reconstruction.

Unlike standard compression algorithms, auto-encoders
learn features specific only to the data corpus, which means

demystifying data and ai for manufacturing 11

it can only reconstruct data within this training distribu-
tion. We exploit this property for defect detection wherein
we train the auto-encoder only with normal data. This auto-
encoder will then have problems reconstructing abnormal
inputs, allowing us to separate defects from the images.

2) Separating defects
As discussed earlier, parts with larger reconstruction error
from the auto-encoder provide hints to the location and
region of the defects. In order to separate defects from nor-
mal, we must first define a segmentation threshold of δ.
Applying this threshold on the reconstruction error map as
follows,

M = (x − x̂)2 > δ, (4)

we get a binary segmentation mask M ∈ R
H×W that has

a value of one for defective regions and zero for normal
regions.

3) Acceptance model
Similar to the object detector, we also convert the output
from the auto-encoder to a binary pass-or-fail decision.
Given the segmentation mask M, we extract connected
regions using a flood fill algorithm, followed by fitting a
bounding box around each region. Then we can employ the
same SVMprocess to decide whether the input is acceptable
or not.

C) Defect Detection in Practice
Figure 12 shows a photo of our custom-built machine for
automatic inspection of laptops. It automatically pushes a
laptop out of the conveyer belt and uses multiple cameras
to take pictures in parallel, capturing all sides of the laptop
with actively controlled lighting. The specifications of the
machine are listed below:

• Machine size (L × W × H): 160 × 100 × 200cm3

• Power requirement: 6000W / 220V
• Machine weight: 520 kg
• Camera sensor type: CMOS
• Camera maximum resolution: 10000 x 7096 pixels
• Acceptable laptop size: 12***** to 17*******

1) Algorithm details
We initialize the Faster-RCNN model with pre-trained
weights from MS-COCO[36] and trained for 30 epochs on
our target dataset using only a few labeled data. For the
auto-encoder, we train it for 100 epochs on an unlabeled
dataset containing mostly normal images. All networks are
optimized using stochastic gradient descent (SGD) with
momentum 0.9, weight decay 0.0001, and an initial learn-
ing rate of 0.001. We augmented our dataset using random
horizontal flips except for products where orientation is
important.

2) Datasets
We experimented with these models on a proprietary lap-
top dataset, two publicly available datasets, namely DAGM

[37], and MVTec [38]. The DAGM [37] dataset was origi-
nally for a competition on weakly-supervised learning for
industrial optical inspection. It consists of synthetic textures
with various types of defects. The MVTec [38] dataset, on
the other hand, contains a diverse set of real-world products
for industrial inspection.

3) Results and discussion
In an actual manufacturing setting, rare and unexpected
defects can occur. An example of this is the tape shown on
the left side of Figure 13.

The nature of the data distribution poses significant
latency in collecting and labeling the data, as even domain
experts would have difficulty producing accurate labels, as
discussed in our talk in [39]. Faster-RCNN [29] will have
difficulty detecting this type of defect since it does not
appear in any of the training images. In contrast, the auto-
encoder can successfully detect the entire defect since the
appearance is very different from a normal laptop’s surface.
On the right side of Figure 13, Faster-RCNN failed to capture
the long scratch, which may be due to the dataset having
mostly smaller defects.

Figure 14 shows example results of Faster-RCNN and
auto-encoder trained on only five defect samples from the
DAGM and MVTec dataset. Note that we converted the
segmentations of the auto-encoder into bounding boxes to
make it easier to compare with Faster-RCNN. Since the
object detector is trained on very few defect data, it could
not capture many of the defects that it did not see dur-
ing training. In contrast, the auto-encoder can successfully
detect and localize these defects.

In particular, because our auto-encoder includes a design
where we can control the latent space’s conditional entropy,
it allows us to balance between generality and specificity of
the model to avoid reconstructing defects [39].

We also use the average precision (AP) to evaluate
the localization performance across all possible thresh-
olds. Table 1 shows the results of each product type
in the DAGM dataset. Faster-RCNN trained on all the
labeled defects achieve almost a perfect score. However,
when we reduce the number of labeled defects, its perfor-
mance also drops. The auto-encoder approach surpasses
the Faster R-CNN baseline by up to 12.89 mAP in the
one defect sample setting, and 1.39 mAP in the five defect
setting.

Similarly, Faster R-CNN performs well on the MVTec
dataset when trained with many labeled defects, achieving
a mean average precision (mAP) of 72.21. In the small
labeled defect setting, the auto-encoder outperforms Faster-
RCNN with a 3.73 mAP increase in the one defect setting,
and a 3.97mAP increase in the five defect setting, as shown
in Table 2.

For the proprietary laptop dataset, we can report only
the relative differences between our auto-encoder method
and the Faster-RCNN baselines due to confidentiality rea-
sons. Observe in Table 3 that our auto-encoder achieves
a 16.4 mAP increase over Faster-RCNN with only one
labeled defect and 5.3 mAP increase with five labeled

12 yi-chun chen et al.

Fig. 12. Snapshot of our machine for automatic inspection of laptops.

Fig. 13. Visual results of Faster-RCNN compared to the Auto-Encoder for defect detection on laptop surfaces. We converted the segmentation results from the
auto-encoder into bounding boxes for easier comparison. Red boxes show the ground truths; green boxes show the predictions.

Fig. 14. Visual results of Faster-RCNN compared to the Auto-Encoder for defect detection on DAGM (top) and MVTec (bottom) datasets, given only on five
defective image samples per product for training. We converted the segmentation results from the auto-encoder into bounding boxes for easier comparison. Red
boxes show the ground truths; green boxes show the predictions.

Table 1. Results on the DAGM dataset in terms of average precision (AP).

mAP Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10

Using 100 defect images per class for training
Faster-RCNN 99.86 100 100 100 100 100 100 99.33 99.28 100 100
Using only 5 defect images per class for training
Faster-RCNN 95.38 99.53 99.12 98.72 71.36 95.81 94.11 98.62 98.67 99.96 97.93
Auto-Encoder 96.73 99.91 100 99.99 77.86 99.13 96.9 98.07 96.57 99.99 98.89
Using only 1 defect image per class for training
Faster-RCNN 79.16 95.53 66.47 93.39 45.06 97.81 49.72 93.42 89.6 98.81 61.77
Auto-Encoder 92.05 98.04 91.42 100 66.44 98.73 82.46 95.31 92.58 100 95.54

defects. The result shows that auto-encoders can reduce
the number of manual annotations and compares favorably
to the fully supervised Faster-RCNN, making it desirable
for detecting defects, especially during the early stages of
production.

V I . CONCLUS ION

The transformation from automation to smart manufac-
turing is an evolutionary process. The projects presented
here all derive real effects from parties involved, paving the

demystifying data and ai for manufacturing 13

Ta
bl
e
2.

Re
su
lts

on
th
e
M
V
Te
c
da
ta
se
ti
n
te
rm

so
fa
ve
ra
ge

pr
ec
isi
on

(A
P)
.

m
A
P

Bo
ttl
e

C
ab
le

C
ap
su
le

C
ar
pe
t

G
ri
d

H
az
el
nu
t

Le
at
he
r

M
et
al
nu
t

Pi
ll

Sc
re
w

Ti
le

To
ot
hb
ru
sh

Tr
an
sis
to
r

W
oo
d

Zi
pp
er

U
sin

g
40

de
fe
ct
im

ag
es
pe
rp

ro
du
ct
fo
rt
ra
in
in
g

Fa
st
er
-R
C
N
N

72
.2
1

85
.9
1

48
.4

52
.8
3

82
.8
2

57
.6
7

66
.36

93
.58

77
.2
6

78
.7
7

60
.9
1

10
0

42
.9
1

52
.6

93
.9
6

89
.2

U
sin

g
on
ly
5d

ef
ec
ti
m
ag
es
pe
rp

ro
du
ct
fo
rt
ra
in
in
g

Fa
st
er
-R
C
N
N

64
.8
3

77
.7
6

48
.4
6

45
.4
5

82
.0
8

46
.8
2

55
.7
8

84
.4
4

72
.4
5

71
.0
2

41
.4
9

96
.8
5

18
.8
5

50
.36

91
.4
0

89
.2
3

A
ut
o-
En

co
de
r

68
.8
0

78
.10

51
.3
5

49
.2
8

83
.5
8

58
.7
0

58
.6
6

88
.0
3

73
.17

76
.6
6

46
.9
2

96
.14

33
.2
6

53
.9
4

93
.6
0

90
.6
0

U
sin

g
on
ly
1d

ef
ec
ti
m
ag
e
pe
rp

ro
du
ct
fo
rt
ra
in
in
g

Fa
st
er
-R
C
N
N

45
.3
4

42
.2
2

42
.36

21
.7
8

75
.6
7

31
.2
8

33
.7
7

64
.8
8

48
.4
5

42
.74

15
.3
9

75
.7
6

9.
68

18
.59

78
.6
7

78
.9
2

A
ut
o-
En

co
de
r

49
.0
7

46
.8
6

42
.7
0

30
.2
9

79
.3
7

29
.14

39
.0
1

71
.12

58
.8
2

49
.6
7

11
.7
0

80
.0
0

13
.9
8

20
.6
7

81
.6
1

81
.18

Table 3. Results on the proprietary laptop dataset compared to the
Faster-RCNN baseline.

relative mAP

Using only 5 labeled defects for training
Auto-Encoder +16.4
Using only 1 labeled defects for training
Auto-Encoder +5.3

road to their full-scale adoption in our facilities. Per com-
pany policy, we can not disclose the immediate effects of
these projects. Suffice to say that the continual commitment,
both in development and process adaptation, proves their
usefulness for all stakeholders involved. For the future, in
addition to improving the accuracy and performance of our
algorithms, we are in the process of implementing a more
thorough digital twin and data policy to discover additional
opportunities within the manufacturing facilities. Projects
such as the logistic management are considered core to
the business and can only be used exclusively by the com-
pany. Others, such as appearance inspection, can create
new revenue streamswithout hurting the company baseline,
and we are actively seeking opportunities for sharing these
solutions to our peers.

Many people helped with various aspects of the projects
in this article. To comply with company policy, we shall
not reveal their full names here. For the functional testing
project, we wish to thank Jimmy for implementing the first
version of the testing server; Eric, Joseph, and Jack and the
rest of the QA team for providing valuable input, building
the testing robot, and steering the effort for managing test
cases. We wish to thank our friends from the factory for
providing training images for the AI models; Steven, Jerry,
and his team for building the first version of the appearance
inspection machine; our external collaborators for design-
ing the next version of the machine; Anderson and Sean
for facilitating the certification of the machine; Kristy and
Josh for organizing the image annotations efforts. Steve and
Mark and our IT department have been instrumental in
helping us bridge the data necessary for the logistic man-
agement project; our logistic experts have been beneficial
at educating the rest of us on the existing process. Finally,
we wish to thank Jade and the technical committee for tire-
lessly coordinatemany of the tasks behind the scene tomake
things happen.

REFERENCES

[1] Deloitte.: Deloitte survey on ai adoption in manufacturing – ai
enablement on the way to smart manufacturing. https://www.
deloitte.com/, 2019.

[2] Inventec.: Inventec inc. corporate website. https://www.inventec.
com/.

[3] ITRI.: Industrial technology research institute. https://www.itri.org.
tw/.

[4] Chen, P.-Y.; Zhang, H.; Sharma, Y.; Yi, J.; Hsieh, C.-J.: Zoo: zeroth
order optimization based black-box attacks to deep neural net-
works without training substitute models, in Proc. of the 10th ACM

https://www.deloitte.com/
https://www.deloitte.com/
https://www.inventec.com/
https://www.inventec.com/
https://www.itri.org.tw/
https://www.itri.org.tw/

14 yi-chun chen et al.

Workshop on Artificial Intelligence and Security (New York, NY, USA,
2017), AISec ****17, Association for Computing Machinery, 15–26.

[5] Jiang, L.; Ma, X.; Chen, S.; Bailey, J.; Jiang, Y.-G.: Black-box adver-
sarial attacks on video recognition models, in Proc. of the 27th ACM
Int. Conf. on Multimedia (New York, NY, USA, 2019), MM ***19,
Association for Computing Machinery, 864–872.

[6] Kuppa, A.; Grzonkowski, S.; Asghar, M.R.; Le-Khac, N.-A.: Black box
attacks on deep anomaly detectors, in Proc. of the 14th Int. Conf.
on Availability, Reliability and Security (New York, NY, USA, 2019),
ARES ****19, Association for Computing Machinery..

[7] Davenport, T. H.; Ronanki, R.: Artificial intelligence for the real
world.Harvard Business Review (January-February 2018).

[8] Gardner, E.S. Jr: Exponential smoothing: the state of the art****part
ii. Int. J. Forecast., 22 (4) (2006), 637–666.

[9] Pole, A.; West, M.; Harrison, J.: Applied Bayesian Forecasting and
Time Series Analysis. Chapman & Hall/CRC, UK, 1994.

[10] Box, G. E.; Jenkins, G. M.; Bacon, D.: Models for forecasting sea-
sonal and non-seasonal time series. Tech. rep., WISCONSIN UNIV
MADISON DEPT OF STATISTICS, 1967.

[11] Chatfield, C.: Time-series Forecasting. Chapman and Hall/CRC, UK,
2000.

[12] Contreras, J.; Espinola, R.; Nogales, F. J.; Conejo, A. J.: Arima models
to predict next-day electricity prices. IEEE Trans. Power Syst., 18 (3)
(2003), 1014–1020.

[13] Kalpakis, K.; Gada, D.; Puttagunta, V.: Distance measures for effec-
tive clustering of arima time-series, in Proc. IEEE Int. Conf. on Data
Mining, 2001, IEEE, 2001, 273–280.

[14] Zhang, G. P.: Time series forecasting using a hybrid arima and neural
network model. Neurocomputing, 50 (2003), 159–175.

[15] Rumelhart, D. E.; Hinton, G. E.; Williams, R. J.: Learning repre-
sentations by back-propagating errors. Nature, 323 (6088) (1986),
533–536.

[16] Bengio, Y.; Simard, P.; Frasconi, P.: Learning long-term dependen-
cies with gradient descent is difficult. IEEE Trans. Neural. Netw., 5
(2) (1994), 157–166.

[17] Bahdanau, D.; Cho, K.; Bengio, Y.: Neural machine translation by
jointly learning to align and translate. arXiv preprint arXiv:1409.0473,
2014.

[18] Hu, K.; Acimovic, J.; Erize, F.; Thomas, D.J.; Mieghem, J.A.V.:
Forecasting new product life cycle curves: Practical approach
and empirical analysis. Manuf. Serv. Oper. Manag., 21 (1) (2019),
66–85.

[19] Mishchenko, K.; Montgomery, M.; Vaggi, F.: A self-supervised
approach to hierarchical forecasting with applications to groupwise
synthetic controls. arXiv preprint arXiv:1906.10586, 2019.

[20] Bradski, G.: The openCV library.Dr. Dobb’s Journal of Software Tools,
2000.

[21] Smith, R.: An overview of the tesseract ocr engine, in Proc. of
the Ninth Int. Conf. on Document Analysis and Recognition – Vol-
ume 02 (USA, 2007), ICDAR ***07, IEEE Computer Society, 629–
633.

[22] Chen, T.; Chen, W.-C.: Edge ai in smart manufacturing: defect detec-
tion and beyond. GPU Technology Conf., Silicon Valley, 2019.

[23] Cheng, Y.-P.; Kuo, J.W.; Cheng, B.; Kuo, C.H.: A non-intrusive,
platform-independent capture/replay test automation system, in
Proc. of the 2015 IEEE 17th Int. Conf. on High Performance Comput-
ing and Communications, 2015 IEEE 7th Int. Symp. on Cyberspace
Safety and Security, and 2015 IEEE 12th Int. Conf. on Embedded
Software and Systems (USA, 2015), HPCC-CSS-ICESS ****15, IEEE
Computer Society, 2015, 1122–1127.

[24] Cheng, Y.-P.; Li, C.-W.; Chen, Y.-C.: Apply computer vision in gui
automation for industrial applications. Math. Biosci. Eng., 16 (2019),
7526.

[25] Lee, S.; Chen, Y.; Ma, S.; Lee, W.: Test command auto-wait mecha-
nisms for record and playback-style web application testing, in IEEE
42ndAnnual Computer Software andApplications Conf. (COMPSAC),
2018, 75–80.

[26] Ipeirotis, P.; Provost, F.; Wang, J.: Quality management on amazon
mechanical turk, in Proc. of the ACM SIGKDDWorkshop on Human
Computation, (10 2010), 2010.

[27] Steger, C.; Ulrich, M.; Wiedemann, C.: Machine vision algorithms
and applications. John Wiley & Sons, 2018.

[28] Crispin, A.; Rankov, V.: Automated inspection of pcb components
using a genetic algorithm template-matching approach. Int. J. Adv.
Manuf. Technol., 35 (3–4) (2007), 293–300.

[29] Ren, S.; He, K.; Girshick, R.; Sun, J.: Faster r-cnn: towards real-
time object detection with region proposal networks, in Advances in
Neural Information Processing Systems, 2015, 91–99.

[30] Simonyan, K.; Zisserman, A.: Very deep convolutional networks for
large-scale image recognition, in Int. Conf. on Learning Representa-
tions, 2015.

[31] He, K.; Zhang, X.; Ren, S.; Sun, J.; Deep residual learning for image
recognition, in Proc. of the IEEE Conf. on Computer Vision and
Pattern Recognition, 2016, 770–778.

[32] He, K.; Gkioxari, G.; Dollár, P.; Girshick, R; Mask r-cnn, in Proc. of
the IEEE International Conf. on Computer Vision, 2017, 2961–2969.

[33] Gong, D.; Liu, L.; Le, V.; Saha, B.; Mansour, M. R.; Venkatesh, S.;
Hengel, A. v. d.: Memorizing normality to detect anomaly: memory-
augmented deep autoencoder for unsupervised anomaly detection.
arXiv preprint arXiv:1904.02639, 2019.

[34] Zhao, Y.; Deng, B.; Shen, C.; Liu, Y.; Lu, H.; Hua, X.-S.: Spatio-
temporal autoencoder for video anomaly detection, in Proc. of the
25th ACM International Conf. on Multimedia, 2017, ACM, 1933–1941.

[35] Zong, B.; Song, Q.; Min, M. R.; Cheng, W.; Lumezanu, C.; Cho, D.;
Chen, H.: Deep autoencoding gaussian mixture model for unsuper-
vised anomaly detection, in Int. Conf. on Learning Representations,
2018.

[36] Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.;
Dollár, P.; Zitnick, C.L.: Microsoft coco: common objects in context,
in European Conf. on Computer Vision, 2014, Springer, 740–755.

[37] Arbeitsgemeinschaft für Mustererkennung (DAGM), D: Deutsche
Arbeitsgemeinschaft fürMustererkennung (DAGM). ttps://resources.
mpi-inf.mpg.de/conference/dagm/2007/prizes.tml, 2007.

[38] Bergmann, P.; Fauser, M.; Sattlegger, D.; Steger, C.: Mvtec ad–a com-
prehensive real-world dataset for unsupervised anomaly detection, in
Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition,
2019, 9592–9600.

[39] Chen, T.; Chen, Y.-C.: Toward taming the training data complexity in
smart manufacturing. GPU Technology Conf., Silicon Valley, 2020.

Yi-Chun Chen is an AI Research Engineer at Inventec Cor-
poration. Her research interests include deep learning and
computer vision, especially object detection and metric learn-
ing, and their applications to smart manufacturing. Previously
at Viscovery, Yi-Chun has developed visual search solutions for
smart eCommerce. She received her BS from National Tsing-
Hua University. Her publications include 360-degree vision,
image captioning, and wearable vision system.

Bo-Huei He is a backend developer at Skywatch Innovation.
He is a crucial member in the development of various video

ttps://resources.mpi-inf.mpg.de/conference/dagm/2007/prizes.tml
ttps://resources.mpi-inf.mpg.de/conference/dagm/2007/prizes.tml

demystifying data and ai for manufacturing 15

streaming and computer vision applications at Skywatch. His
interests are in cloud computing, computer vision, system
development, and AI.

Shih-Sung Lin is an IoT Developer at Skywatch Innovation.
His research interests involve Internet-of-Things, embedded
systems, AI, and computer vision. He developed several IoT
services for Skywatch Innovation.He received his BS in Electri-
cal Engineering fromNational Taipei University of Technology
(2013), and BS in Networking and Multimedia from National
Taiwan University (2015).

JonathanHansSoeseno is anAIResearchEngineer at Inventec
Corporation,where he applies deep learning, signal processing,
and computer vision for industrial tasks. His research interests
involve generative models, image processing, and computer
vision. He received his B.Eng in computer engineering from
Petra Christian University, Indonesia (2017), and MS in com-
puter science from the National Taiwan University of Science
and Technology (2018).

Daniel Stanley Tan works as an AI Research Engineer at
Inventec Corporation, where he applies deep learning and
computer vision techniques for industrial tasks. His research
mainly focuses on generative models for smart manufactur-
ing and precision agriculture. He is currently pursuing his
Ph.D. degree at the National Taiwan University of Science and

Technology. Before this, he held a faculty position at De La
Salle University, Philippines.

Trista Pei-ChunChen is the Chief Scientist ofMachine Learn-
ing at Inventec Corp. Her research interests include machine
learning and computer vision, especially their applications
in smart manufacturing, smart health, medical AI, multime-
dia big data, and multimedia signal processing. Previously,
Trista led a startup that was later acquired, was part of the
Intel OpenCV development team, and architected Nvidia’s
first video processor. She received her Ph.D. from Carnegie
Mellon University and MS and BS from National Tsing Hua
University.

Wei-Chao Chen is a co-founder and the Chairman at Sky-
watch Innovation, a provider for cloud-based IoT and video
products. He is also the Head of the AI Center and Chief
AI Advisor at Inventec Corp. His research interests involve
graphics hardware, computational photography, augmented
reality, and computer vision. Dr. Chen was an adjunct faculty
at the National Taiwan University between 2009 and 2018, a
senior research scientist in Nokia Research Center at Palo Alto
between 2007–2009, and a 3D Graphics Architect in NVIDIA
between 2002–2006. Dr. Chen received his MS in Electri-
cal Engineering from National Taiwan University (1996), and
MS (2001) and Ph.D. (2002) in Computer Science from the
University of North Carolina at Chapel Hill.

	I. INTRODUCTION
	II. ENABLING SMART MANUFACTURING PROJECTS
	A) Problem Definition
	B) Data in Manufacturing
	C) Full Scale Production

	III. LOGISTIC MANAGEMENT
	A) Time-Series Forecasting
	B) Learning with Forecast Data
	C) Periodic Model Updates
	D) Application Results

	IV. FUNCTIONAL VERIFICATION
	A) The Testing Robot
	B) Managing Test Case Complexity
	C) Practical Impact

	V. APPEARANCE INSPECTION
	A) Supervised Defect Detection
	1) Annotating defects
	2) Detection model
	3) Acceptance model

	B) Unsupervised Defect Detection
	1) Auto-encoder model
	2) Separating defects
	3) Acceptance model

	C) Defect Detection in Practice
	1) Algorithm details
	2) Datasets
	3) Results and discussion

	VI. CONCLUSION

