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Audio-to-score singing transcription based on a
CRNN-HSMM hybrid model
ryo nishikimi,1 eita nakamura,1,2 masataka goto3 and kazuyoshi yoshii1,4

This paper describes an automatic singing transcription (AST) method that estimates a human-readable musical score of a
sung melody from an input music signal. Because of the considerable pitch and temporal variation of a singing voice, a naive
cascading approach that estimates an F0 contour and quantizes it with estimated tatum times cannot avoid many pitch and
rhythm errors. To solve this problem, we formulate a unified generative model of a music signal that consists of a semi-Markov
language model representing the generative process of latent musical notes conditioned on musical keys and an acoustic model
based on a convolutional recurrent neural network (CRNN) representing the generative process of an observedmusic signal from
the notes. The resulting CRNN-HSMM hybrid model enables us to estimate the most-likely musical notes from a music signal
with the Viterbi algorithm, while leveraging both the grammatical knowledge about musical notes and the expressive power of
the CRNN. The experimental results showed that the proposed method outperformed the conventional state-of-the-art method
and the integration of the musical language model with the acoustic model has a positive effect on the AST performance.
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I . I NTRODUCT ION

The aim of automatic singing transcription (AST) is to esti-
mate a human-readable musical score of singing voice from
a given music signal. Since the melody line is usually the
most salient part of music that influences the impression
of a song, transcribed scores are useful for music infor-
mation retrieval (MIR) tasks such as query-by-humming,
musical grammar analysis [1], and singing voice genera-
tion [2]. In this paper, we study statistical audio-to-score
(wave-to-MusicXML) AST for audio recordings of pop-
ular music consisting of monophonic singing voice and
accompaniment sounds (Fig. 1).

To estimate the semitone-level pitches and tatum-level
onset and offset times of musical notes from music sig-
nals, one may estimate a singing F0 trajectory [3–6] and
then quantize it on the semitone and tatum grids obtained
by a beat-tracking method [7], where the tatum (e.g. 16th-
note level) refers to the smallest meaningful subdivision of
the main beat (e.g. fourth-note level). This approach, how-
ever, has no mechanism that avoids out-of-scale pitches
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and irregular rhythms caused by the considerable pitch and
temporal variation of the singing voice.

An effective way of overcoming this problem is to use a
musical language model that incorporates prior knowledge
about symbolic musical scores. Graphical models [8–11]
have been proposed for integrating such a language model
with an acoustic model describing the generative process
of acoustic features or F0s. In particular, the current state-
of-the-art method of audio-to-score AST [11] is based on a
hidden semi-Markov model (HSMM) consisting of a semi-
Markov language model describing the generative process
of a note sequence and a Cauchy acoustic model describing
the generative process of an F0 contour from the musical
notes. The semi-Markov model (SMM) is an extension of
the Markov model that can explicitly represent the dura-
tion probability of each hidden state (e.g. note). While
being more accurate than other methods, the output scores
include errors caused by the preceding F0 estimation step,
and repeated notes of the same pitch cannot be detected
from only F0 information. An alternative approach to AST
is to use an end-to-end DNN framework to directly con-
vert a sequence of acoustic features into a sequence of
musical symbols. At present, however, this approach covers
only constrained conditions (e.g. the use of synthetic sound
signals) and has only limited success [12–15].

To solve this problem, we propose an AST method that
integrates a language model with a DNN-based acous-
tic model. This approach can utilize both the statistical
knowledge about music notes and the capacity of DNNs
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Fig. 1. The problem of automatic singing transcription. The proposed method takes as input a spectrogram of a target music signal and tatum times and estimates
a musical score of a sung melody.

for describing complex data distributions of input music
signals. This is known as the hybrid approach, which has
been one of the major approaches to automatic speech
recognition (ASR) [16]. To our knowledge, the hybrid
approach has not been attempted for audio-to-score AST
in the literature. The language model describing the gener-
ative process of local keys, note pitches, and onset times is
implemented with a SMM. The acoustic model describing
the generative process of a music audio signal frommusical
notes is implemented with a convolutional recurrent neural
network (CRNN) estimating the pitch and onset probabil-
ities for each tatum. Since the accuracy of beat tracking is
already high [7], we assume that beat and downbeat times
(i.e. tatum times and their relative metrical positions in
measures) are estimated in advance. In this paper, we focus
on typical popular songs with 4/4 time. We also investigate
how the application of singing voice separation for an input
signal affects the transcription results.

The main contributions of this study are as follows.
We propose the first DNN-HMM-type hybrid model for
audio-to-score AST. The key difference from the HSMM-
based method [11] is that the acoustic model can directly
describe complex data distributions of music signals by
leveraging the potential of the CRNN. Despite the active
research on AST-related tasks like singing voice separa-
tion and F0 estimation, a full AST system that can output
musical scores in a human-readable form has scarcely been
studied. Our system can deal with polyphonic music sig-
nals and output symbolic musical scores in the MusicXML
format. We found that the proposed method outperformed
the HSMM-based method [11] by a large margin. We also
confirmed that the language model significantly improves
the AST performance, especially in the rhythm aspects.
Finally, we found that the application of singing voice sep-
aration to the input music signals can further improve the
performance1.

The rest of this paper is as follows: Section II explains
backgrounds for the proposedmethod. Section III describes

1We respect the reproducibility of research and are now working for
allowing anyone to easily test our technique on arbitrary songs. The source
code is available upon request.

our approach to AST. Section IV reports the experimental
results. Section V concludes the paper.

I I . BACKGROUNDS

Before describing the proposed method in the next section,
we here explain the backgrounds by reviewing previous
studies. Input signal representations have been studied
for music information processing, including the short-
time Fourier transform (STFT) [17, 18], the constant-Q
transform (CQT) [6], and the log Mel-scale filter-bank
[19]. Recently, the harmonic CQT (HCQT) representa-
tion, which is obtained by stacking pitch-shifted (upshifted
and downshifted) CQT spectrograms, has been proposed
[3]. This representation was designed to better capture the
structure of harmonic partials in music audio signals. Since
the HCQT representation is considered to be especially
effective for extracting pitch features, we use a similar input
representation in our method.

Markov models have widely been used for musical lan-
guage modeling. To characterize the musical scales, for
example, the statistical characteristics of pitch transitions
can be learned from musical scores transposed to the C
major key [20]. In automatic music transcription, musical
keys are often treated as latent variables instead of referring
to key annotations [11]. As to musical rhythms, SMMs such
as the duration-based Markov model [21] and the metrical
Markov model [22, 23] have been proposed. The latter can
be used for effectively regularizing the metrical structures
of the estimated scores from the rhythmic viewpoint [24].
In this study, we construct a Markov model of latent note
pitches conditioned by latent musical keys and that of latent
note positions.

I I I . PROPOSED METHOD

We specify the audio-to-score AST problem in Section
III-A) and describe the proposed generative modeling
approach to this problem in Section III-B). We formulate
the CRNN-HSMMmodel in Sections III-C) and III-E). We
explain how to train the model parameters in Section III-F)
and the transcription algorithm in Section III-G).
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Fig. 2. The proposed hierarchical probabilistic model that consists of a SMM-based language model representing the generative process of musical notes from local
keys and a CRNN-based acoustic model representing the generative process of an observed spectrogram from the musical notes. We aim to infer the latent notes
and keys from the observed spectrogram.

A) Problem specification
We formulate the audio-to-score AST problem under two
simplified but practical conditions; (1) The time signature
of a target song is 4/4; and (2) the tatum times of the
song, which form the 16th note-level grids, are estimated in
advance (e.g. [7]).

The input data consist of the audio spectrogram of a
target song with tatum times and their relative metrical
positions in measures. Similarly to the HCQT representa-
tion [3], the audio spectrogram is obtained by stacking H
pitch-shifted (upshifted and downshifted) versions of a log-
frequencymagnitude spectrogram obtained by warping the
linear frequency axis of the STFT spectrogram into the log-
frequency axis. Thus, the input audio spectrogram can be
represented as a tensorX ∈ R

H×F×T , whereH, F, andT rep-
resent the number of channels, that of frequency bins, and
that of time frames, respectively.

We use the notation “i:j” to represent a sequence of inte-
ger indices from i to j. The tatum times can be represented
by a sequence of frame indices t1:N+1, where n s label tatums,
N is the number of tatums in the input song, and tN+1
indicates a “sentinel” frame of the song. By trimming off
unimportant frames before the first tatum and after the last
tatum if necessary, we can assume that t1 = 1 and tN+1 =
T + 1. The relative position of tatum n in ameasure is called
themetrical position and denoted by ln ∈ {1, . . . , L} (L = 16
is the number of tatums in eachmeasure); ln = 1 means that
tatum n is a downbeat (the first tatum of a measure). In
general, we have ln+1 − ln ≡ 1 (mod L); however, we do not
assume l1 = 1. We use the symbol m ∈ {1, . . . ,M} to label
measures (M is the number of measures).

The output of the proposed method is a sequence of
musical notes represented by pitches p1:J and onset (score)
time in tatum units n1:J+1. We use the symbol j to label
musical notes, and J represents the number of estimated
musical notes. The pitch pj of the j th note takes a value
in {0, 1, . . . ,K}; pj = 0 means that it is a rest and pj > 0
means that it is a pitched note (K be the number of unique
semitone-level pitches considered). The onset time nj of the
j th note takes a value in {1, . . . ,N + 1} and, for convenience,
we assume that n1 = 1 and nJ+1 = N + 1. The (J + 1) th note
onset is introduced only for defining the length of the J th
note and is not used in the output transcribed score.

For musical language modeling, we introduce musical
key variables, which are also estimated in the transcription
process. To allow modulations (key changes) within a song,
we introduce a local key sm for each measure m. Each vari-
able sm takes a value in {1 = C, 2 = C�, . . . , 12 = B}. Since
similar musical scales are used in relative major and minor
keys, they are not distinguished here. For example, sm = 0
means that measurem is in the C major key or the A minor
key.

B) Generative modeling approach
We propose a generative modeling approach to the audio-
to-score AST problem (Fig. 2). We formulate a hierarchical
generative model of the local keys S = s1:M , the pitches P =
p1:J and onset timesN = n1:J+1 of the musical notes, and the
spectrogram X as

p(X,P,N, S) = p(X|P,N)p(P,N, S). (1)

Here, all the probabilities are implicitly dependent on the
tatum information t1:N+1 and l1:N+1. p(P,N, S) represents a
language model that describes the generative process of the
musical notes and keys. p(X|P,N) represents an acoustic
model that describes the generative process of the spectro-
gram given the musical notes.

Given the generative model, the transcription problem
can be formulated as a statistical inference problem of esti-
mating the musical scores (P,N) and the keys S that maxi-
mize the left-hand side of equation (1) for the given spectro-
gram X (as explained later). In this step, the acoustic model
evaluates the fitness of a musical score to the spectrogram
while the language model evaluates the prior probability of
the musical score. The proposed method is therefore con-
sistent with our intuition that both of these viewpoints are
essential for transcription.

C) Language model
We construct a generative model where the pitches P = p1:J
and the onset times N = n1:J+1 are independently gener-
ated and the pitches are generated depending on the local



4 ryo nishikimi, et al.

keys S = s1:M . The generative process can bemathematically
expressed as

p(P,N, S) = p(P|S)p(N)p(S), (2)

where p(P|S), p(N), and p(S) represent the pitch transi-
tion model, the onset time transition model, and the key
transition model, respectively.

In the key transition model, to represent the sequential
dependency between the keys of consecutive measures, the
keys S = s1:M are generated by a Markov model as

p(S) = p(s1)
M∏

m=2
p(sm|sm−1). (3)

The initial and transition probabilities are parameterized as

p(s1 = s) = π ini
s , (4)

p(sm = s | sm−1 = s′) = π(s−s′)mod 12+1, (5)

where we have assumed that the transition probabilities are
symmetric under transpositions. For example, the transi-
tion probability from C major to D major is assumed to
be the same as that from D major to E major. We define
π ini = (π ini

s ),π = (πs) ∈ R
12
≥0.

In the pitch transition model, to represent the depen-
dency of adjacent pitches and the dependency of pitches
on the local keys, the pitches P = p1:J+1 are generated by a
Markov model conditioned on keys S = s1:M as

p(P|S) = p(p1|s1)
J∏

j=2
p(pj|pj−1, sm(j)), (6)

where m(j) indicates the measure to which the j th note
onset belongs. The initial and transition probabilities are
parameterized as

p(p1 = p | s1 = s) = φinisp , (7)

p(pj = p | pj−1 = p′, sm(j) = s) = φsp′p. (8)

We assume that these probabilities are key-transposition-
invariant so that the following relations hold:

φinisp ∝ φ̄inideg(s,p), (9)

φspp′ ∝ φ̄deg(s,p)deg(s,p′), (10)

where

deg(s, p) =
{
(p − s)mod 12+ 1 (p > 0),
0 (p = 0)

(11)

represents the degree (key-relative pitch class) of pitch
p in key s (e.g. deg(s, p) = 1 corresponds to C on the
C major scale). We define φ̄ini = (φ̄inid )∈ R

13
≥0 and φ̄ =

(φ̄dd′)∈ R
13×13
≥0 .

In the onset time transition model, to represent the
rhythmic patterns of musical notes, the onset times N =
n1:J+1 are generated by the metrical Markov model [22, 23]
as

p(N) = p(n1)
J+1∏
j=2

p(nj|nj−1), (12)

where the initial and transition probabilities are given by

p(n1) = δ1,n1 , (13)

p(nj = n | nj−1 = n′) = ψln′ ln . (14)

Here, δ denotes the Kronecker’s symbol and the first
equation expresses the assumption n1 = 1. In the second
equation,ψ = (ψl′l) ∈ R

L×L
≥0 represents the transition prob-

abilities between metrical positions.

D) Tatum-level language model formulation
In the languagemodel presented in Section III-C), the tran-
sitions of keys and transitions of pitches and onset times
are not synchronized. To enable the integration with the
acoustic model and the inference for AST, we here formu-
late an equivalent language model where the variables are
defined at the tatum level. For this purpose, we introduce
tatum-level key variables s̄n, pitch variables p̄n, and counter
variables c̄n (Fig. 3). The first two sets of variables are con-
structed from the keys s1:M and the pitches p1:J so that s̄n =
sm when tatum n is in measure m and p̄n = pj when tatum
n satisfies nj ≤ n < nj+1. The counter variable c̄n represents
the residual duration of the current musical note in tatum
units and takes a value in {1, . . . , 2L}, where 2L is the max-
imum length of a musical note. This variable is gradually
decremented tatum by tatum until the next note begins; a
note onset at tatum n is indicated by c̄n−1 = 1. In this way,
we can construct variables S = s̄1:N , P = p̄1:N , and C = c̄1:N
from variables S = s1:M , P = p1:J , and N = n1:J+1, and vice
versa.

The generative models for the tatum-level keys, pitches,
and counters can be derived from the language model in
Section III-C) as follows. The keys S = s̄1:N obey the follow-
ing Markov model:

p(S̄) = p(s̄1)
N∏
n=2

p(s̄n|s̄n−1), (15)

where

p(s̄1) = π ini
s̄1 , (16)

p(s̄n|s̄n−1) =
{
π(s̄n−s̄n−1)mod 12+1 (ln = 1),
δs̄n−1 ,s̄n (ln > 1).

(17)

The second equation says that a key transition occurs only
at the beginning of a measure.
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Fig. 3. Representation of a melody note sequence and variables of the language model.

The countersC = c̄1:N obey the followingMarkovmodel:

p(C) = p(c̄1)
N∏
n=2

p(c̄n|c̄n−1), (18)

where

p(c̄1 = c̄) = ψl1l1+c̄ , (19)

p(c̄n = c̄ | c̄n−1 = c̄′) =
{
ψlnln+c̄ (c̄′ = 1),
δc̄′−1,c̄ (c̄′ > 1).

(20)

This is a kind of SMM called the residential-time Markov
model [25]. As shown in Fig. 3, at the onset tatums of musi-
cal notes, the counter variables change to the corresponding
note values. Otherwise, the counter variables are decre-
mented by one. The former case is represented byψlnln+c̄ and
the latter case is represented by δc̄′−1,c̄ in equation (20).

The pitches P = p̄1:N obey the following Markov model
conditioned on the keys and counters:

p(P|S,C) = p(p̄1|s̄1)
N∏
n=2

p(p̄n|p̄n−1, c̄n−1, s̄n), (21)

where

p(p̄1|s̄1) = φinis̄1p̄1 , (22)

p(p̄n|p̄n−1, c̄n−1, s̄n) =
{
φs̄np̄n−1p̄n (c̄n−1 = 1),
δp̄n−1p̄n (c̄n−1 > 1).

(23)

The second equation expresses the constraint that a pitch
transition occurs only at a note onset.

Putting equations (15), (18), and (21) together, we have

p(P,N, S) = p(P,C, S) = p(P|S,C)p(C)p(S). (24)

That is, the languagemodel in Section III-C) and the tatum-
level languagemodel defined here are equivalent probabilis-
tic models. We use this tatum-level SMM in what follows.

E) Acoustic model
We formulate an acoustic model p(X|P,N) = p(X|P,C)
that gives the probability of spectrogram X given a pitch
sequence P and a counter sequence C representing onset
times. We define the tatum-level spectra Xn as a segment
of spectrogram X in the span of tatum n. As in the stan-
dardHMM,we assume the conditional independence of the
probabilities of tatum-level spectra as

p(X|P,C) =
N∏
n=1

p(Xn|p̄n, c̄n−1). (25)

Using Bayes’ theorem, the individual factors in the right-
hand side of equation (25) can be written as

p(Xn|p̄n, c̄n−1) = p(p̄n, c̄n−1|Xn)p(Xn)

p(p̄n, c̄n−1)
(26)

∝ p(p̄n, c̄n−1|Xn)

p(p̄n, c̄n−1)
, (27)

where p(p̄n, c̄n−1) is the prior probability of pitch p̄n and
counter c̄n−1 and p(p̄n, c̄n−1|Xn) is the posterior probability
of p̄n and c̄n−1.

We use a CRNN for estimating the probability p(p̄n,
c̄n−1|Xn) (Fig. 4). Since it is considered to be difficult to
directly estimate the counter variables describing the dura-
tions of musical notes from the locally observed quantity
Xn, we train the CRNN to predict the probability whether a
note onset occurs at each tatum. A similar DNN for joint
estimation of pitch and onset probabilities has been suc-
cessfully applied to piano transcription [19]. For reliable
estimation, we estimate the pitch and onset probabilities
independently. Therefore, the CRNN takes the spectra Xn
as input and outputs the following probabilities:

ξnk = p(p̄n = k|Xn), (28)

ζn = p(ōn = 1|Xn), (29)

where ōn ∈ {0, 1} is an onset flag and ζn is the (posterior)
onset probability at tatum n (ōn = 1 if there is a note onset
at tatum n and ōn = 0 otherwise). The counter probabilities
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Fig. 4. The acoustic model p(X|P,C) representing the generative process of the spectrogram X from note pitches P and residual durations C.

are assigned using the onset probability as

p(c̄n−1|Xn) =
{
ζn (c̄n−1 = 1),
(1− ζn)/(L − 1) (c̄n−1 �= 1),

(30)

and the probability p(p̄n, c̄n−1|Xn) is then given as the prod-
uct of equations (28) and (30).

In practice, it is reasonable to use spectra of a longer seg-
ment than a tatum as input of the CRNN since each tatum
(16th note) spans a short time interval. In addition, it is com-
putationally efficient to jointly estimate the pitch and onset
probabilities of all tatums in the wide segment. Therefore,
we use the whole spectrogram X (or its part of a sufficient
duration) as the input of the CRNN and train it so as to
output all the tatum-level pitch and onset probabilities.

The CRNN consists of a frame-level CNN and a tatum-
level RNN linked through a max-pooling layer (Fig. 4). The
CNN extracts latent features e1:T (et = [et1, . . . , etF] ∈ R

F)
from the spectrogram X of length T:

e1:T = CNN(X). (31)

Using the tatum times t1:N+1, the max-pooling layer sum-
marizes the frame-level features e1:T into the tatum-level
features ē1:N (ēn = [ēn1, . . . , ēnF] ∈ R

F) as

ēnf = max
tn≤t<tn+1

etf . (32)

The RNN then converts the tatum-level features ē1:N into
intermediate features g1:N (gn ∈ R

D is a D-dimensional
vector) through a bidirectional long short-term memory
(BLSTM) layer and predicts the pitch and onset probabili-
ties ξn = (ξnk) ∈ R

K+1 and ζn through softmax and sigmoid
layers as follows:

g1:N = BLSTM(ē1:N), (33)

ξn = Softmax
(
Wpgn + bp

)
, (34)

ζn = Sigmoid
(
Wogn + bo

)
, (35)

whereWp ∈ R
(K+1)×D andWo ∈ R

1×D are weight matrices,
and bp ∈ R

K+1 and bo ∈ R are bias parameters.

F) Training model parameters

The parameters ψ , φ̄ini, φ̄, π ini, and π of the language
model are learned from training data of musical scores. The
metrical transition probabilities ψll′ are estimated as

ψll′ ∝ max(all′ − κ , 0)+ ε, (36)

where all′ is the number of transitions from metrical posi-
tions l to l′ appear in the training data, κ is a discount
parameter, and ε is a small value to avoid the zero count.
The initial and transition probabilities of pitches (φ̄ini and
φ̄) are estimated in the same way, by using the key signa-
tures. Although the initial and transition probabilities of
local keys (π ini and π) can be trained in the same way in
principle, a large amount of musical scores are necessary for
reliable estimation sincemodulations are rare. Therefore, in
this study, we manually set π ini to the uniform distribution
andπ to [0.9, 0.1/11, . . . , 0.1/11] such that the self-transition
probability π1 has a large value.

The parameters of the CRNN are trained by using paired
data of audio spectrograms and corresponding musical
scores. After converting the pitches and onset times into
the form P = p̄1:N and O = ō1:N , we apply the following
cross-entropy loss functions to train the CRNN:

Lpitch = −
N∑
n=1

K∑
k=0

δp̄n ,k log ξnk, (37)

Lonset = −
N∑
n=1

{
ōn log ζn + (1−ōn) log (1−ζn)

}
. (38)

G) Transcription algorithm
We can derive a transcription algorithm based on the con-
structed generative model. Using the tatum-level formula-
tion, equation (1) can be rewritten as

p(X, S,P,C) = p(X|P,C)p(P,C, S), (39)
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where the first factor on the right-hand side is given
by the CRNN as in equation (25) and the second fac-
tor by the SMM as in equation (24). Therefore, the inte-
grated generative model is a CRNN-HSMM hybrid model.
The most likely musical score can be estimated from the
observed spectrogram X by maximizing the probability
p(S,P,C|X) ∝ p(X, S,P,C), where we have used Bayes’ for-
mula. In equation, we estimate the optimal keys S∗ = s̄∗1:N ,
pitches P∗ = p̄∗

1:N , and counters C
∗ = c̄∗1:N at the tatum level

such that

S∗,P∗,C∗ = argmax p(X, S,P,C). (40)

The most likely pitches P∗ = p∗
1:J and onset times N

∗ = n∗
1:J

of musical notes can be obtained from P∗ and C∗. The
number of notes J is determined in this inference process.

1) Viterbi Algorithm
We can use the Viterbi algorithm to solve equation (40).
In the forward step, Viterbi variables ωn(qn), where qn ={
s̄n, p̄n, c̄n

}
, are recursively calculated as follows:

ω1(q1) = p(p̄1|X1)
βξ p(c̄0 = 1|X1)

βζ

p(p̄1, c̄0 = 1)βχ

× p(s̄1)βπ p(c1)βψp(p̄1|s̄1)βφ , (41)

ωn(qn) = max
qn−1

(
p(p̄n|Xn)

βξ p(c̄n−1|Xn)
βζ

p(p̄n, c̄n−1)βχ

× p(s̄n|s̄n−1)βπ p(c̄n|c̄n−1)βψ

× p(p̄n|p̄n−1, c̄n−1, s̄n)βφ
)
, (42)

where c̄0 = 1 was formally introduced in the initialization.
In the above equations, we have introduced weighting fac-
tors βπ , βφ , βψ , βξ , βζ , and βχ to balance the language
model and the acoustic model. In the recursive calculation,
qn−1 that maximizes the max operation is memorized as
prev(qn).

In the backward step, the optimal variables q∗
1:N are recur-

sively obtained as follows:

q∗
N = argmax

qN
ωN(qN), (43)

q∗
n = prev(q∗

n+1). (44)

2) Refinements
Musical scores estimated by theCRNN-HSMMtend to have
long durations because the accumulative multiplication of
pitch and onset time transition probabilities decreases the
posterior probability. This is known as a general problem
of the HSMM [11]. To ameliorate this situation, we penalize
long notes bymultiplying each of equations (41) and (42) by
the following penalty term:

f (c̄n−1, c̄n) =
{{

exp(1/c̄n)
}βη

(c̄n−1 = 1),
1 (c̄n−1 �= 1),

(45)

where βη ≥ 0 is a weighting factor.

To save the computational costs of the Viterbi algorithm
defined in the large product space qn = {s̄n, p̄n, c̄n} without
sacrifice of its global optimality, we limit the pitch space to
be searched as follows:

p̄n ∈
n+1⋃

n′=n−1
top3
0≤p≤K

(ξn′p), (46)

where top30≤p≤K(ξnp) represents the set of the indices p that
provide the three largest elements in {ξn0, . . . , ξnK}.

I V . EVALUAT ION

We report comparative experiments conducted for evaluat-
ing the proposed AST method. We compared the proposed
method with existing methods and examined the effective-
ness of the language model (Section IV-C)). We then inves-
tigated the AST performance of the proposed method for
music and singing signals with different complexities and
examined the influence of the beat tracking performance on
the AST performance (Section IV-D)).

A) Data
We used 61 popular songs with reliable melody annota-
tions [26] from the RWCMusic Database [27]. We split the
data into a training dataset (37 songs), a validation dataset
(12 songs), and a test dataset (12 songs), where the singers
of these datasets are disjoint. We also used 20 synthesized
singing signals obtained by a singing synthesis software
called CeVIO [28]; 12, 4, and 4 signals are added to the
training, validation, and test datasets, respectively.

To augment the training data for the acoustic model, we
added the separated singing signals obtained by Spleeter
[29] and the clean isolated singing signals. To cover a wide
range of pitches and tempos, we pitch-shifted the origi-
nal music signals by L semitones (−12 ≤ L ≤ 12) and ran-
domly time-stretched each of those signals with a ratio of R
(0.5 ≤ R < 1.5). The total number of songs in the training
data was 37× 25× 3 (real)+ 49× 25 (synthetic) = 4000.
Since the initial and transition probabilities of pitches
are key-transposition-invariant, the pitch shifting does not
affect the training of those probabilities. Therefore, we did
not apply data augmentations for training the language
model.

For each signal sampled at 22.05 kHz, we used a STFT
with a Hann window of 2048 points and a shifting interval
of 256 points (11.6 ms) for calculating the amplitude spec-
trogram on the logarithmic frequency axis having 5 bins
per semitone (i.e. 1 bin per 20 cents) between 32.7Hz (C1)
and 2093Hz (C7) [30]. We then computed the HCQT-like
spectrogramX by stacking the h-harmonic-shifted versions
of the original spectrogram, where h ∈ {1/2, 1, 2, 3, 4, 5} (i.e.
H = 6), and the lowest and highest frequencies of the h-
harmonic-shifted spectrogram are h × 32.7 Hz and h ×
2093 Hz, respectively.
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Fig. 5. Architecture of theCNN.Three numbers in the parentheses in each layer
indicate the channel size, height, and width of the kernel.

B) Setup
Inspired by the CNN proposed for frame-level melody F0
estimation [3], the frame-level CNN of the acoustic model
(Fig. 5) was designed to have six convolution layers with the
output channels of 128, 64, 64, 64, 8, and 1 and the kernel
sizes of (5, 5), (5, 5), (3, 3), (3, 3), (70, 3), and (1, 1), respec-
tively, where the instance normalization [31] and the Mish
function [32] are used. The output dimension of the tatum-
level BLSTM was set to D = 130× 2. The vocabulary of
pitches consisted of a rest and 128 semitone-level pitches
specified by the MIDI note numbers (K = 128).

To optimize the proposed CRNN, we used RAdam with
the parameters α = 0.001 (learning rate), β1 = 0.9, β2 =
0.999, and ε = 10−8. A weight decay (L2 regularization)
with a hyperparameter 10−5 and a gradient clipping with a
threshold of 5.0 were used for training. The weight parame-
tersWp andWo were initialized to random values between
−0.1 and 0.1. The kernel filters of the frame-level CNN
and the weight parameters of the tatum-level BLSTM were
initialized by He’s method [33]. All bias parameters were
initialized with zero.

Because of the limited memory capacity, we split the
spectrogram of each song into 80-tatum segments. The
CRNN’s outputs of those segments were concatenated for
the note estimation based on the Viterbi decoding. The
weighting factors βπ , βφ , βψ , βξ , βζ , and βη were opti-
mized for the validation data by using Optuna [34]. Con-
sequently,βπ = 0.541,βφ = 0.769,βψ = 0.619,βξ = 0.917,
βζ = 0.852, and βη = 0.609. We manually set the weight-
ing factor βχ to 0 based on the results of preliminary
experiments. The discounting value κ and small value ε in
equation (36) were set to 0.7 and 0.1, respectively.

The accuracy of estimated musical notes was measured
with the edit-distance-based metrics proposed in [24] con-
sisting of pitch error rateEp,missing note rateEm, extra note
rate Ee, onset error rate Eon, offset error rate Eoff , and overall
(average) error rate Eall.

C) Method comparison
To confirm the AST performance of the proposed method,
we compared the transcription results obtained by the

proposed CRNN-HSMM hybrid model, the HHSMM-
based method [11], and the majority-vote method. The
majority-vote method quantizes an input F0 trajectory in
semitone units, then determines tatum-level pitches by tak-
ing the majority of the quantized pitches at each tatum.
Since the majority-vote method does not estimate note
onsets, we concatenated successive tatums with the same
pitch to obtain a single musical note. The HHSMM-based
method does not estimate rests because it is difficult to
model the unvoiced frames in an F0 contour. To obtain rests
from the musical score estimated by the HHSMM-based
method, we removed the estimated musical notes if the
unvoiced frames occupied 90 and more of each musical
note.

To examine the effect of the language model, we also run
a method using only the CRNN as follows:

p∗
n = argmax

1≤p≤K
ξnp, (47)

o∗
n =

{
0 (ζn < 0.5),
1 (ζn ≥ 0.5).

(48)

To construct a musical score from the predicted symbols p∗
n

and o∗
n, we applied the following rules:

(i) If p∗
n−1 �= p∗

n, then the (n − 1) th and n th tatums are
included in different notes.

(ii) If p∗
n−1 = p∗

n and o∗
n = 1, then the (n − 1) th and n th

tatums are included in different notes having the same
pitch.

(iii) If p∗
n−1 = p∗

n and o∗
n = 0, then the (n − 1) th and n th

tatums are included in the same notes.

To evaluate the methods in a realistic situation, only the
mixture signals and the separated signals were used as test
data, and the tatum times were estimated by [7].

Results are shown in Table 1. For both the mixture and
separated signals, the proposed method and the CRNN
method outperformed the majority-vote method and the
HHSMM-basedmethod in the overall error rateEall by large
margins. This result confirms the effectiveness of using the
CRNN as the acoustic model. Comparing the Eall metrics
for the proposedmethod and the CRNNmethod, there was
a decrease of 2.33 percentage points (PP) for the mixture
signals and 1.62 PP for the separated signals. This result
indicates the positive effect of the language model. Espe-
cially, the significant decreases of the Eon and Eoff metrics
indicate that the language model is particularly effective
for reducing rhythm errors. The proposed method and
the CRNN method achieved better performances for the
separated signals than the mixture signals.

Transcription examples obtained by the different mod-
els are shown in Fig. 6 2. The musical score estimated by
the majority-vote method, which did not use a language
model, had many errors. In the musical score estimated
by the HHSMM-based method, whereas most notes had
pitches on the musical scale, repeated note onsets with the

2Other examples are available in the accompanying webpage: http://
sap.ist.i.kyoto-u.ac.jp/members/nishikimi/demo/apsipa-tsip-2020/

http://sap.ist.i.kyoto-u.ac.jp/members/nishikimi/demo/apsipa-tsip-2020/
http://sap.ist.i.kyoto-u.ac.jp/members/nishikimi/demo/apsipa-tsip-2020/
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Table 1. The AST performances of the different methods.

Method Signal F0 Tatums Ep() Em() Ee() Eon() Eoff () Eall()

CRNN-HSMM (proposed) mixture – [7] 8.34 13.50 13.70 24.45 23.06 16.61

” separated [29] ” ” 7.85 9.63 14.45 22.46 21.64 15.21
CRNN mixture – [7] 7.81 12.07 18.00 29.35 28.05 19.06

” separated [29] ” ” 8.56 8.60 17.57 31.12 27.21 18.61
HHSMM mixture [5] [7] 8.74 33.07 16.96 53.02 33.29 29.02

” separated [29] ” ” 9.81 31.80 15.79 52.68 31.79 28.38
Majority vote mixture [5] [7] 20.52 7.02 32.23 58.46 49.36 33.52

” separated [29] ” ” 20.55 7.69 32.90 59.38 50.63 34.23

Fig. 6. Examples of musical scores estimated by the proposed method, the CRNN method, the HHSMM-based method, and the majority-vote method from the
separated audio signals and the estimated F0 contours and tatum times. Transcription errors are indicated by the red squares. Capital letters attached to the red
squares represent the following error types: pitch error (P), rhythmerror (R), deletion error (D), and insertion error (I). Error labels are not shown in the transcription
result by the majority-vote method, which contains too many errors.

same pitches were not detected. In the result by the CRNN
method, which did not use a language model, we can see
thatmost pitches are on themusical scale unlike in the result
by the majority-vote method. This indicates the capacity
of the CRNN that some sequential constraints on musical
notes can be learned by the RNN.However, therewere some
errors in rhythms, which suggests the difficulty of learn-
ing rhythmic constraints by a simple RNN. Finally, in the
result by the proposed CRNN-HSMM method, there were
much fewer rhythm errors than the CRNN method, which
demonstrates the effect of the language model. The transi-
tion probabilities φ̄ and ψ are shown in Fig. 7. Figure 7(a)
shows that the transitions to the seven pitch classes on the C
major scale tend to occur frequently. Figure 7(b) shows that
the transitions to the 8th-note-level metrical positions tend
to occur frequently.

The end-to-end approaches to AST based on sequence-
to-sequence (seq2seq) learning have been studied [12, 13].
The RNN-based method [12] and the CTC-based method
[13] achieved low error rates (e.g. P(sub) = 0.006 and
Ep = 0.99) for synthetic signals. Similarly, as shown in
Table 2, the proposed method also achieved low error rates
(e.g. Ep = 0.42) for synthetic singing voices. Note that
these methods were not evaluated on the same real data we
used.

D) Influences of voice separation and beat
tracking methods
A voice separationmethod [29] and a beat-trackingmethod
[7] are used in the preprocessing step of the proposed

method, and errors made in this step can propagate to the
final transcription results. Here, we investigate the influ-
ences of those methods used in the preprocessing step.
We used the ground-truth tatum times obtained from
the beat annotations [26] to examine the influence of
the beat-tracking method. We used the isolated signals
for the songs in the test data to examine the influence
of the voice separation method. In addition, as a refer-
ence, we also evaluated the proposed method with the
synthetic singing voices. When tatum times were esti-
mated by the beat-tracking method [7] for the real sig-
nals, the mixture signals are used as input and the results
are used for the mixture, separated, and isolated sig-
nals. Since the synthesized signals are not synchronized to
the mixture signals, the beat-tracking method is directly
applied to the vocal signals to obtain estimated tatum
times.

Results are shown in Table 2. As for the influence of the
beat-tracking method, using the ground-truth tatum times
decreased the overall error rate Eall by 1.1 PP for the sepa-
rated signals and 1.3 PP for the isolated signals. This result
indicates that the influence of the beat-tracking method is
small for the data used. As for the influence of the voice
separation method, in both conditions with estimated and
ground-truth tatum times, Eall for the isolated signals were
approximately 3 PP smaller than that for the separated
signals. This result indicates that further refinements on
the voice separation method can improve the transcription
results by the proposed method.

Although the singing voice separation had both the
positive and negative impacts, as a whole, it improved
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Fig. 7. The transition probabilities φ̄ and ψ trained from the existing musical scores. The triangles indicate (a) the seven pitch classes on the C major scale and (b)
the eighth-note-level metrical positions.

Table 2. The AST performances obtained from the different input data.

Method Signal Tatums Ep() Em() Ee() Eon() Eoff () Eall()

CRNN-HSMM mixture ground-truth 7.30 13.81 14.76 24.46 22.80 16.62
separated [29] ” 7.89 8.42 13.18 21.81 20.24 14.31
isolated ” 6.68 6.64 8.56 16.81 16.47 11.03
synthesized ” 0.00 0.10 0.47 0.34 1.69 0.52
mixture [7] 8.34 13.50 13.70 24.45 23.06 16.61
separated [29] ” 7.85 9.63 14.45 22.46 21.64 15.21
isolated ” 6.83 6.55 10.31 19.17 18.79 12.33
synthesized ” 0.42 2.87 1.52 11.25 6.97 4.60

Fig. 8. Examples of musical scores obtained with and without singing voice separation when the ground-truth tatum times were used. The left and right figures
illustrate the positive and negative impacts of singing voice separation.

the transcription performances in most metrics. Espe-
cially, the missing note rates were decreased by 5.4 PP
and 3.9 PP when the ground-truth and estimated tatum
times were used, respectively. However, the pitch error
rates and the extra note rates were increased when the
ground-truth and estimated tatum times were used, respec-
tively. In addition, the performance gain obtained for the
separated signals was smaller than that for the isolated
signals. Figure 8 shows transcription examples obtained
for mixture and separated signals with the ground-truth
tatum times. In the left figure, the extra notes were elim-
inated successfully by suppressing the accompaniment
sounds. In the right figure, in contrast, the residual accom-
paniment sounds were wrongly recognized as melody
notes.

Finally, in both conditions with estimated and ground-
truth tatum times, the transcription error rates for the syn-
thesized signals were significantly smaller than those for
the real signals. This result confirms that the difficulty of
AST originates from the pitch and timing deviations in sung
melodies. The relatively large onset and offset error rates for
the case of using the estimated tatum times are due to the
difficulty of beat tracking for the signals containing only a
singing voice.

E) Discussion
Our results provide an important insight that a simple RNN
has a weak effect in capturing the rhythmic structure and
the language model that explicitly incorporates a rhythm
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model plays a significant role in improving the transcription
results. Whereas musical pitches can be inferred from local
acoustic features, in order to recognize musical rhythms, it
is necessary to look at durations or intervals of onset times,
which have extended structures in time. This non-local
feature of rhythms characterizes the difficulty ofmusic tran-
scription, which cannot be solved by simply applying DNN
techniques used for other tasks such as ASR. This resultmay
also explain why end-to-end methods that were successful
at ASR have not been so successful at music transcription
[12–15]. For example, the paper [13] reports low error rates
for monophonic transcription, but the method was only
applied to synthetic data without timing deviations.

To simplify the AST task, we imposed the following
restrictions on target songs in this study: the tatum unit
(minimal resolution of a beat) is a 16th-note length and the
meter of a target song is 4/4 time. Theoretically, we can relax
these restrictions by modifying the language model and
extend the presentmethod formore general target songs. To
include shorter note lengths and triplets, we can introduce
a shorter tatum unit, for example, a tatum corresponding to
one-third of a 32ndnote. To transcribe songs in othermeters
such as 3/4 time, we can construct one metrical Markov
model for each meter and estimate the meter of a given
song by themaximum likelihood estimation [24]. Although
most beat-tracking methods such as [7] assumes a constant
meter for each song, popular music songs often have mixed
meters (e.g. an insertion of a measure in 2/4 time), which
calls for a more general rhythm model. A possible solution
is to introduce latent variables representing meters (one for
each measure) into the language model and estimate the
variables in the transcription step.

The language model based on the first-order Markov
model was used in this study and it is possible to apply
more refined language models. A simple direction is to use
higher-order Markov models or a neural language model
based on RNN. While most language models try to cap-
ture local sequential dependence of symbols, using a model
incorporating a global repetitive structure is effective for
music transcription. To incorporate the repetitive structure
in a computationally tractable way, it is considered to be
effective to use a Bayesian language model [35].

Another important direction for refining the method
would be to integrate the voice separation and/or the beat
tracking with the musical note estimation method. A voice
separation method and a beat-tracking method are used
in the preprocessing step in the present method, and we
observed that errors made in the preprocessing step can
propagate to the transcription results. To mitigate the prob-
lem, multi-task learning of the singing voice separation and
the AST can also be effective in obtaining the singing voices
appropriate for the AST [5]. A beat-tracking method typ-
ically estimates beat times in the accompaniment sounds,
which can be slightly shifted from the onset times of the
singing voice due to the asynchrony between the vocal and
the other parts [36]. Therefore, it would be effective for AST
to jointly estimatemusical notes and tatum times thatmatch
the onset times of singing voices.

V . CONCLUS ION

This paper presented an audio-to-score AST method based
on a CRNN-HSMM hybrid model that integrates a lan-
guage model with a DNN-based acoustic model. The pro-
posedmethod outperformed themajority-votemethod and
the previously state-of-the-art HHSMM-basedmethod.We
also found that the language model has a positive effect
on improving the AST performance, especially in rhythmic
aspects.

The proposed approach of integrating the SMM-based
language model with the DNN-based acoustic model is
a general framework that can be applied to other tasks
of music transcription such as chord estimation, music
structure analysis, and instrumental music transcription.
It would be interesting to investigate how the proposed
methodworks on genres other than popularmusic. Another
interesting possibility is to integrate language models
[37, 38] and acoustic models [19, 39] that can deal with
chords for polyphonic piano transcription. Eventually,
based on the proposed framework, we aim to build a uni-
fied audio-to-score transcription system that can estimate
musical scores of multiple parts of popular music.
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