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A protection method of trained CNNmodel
with a secret key from unauthorized access
aprilpyone maungmaung and hitoshi kiya

In this paper, we propose a novel method for protecting convolutional neural network models with a secret key set so that unau-
thorized users without the correct key set cannot access trainedmodels. Themethod enables us to protect not only from copyright
infringement but also the functionality of a model from unauthorized access without any noticeable overhead. We introduce
three block-wise transformations with a secret key set to generate learnable transformed images: pixel shuffling, negative/positive
transformation, and format-preserving Feistel-based encryption. Protectedmodels are trained by using transformed images. The
results of experiments with the CIFAR and ImageNet datasets show that the performance of a protected model was close to that
of non-protected models when the key set was correct, while the accuracy severely dropped when an incorrect key set was given.
The protected model was also demonstrated to be robust against various attacks. Compared with the state-of-the-art model
protection with passports, the proposed method does not have any additional layers in the network, and therefore, there is no
overhead during training and inference processes.
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I . I NTRODUCT ION

Convolutional neural networks (CNNs) are a type of deep
neural network (DNN) inspired by the human visual sys-
tem. Recent advances in deep learning show that CNNs
have led to major breakthroughs in computer vision [1].
Impressively, the last ImageNet Large Scale Visual Recog-
nition Challenge (ILSVRC) in 2017 proved that the image
classification accuracy has surpassed the level of human
performance (i.e. error rate of 2.25). There is no doubt that
CNNs have dominated visual recognition systems in many
different applications.

However, training successful CNNs is very expensive
because it requires a huge amount of data and fast comput-
ing resources (e.g. GPU-accelerated computing). For exam-
ple, the ImageNet dataset contains about 1.2 million images,
and training on such a dataset takes days and weeks even
on GPU-accelerated machines. In fact, collecting images
and labeling them will also consume a massive amount of
resources. Moreover, algorithms used in training a CNN
model may be patented or have restricted licenses. There-
fore, trained CNNs have great business value. Considering
the expenses necessary for the expertise, money, and time
taken to train a CNNmodel, a model should be regarded as
a kind of intellectual property. While distributing a trained
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model, an illegal party may also obtain a model and use it
for its own service.

To protect the copyrights of trained models, researchers
have adopted digital watermarking technology to embed
watermarks into the models [2–9]. These studies focus on
identifying the ownership of a model in question. In real-
ity, a stolen model can be directly used by an attacker
without arousing suspicion. In addition, the stolen model
can be exploited in many different ways such as through
model inversion attacks [10] and adversarial attacks [11].
To the best of our knowledge, the consequences of a stolen
model have not been considered before inmodel protection
research except for ownership verification. In this paper, we
focus on protecting a model from misuse when it has been
stolen by taking inspiration from an adversarial defense.

Recently, a key-based adversarial defense was proposed
to combat adversarial examples [12, 13], which was in turn
inspired by perceptual image encryption methods, which
were proposed for privacy-preserving machine learning
[14] and encryption-then-compression systems [15–21]. The
uniqueness of the key for the model in [12, 13] motivated
us to use a key-based transformation technique for model
protection.

Therefore, for the first time, in this paper, we propose
a model protection method with a secret key set in such
a way that a stolen model cannot be used without a key
set. Specifically, the proposed method preprocesses input
imageswith a secret key set and trains amodel by using such
preprocessed images. The preprocessing technique used in
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the proposed method is a low-cost block-wise operation. In
addition, the proposed method does not modify the net-
work, and therefore, there is no overhead for both training
and inference time. In an experiment, the performance of a
model protected by the proposed method is demonstrated
not only to be close to that of a non-protected one when the
key set is correct but also to significantly drop upon using
an incorrect key set. We make the following contributions
in this paper.

• We demonstrate block-wise image transformation with a
secret key to be effective for model protection.

• We conduct extensive experiments on different datasets
including ImageNet and carry out key estimation attacks
and fine-tuning attacks.

The rest of this paper is structured as follows. Section II
presents related work on conventional model watermark-
ing, its problems and learnable image encryption (LIE).
Section III puts forward the proposed model protection
method. Experiments and results are presented in Section
IV. Section V includes discussion and analysis, and Section
VI concludes this paper. This paper is an extension of the
work in [22].

I I . RELATED WORK

We review the existing model watermarking schemes of
image classifiers and discuss problems with them. In addi-
tion, we also overview learnable encryption methods by
which the proposed method has been inspired.

A) Model watermarking
Digital watermarking technology is widely used to com-
bat copyright infringement for multimedia data [23]. An
owner embeds a watermark into multimedia content (such
as images, audio, etc.).When the protected content is stolen,
the embedded watermark is extracted and used to verify
ownership. In a similar fashion, to prevent the illegal dis-
tribution of DNNmodels, digital watermarking techniques
are used to embed watermarks into proprietary DNNmod-
els. There are mainly two scenarios in DNN model water-
marking: white-box and black-box.

A model watermarking scenario in white-box settings
requires access to model weights for embedding and
extracting a watermark. Uchida et al. first proposed a
white-box model-watermarking method [2]. A watermark
is embedded in one or more layers of model weights by
using “an embedding regularizer,” which is an additional
regularization term in the loss function during training.
Similarly, there are other studies that follow the use of an
additional regularization term as in [4, 6, 8].

Extracting watermarks in white-box settings requires
access to the model weights. To overcome this limitation,
another model watermarking scenario for black-box set-
tings was proposed, where an inspector observes the input
and output of a model in doubt to verify the ownership of

the model. In the black-box scenario, adversarial examples
are exploited as a backdoor trigger set [7, 9], or a set of
training examples is utilized so that a watermark pattern
can be extracted from the inference of a model by using
a specific set of training examples [3–5]. Therefore, access
to the model weights is not required to verify ownership in
black-box settings.

The above-mentioned model-watermarking schemes
focus on ownership verification. Thus, a stolen model can
be directly used and exploited without arousing suspicion
because the performance of a protected model (i.e. fidelity)
is independent of the embeddedwatermark. In contrast, the
proposed model protection is not a watermarking method,
and it is more relevant to authorization or digital rights
management because only the rightful user who has the cor-
rect key set can use amodel to full capacity. Although frame-
works for model watermarking and the proposed model
protection are different, they are both necessary for dealing
with digital rights management in different applications.

B) Model watermarking with passports
Fan et al. [4] pointed out that conventional ownership ver-
ification schemes are vulnerable against ambiguity attacks
[24] where two watermarks can be extracted from the same
protected model, causing confusion regarding ownership.
Therefore, Fan et al. [4] introduced passports and pass-
port layers, which allow us to verify ownership with the
correct passports. However, the passport in [4] is a set of
extracted features of a secret image/images or equivalent
random patterns from a pre-trained model. In addition, a
network has to be modified with additional passport layers
to use passports. Therefore, there are significant overhead
costs in both the training and inference phases, in addition
to user-unfriendly management of lengthy passports in [4].

In this paper, we aim to protect a model by embedding
a secret key with minimal impact on model performance.
Similar to the study in [4], a correct key is required for
correct inference. However, the proposed method does not
introduce any overhead in training or inference. Ownership
is automatically verified upon being given the correct key.

C) Learnable image encryption
LIE is to perceptually encrypt images to mainly protect
visual information on plain images while maintaining the
network ability to learn the encrypted ones for classifica-
tion tasks. Conventional LIEmethods are classified into two
classes in terms of application: LIE for privacy-preserving
deep learning [15, 16, 18, 25–28] and LIE for adversarial
robustness [12, 13].

LIE methods for privacy-preserving have two require-
ments: protecting visual information and maintaining a
high classification accuracy under the use of encrypted
images. In a block-wise manner, a color image is divided
into blocks, and each block is processed by using a series
of encryption with a common key to all blocks [15] or
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with different keys [25]. In a pixel-wise manner, nega-
tive/positive transformation to each pixel and color shuf-
fling across three channels are exploited to produce learn-
able encrypted images [16, 18]. In contrast, a transformation
network is trained in cooperationwith a pre-trained classifi-
cationmodel to generate images without visual information
on plain images. One such study utilized a generative adver-
sarial network [26]. To improve classification accuracy and
robustness against various attacks, transformation networks
have been proposed that use U-Net as in [27, 28].

LIE methods for adversarial defenses [12, 13] have three
requirements: a high classification accuracy, robustness
against adversarial attacks, and resistance to key estimation
attacks. The methods in this class do not aim to protect the
visual information of plain images. Instead, a key is used
to control the model’s decision. In this paper, we do not
propose a new encryption method. We adopt the methods
in [12, 13] for a new application, model protection, for the
first time. The proposed model protection method is car-
ried out on the basis of LIEmethods for adversarial defenses
[12, 13], but hyperparameters are carefully tuned for model
protection purposes. LIE methods have never been applied
to model protection applications. The contribution in this
paper is to introduce some conventional image encryption
algorithms into a model protection task.

I I I . PROPOSED MODEL -
PROTECT ION METHOD

A) Notation
The following notations are utilized throughout this paper:

• w, h, and c are used to denote the width, height, and
number of channels of an image.

• The tensor x ∈ [0, 1]c×h×w represents an input color
image.

• The tensor x′ ∈ [0, 1]c×h×w represents a transformed
image.

• M is the block size of an image.
• Tensors xb, x′b ∈ [0, 1]hb×wb×pb are a block image and a
transformed block image, respectively, where wb = w/M
is the number of blocks across width w, hb = h/M is the
number of blocks across height h, and pb = M ×M × c is
the number of pixels in a block.

• A pixel value in a block image (xb or x′b) is denoted
by xb(i, j, k) or x′b(i, j, k), where i ∈ {0, . . . , hb − 1}, j ∈
{0, . . . ,wb − 1}, and k ∈ {0, . . . , pb − 1} are indices corre-
sponding to the dimension of xb or x′b.

• B is a block of an image, and its dimension isM ×M × c.
• B̂ is a flattened version of block B, and its dimension is
1× 1× pb.

• K denotes a set of keys.
• A password required for format-preserving encryption,
which refers to encrypting in such a way that the output is
in the same format as its input, is denoted as password.

Fig. 1. Overview of image classification with proposed model protection
method.

• Enc(n, password)denotes format-preserving Feistel-based
encryption (FFX) [29] with a length of 3, where n is an
integer (used only in FFX encryption).

• An image classifier is denoted as f (·).

B) Requirements of proposed scheme
We consider a model protection scenario that aims to fulfill
the following requirements:

(i) Usability: A rightful user with key set K can access a
model without any noticeable overhead in both training
and inference time, and performance degradation. The
key management should be easy.

(ii) Unusability: Ideally, stolen models should not be usable
in any case without key setK. In addition, evenwhen the
adversary retrains a stolen model with a forged key set,
the performance of the model should heavily drop.

C) Overview
An overview of image classification with the proposed
method is depicted in Fig. 1. In the proposed model protec-
tion, input images are transformed by using secret key set
K before training or testing a model. Model f is trained by
using the transformed images. To test a trained model, test
images are also transformed with the same key set K before
testing.

The block-wise transformation consists of three steps:
block segmentation, block-wise transformation, and block
integration (see Fig. 2). The process of the block-wise trans-
formation is shown as follows.

(i) Block segmentation: The process of block segmenta-
tion is illustrated in Fig. 2.
• Step 1: An input image x is divided into blocks such
that {B11,B12, . . . ,Bhbwb}.

• Step 2: Each block in x is flattened to obtain
{B̂11, B̂12, . . . , B̂hbwb}.

• Step 3: The flattened blocks are concatenated in such
a way that the relative spatial location among blocks
in xb is the same as that among blocks in x.
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(ii) Block-wise transformation: Given a key set K, xb
is transformed by using a block-wise transformation
algorithm, t(xb,K). The transformed block image is
written as

x′b = t(xb,K). (1)

(iii) Block Integration: The transformed blocks in x′b are
integrated back to the original dimension (i.e. c×
h× w) in the reverse order to the block segmentation
process for obtaining a transformed image x′.

D) Block-wise transformation with secret key
We introduce three block-wise transformations: pixel shuf-
fling (SHF), negative/positive transformation (NP), and
FFX for realizing t(xb,K). We selected these three trans-
formations from among LIE methods for model protection
applications because the requirements of LIE methods for
these applications are expected to be similar to those for
adversarial defenses.

A set of keys K consists of one or more keys depending
on the desired number of transformations. For example, if
one transformation (SHF) is used,K = {α}, if two (SHF and
NP) are used, K = {α,β}, and if three (SHF, NP, and FFX)
are used, K = {α,β , γ }, where α is for SHF, β is for NP, and
γ is for FFX, respectively.

Key α is a permutation vector, and it is defined as

α = [α1, .,αk, .,αk′ , . . . ,αpb], αk ∈ {1, . . . , pb}, (2)

where αk �= αk′ if k �= k′.
Key β is a binary vector, and it is given by

β = [β1, . . . ,βk, . . . ,βpb], βk ∈ {0, 1}, (3)

where the value of the occurrence probability P(βk) is 0.5.
Key γ is defined as

γ = [γ1, . . . , γk, . . . , γpb], γk ∈ {0, 1}, (4)

where the value of the occurrence probability P(γk) is 0.5.
When SHF is used, x′b is obtained as:

x′b(i, j,αk) = xb(i, j, k). (5)

When NP is used, every pixel value in xb needs to be
at 255 scale with 8 bits (i.e. multiply xb by 255), and x′b is
obtained as:

x′b(i, j, k) =
{
xb(i, j, k) (βk = 0)
xb(i, j, k)⊕ (2L − 1) (βk = 1),

(6)

where ⊕ is an exclusive or (XOR) operation, L is the num-
ber of bits used in xb(i, j, k), and L = 8 is used in this paper.
After the transformation, every pixel value in x′b is converted
back to [0, 1] scale (i.e. divide x′b by 255).

When FFX is used, every pixel value in xb also needs to be
at 255 scale with 8 bits (i.e. multiply xb by 255). In addition,

FFXalso requires a password for FFX [29], and x′b is obtained
as:

x′b(i, j, k) =
{
xb(i, j, k) (γk = 0)
Enc(xb(i, j, k), password) (γk = 1).

(7)

Note that FFX [29] takes an integer value and outputs an
integer; therefore, pixel values should be at [0, 255] scale.
The pixel value xb(i, j, k) ∈ {0, 1, . . . , 254, 255} is encrypted
by FFX with a length of 3 digits to cover the whole range
from 0 to 255. Therefore, FFX transforms each pixel with
an integer value of ([0, 255] scale) into a pixel with an inte-
ger value of ([0, 999] scale), preserving the integer format.
Another notable thing is that a password for FFX can be
arbitrary, and the only important thing is the location of the
encrypted pixels that are determined by the key γ .

The overall block-wise transformation is detailed in
Algorithm 1. An example of images transformed by different
transformations is shown in Fig. 3. The three transforma-
tions (SHF, NP, and FFX) were confirmed to have different
performances in terms of classification accuracy and key
estimation attack in [12, 13], so these transformations are
compared again under model protection in this paper. In
particular, parameter M affects the classification accuracy
and resistance to key estimation attacks.

Algorithm 1 Block-wise transformation with secret key
Input: x,K
Output: x′
1: Divide x into blocks, {B11, . . . ,Bhbwb}
2: Flatten blocks to vectors, {B̂11, . . . , B̂hbwb}
3: Concatenate flattened blocks to obtain xb
4: // To transform xb given K
5: if SHF then
6: x′b← xb[:, :,α]
7: end if
8: if NP then
9: //Make pixel values be at 255 scale
10: xb← xb · 255
11: x′b[:, :,β]← 255− xb[:, :,β]
12: x′b← x′b/255
13: end if
14: if FFX then
15: //Make pixel values be at 255 scale
16: xb← xb · 255
17: x′b[:, :, γ ]← Enc(xb[:, :, γ ], password)
18: max← the maximum value of the encryption
19: x′b← x′b/max
20: end if
21: x′ ← Integrate blocks in x′b

E) Robustness against attacks
A threat model includes a set of assumptions such as an
attacker’s goals, knowledge, and capabilities. An attacker
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Fig. 2. Process of block-wise transformation.

Fig. 3. Example of block-wise transformed images (M = 4) with key set K. (a) Original. (b) SHF. (c) NP. (d) FFX. (e) SHF+ NP. (f) SHF+ FFX. (g) SHF+ NP+
FFX.

may steal a model to achieve different goals. In this paper,
we consider the attacker’s goal to be to make use of a stolen
model by estimating a key set or fine-tuning the stolen
model for different purposes. In this regard, we assume that
the attacker knows the transformation details such as the
block size and type of transformation, and a small subset
of the training dataset. Therefore, the attacker may observe
the accuracy of his or her test dataset to estimate a key set or
fine-tune the stolen model. We carry out the following pos-
sible attacks with the intent of stealing a model to evaluate
the robustness of the proposedmethod. In experiments, the
proposedmethod will be demonstrated to be robust against
attacks.

1) Key estimation attack
We consider a scenario where a model is stolen and trans-
formation details are known except the secret key. The key
may be estimated by brute-force checking possible keys. The
key spaceK of each transformation is given by

Kα(c×M ×M) = (c×M ×M)! (SHF), (8)

Kβ(c×M ×M) = 2(c×M×M) (NP), and (9)

Kγ (c×M ×M) = 2(c×M×M) (FFX). (10)

Therefore, the key space will vary with respect to block
size M and the type of block-wise transformation used for
protecting a model.

The attacker may estimate the key heuristically by
observing the accuracy over a batch of images. Algorithm 2
describes the process of estimating key set K. First, we ran-
domly initialize key set K ′ = {α′,β ′, γ ′} in accordance with
the transformation. Next, we also initialize a set of index
pairsP asP = {(1, 2), (1, 3), . . . , (c×M ×M − 1, c×M ×

M)} for keys α′, β ′, or γ ′. The number of all possible combi-
nations of pairs for each key can be computed as a binomial
coefficient given by

|P| = nCr = n!
r!(n− r)!

, (11)

where n = c×M ×M, and r = 2. For each index pair, we
swap the pair in α′, β ′, or γ ′ if the swap improves the
accuracy as shown in Algorithm 2.

Key estimation attacks do not guarantee that the attacker
will find the correct key because the attacker does not know
the actual performance of the correct key. However, the
attacker may perform fine-tuning attacks to exploit a stolen
model as below.

2) Fine-tuning attack with incorrect key set
and small dataset
Fine-tuning (transfer learning) [30] is to train a model
on top of pre-trained weights. Since fine-tuning alters the
weights of the model, an attacker may use fine-tuning as an
attack to overwrite a protectedmodelwith the intent of forg-
ing keys. The goal of this attack is to replace the key set with
a different key set by retraining a protected model with a
small subset of a dataset. We can consider such an attack
scenario where the adversary has a subset of dataset D′ and
retrains the model with a forged key set (K ′).

3) Fine-tuning attack with new dataset
We assume an attacker may steal a protected model and
fine-tune the model with a new dataset. The goal of this
attack is to replace a protected model with an unprotected
one without any key by using transfer learning.

In practice, CNNs are not trained from the beginning
with random weights because creating a large dataset like
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Algorithm 2 Key estimation
Input: Input images with labels
Output: K ′
1: InitializeK ′ = {α′,β ′, γ ′} in accordance with the trans-
formation

2: Initialize P = {(1, 2), (1, 3), . . . , (i, j), . . . , (c×M ×
M − 1, c×M ×M)}

3: accuracy← Calculate accuracy of input images
4: for Each index pair (i, j) in P do
5: if SHF then
6: (α′i ,α

′
j)← (α′j ,α

′
i)

7: current_accuracy← Calculate accuracy of input
images

8: if current_accuracy > accuracy then
9: accuracy← current_accuracy
10: else
11: (α′i ,α

′
j)← (α′j ,α

′
i)

12: end if
13: end if
14: if NP then
15: (β ′i ,β

′
j )← (β ′j ,β

′
i )

16: current_accuracy← Calculate accuracy of input
images

17: if current_accuracy > accuracy then
18: accuracy← current_accuracy
19: else
20: (β ′i ,β

′
j )← (β ′j ,β

′
i )

21: end if
22: end if
23: if FFX then
24: Swap γ ′i with γ ′j in key γ ′

25: (γ ′i , γ
′
j )← (γ ′j , γ

′
i )

26: current_accuracy← Calculate accuracy of input
images

27: if current_accuracy > accuracy then
28: accuracy← current_accuracy
29: else
30: (γ ′i , γ

′
j )← (γ ′j , γ

′
i )

31: end if
32: end if
33: end for

ImageNet is difficult and expensive. Therefore, CNNs are
usually pre-trained with a larger dataset (e.g. ImageNet),
known as transfer learning [30]. There are two major
transfer-learning scenarios:

• Fixed CNN: A pre-trained CNN model is used as a fixed
feature extractor, and the last fully connected layer is
replacedwith a targeted number of classes. In otherwords,
convolutional layers are frozen, and only the last fully con-
nected layer is trained with random initialization from
scratch.

• Fine-tuned CNN: In this scenario, the CNN is fine-tuned
from a pre-trained model. Here, it is possible that some
convolutional layers can be fixed or thewholeCNN is fine-
tuned.

I V . EXPER IMENTS AND RESULTS

To verify the effectiveness of the proposed model protec-
tion method, we ran a number of experiments on different
datasets. All the experiments were carried out in PyTorch
[31] platform.

A) Datasets
We conducted image classification experiments on datasets
with different scales, namely, the CIFAR (both 10 and 100
classes) [32] and ImageNet [33] datasets.

For the CIFAR-10 and CIFAR-100 datasets, we used a
batch size of 128 and live augmentation (random crop-
ping with padding of 4 and random horizontal flip) on
training sets. Both datasets consist of 60 000 color images
(dimensions of 32× 32× 3) where 50 000 images are for
training and 10 000 for testing. There are 10 classes (6000
images for each class) for the CIFAR-10 dataset and 100
classes (600 images for each class) for the CIFAR-100
dataset.

ImageNet comprises 1.28 million color images for train-
ing and 50 000 color images for validation.We progressively
resized images during training, starting with larger batches
of smaller images to smaller batches of larger images. We
adapted three phases of training from the DAWNBench top
submissions as mentioned in [34]. Phases 1 and 2 resized
images to 160 and 352 pixels, respectively, and phase 3 used
the entire image size from the training set. The augmenta-
tionmethods used in the experiment were random resizing,
cropping (sizes of 128, 224, and 288, respectively, for each
phase), and random horizontal flip.

B) Networks
We utilized deep residual networks [35] with 18 layers
(ResNet18) and trained for 200 epochs with cyclic learning
rates [36] and mixed precision training [37] for the CIFAR
datasets. The parameters of the stochastic gradient descent
(SGD) optimizer were a momentum of 0.9, weight decay
of 0.0005, and maximum learning rate of 0.2. For the Ima-
geNet dataset, we used ResNet50 with pre-trained weights.
We adapted the training settings from [34] with the removal
of weight decay regularization from batch normalization
layers. The network was trained for 15 epochs in total for
the ImageNet dataset.

C) Classification performance
We trained protected models by using images trans-
formed by various transformations (both single and com-
bined transformations) with different block sizes (i.e. M ∈
{2, 4, 8, 16}) on three different datasets (CIFAR-10, CIFAR-
100, and ImageNet). The models are named after the short-
hand of the respective transformations. For example, the
model trained by using images transformed by SHF trans-
formation is denoted as SHF, that by NP transformation as
NP, and so on. We tested the protected models under three
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Table 1. Accuracy () of protected models and baseline model for three datasets

CIFAR-10 CIFAR-100 ImageNet

Correct Incorrect Correct Incorrect Correct Incorrect
Model (K) (K ′) Plain (K) (K ′) Plain (K) (K ′) Plain

M = 2 SHF 94.76 36.36 31.43 77.03 8.6 6.09 73.00 46.57 40.35
NP 95.32 18.44 13.91 77.88 2.19 1.19 73.04 6.53 0.98
FFX 93.80 15.69 38.84 74.36 3.41 11.50 72.43 0.12 0.23
SHF+ NP 94.50 20.65 11.79 76.76 2.52 1.49 72.90 4.87 1.12
SHF+ FFX 93.02 15.3 19.60 73.17 2.77 5.24 72.30 0.47 0.19
SHF+ NP+ FFX 92.82 14.03 18.69 73.08 1.46 1.94 71.96 0.16 0.18

M = 4 SHF 92.58 20.23 27.77 72.05 4.9 5.85 72.41 13.06 32.98
NP 93.41 12.67 12.17 73.11 1.32 1.62 72.63 0.68 0.36
FFX 92.29 18.38 37.06 69.92 3.9 12.73 72.17 0.15 0.15
SHF+ NP 92.37 12.11 12.35 71.27 1.35 1.93 72.15 0.21 0.25
SHF+ FFX 90.71 12.31 20.75 68.48 1.85 4.16 71.96 0.14 0.17
SHF+ NP+ FFX 90.50 10.6 13.10 68.20 1.09 1.53 71.68 0.12 0.16

M = 8 SHF 86.40 17.0 14.42 62.18 2.2 2.87 70.85 1.25 11.74
NP 91.54 71.35 79.51 67.07 1.8 1.65 71.83 0.26 0.12
FFX 92.00 47.07 37.25 69.60 9.66 11.12 71.46 0.3 0.09
SHF+ NP 86.47 12.16 14.75 62.75 1.42 1.56 71.14 0.19 0.86
SHF+ FFX 86.01 11.81 15.20 61.37 1.29 1.70 70.77 0.11 0.14
SHF+ NP+ FFX 85.49 10.23 10.31 60.96 1.06 1.02 70.18 0.1 0.11

M = 16 SHF 77.24 10.57 13.36 50.87 1.39 1.36 67.03 0.23 4.22
NP 92.68 88.27 89.00 70.68 48.17 47.38 70.19 0.97 5.52
FFX 91.38 72.91 29.35 69.78 34.92 9.19 69.24 2.07 0.14
SHF+ NP 77.52 10.66 11.70 50.33 1.0 1.02 67.50 0.11 0.18
SHF+ FFX 76.28 10.2 12.79 49.53 1.21 1.45 63.75 0.16 0.13
SHF+ NP+ FFX 75.78 10.0 9.92 49.63 1.0 1.04 63.43 0.09 0.12
Baseline 95.45 (not protected) 77.67 (not protected) 73.70 (not protected)

Best results are given in bold.

conditions: with correct key setK, with incorrect key setK ′,
and with plain images (without any transformation).

In the experiments, the correct keys were generated by
using a random number generator from the PyTorch plat-
form [31] with a seed value of 42 (64-bit integer), and we
used a publicly available library for FFX (pyffx [38]) with
the password string “password.” The incorrect keys were
also generated by using the same random number genera-
tor from the PyTorch platform [31] with 1000 random seed
values (64-bit integer).

Table 1 summarizes the simulation results for all three
datasets, where the classification accuracy for incorrect key
set K ′ was averaged over 1000 random key sets.

SHF: for SHF, as block size M was increased, the
classification accuracy decreased when using correct key
set K. Under the use of incorrect key set K ′ or plain
images, the accuracy significantly dropped as block size M
was increased, suggesting resistance against unauthorized
access. Therefore, the selection of M controls the trade-off
between classification accuracy and resistance against illegal
usage.

NP, FFX: for NP, the highest accuracy values were
achieved for all transformations on all the datasets for
each block size with correct key set K. When using M =
8 or 16 on the CIFAR-10 and CIFAR-100 datasets, NP
had the highest accuracy, and FFX had the second high-
est accuracy under the use of incorrect key set K ′ or
plain images except for M = 8 on the CIFAR-100 dataset.

In contrast, on ImageNet, the accuracy was significantly
low for both NP and FFX under the use of incorrect key
set K ′ or plain images because the size of the images in
the ImageNet dataset is larger than that of CIFAR-10 and
CIFAR-100.

Combined: the models with combined transformations
such as SHF + NP and SHF + FFX decreased the classi-
fication accuracy, compared with those with NP and FFX,
when using M = 8 or 16. Under the use of incorrect key
set K ′ or plain images, the accuracy severely dropped for all
block sizes. The advantage of a combined transformation is
that it can increase the key space, but it slightly reduces the
classification accuracy.

From the empirical results, generally, the performance
of an incorrect key set depends on the number of classes
in a dataset. When using a dataset with a large number of
classes such as CIFAR-100 and ImageNet, the accuracy of
the incorrect key set was low due to difficulty in classify-
ing images transformed by using an incorrect key set or
plain images. In summary, the proposedmethod had a high
classification accuracy (i.e. close to baseline accuracy) when
correct key setK was given. In contrast, the accuracy deteri-
orated significantly when using incorrect key setK ′ or plain
images. Since models with M = 4 provided a good trade-
off between classification accuracy and resistance against
unauthorized access, we focused onM = 4 in the following
sections to further evaluate against attacks on the CIFAR-10
and CIFAR-100 datasets.
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Table 2. Accuracy () of protected models (M = 4) under use of
estimated key set K ′

CIFAR-10 CIFAR-100
Model Estimated (K ′) Estimated (K ′)

SHF 25.66 10.20
NP 37.44 8.78
FFX 80.97 49.18
SHF+ NP 14.53 2.78
SHF+ FFX 15.04 2.36
SHF+ NP+ FFX 11.00 1.47

D) Robustness against key estimation attack
The proposed method was evaluated in a scenario involv-
ing a key estimation attack in accordance with Algorithm
2. As described in Section III-E)-1), elements in each key
were rearranged in accordance with the improvement in
accuracy, and the resulting estimated key set K ′ was used
to evaluate the performance of the protected models.

Table 2 captures the classification performance of the
models under the use of estimated key setK ′ on the CIFAR-
10 and CIFAR-100 datasets. The estimated keys were not
good enough to provide a reasonable accuracy except for
FFX, which replaces a pixel value with a random value
by using a password, so the encrypted pixel value con-
tains almost no information. Therefore, the location of the
un-encrypted pixel values plays an important role in the
model’s decision-making process, as the encrypted pixel
values are not important. This property helps an attacker
to effectively find a good key when performing key esti-
mation attacks (Algorithm 2). In contrast, in the other two
transformations (SHF and NP), transformed pixel values
have some information, and both positions of un-encrypted
pixels and pixel values are important. Therefore, the indica-
tion to search for a good key was difficult for SHF and NP
compared to FFX.

E) Robustness against fine-tuning attack with
incorrect key and small dataset
Weran an experimentwith different sizes for the adversary’s
dataset (i.e.

∣∣D′∣∣ ∈ {100, 500, 1000, 10 000}) for the CIFAR-
10 and CIFAR-100 datasets. We retrained the models with
D′ for 30 epochs. Table 3 shows the results of fine-tuning
attacks for both datasets. Table 1 shows the performance of
the incorrect key set before the model weights were modi-
fied. In contrast, fine-tuning with

∣∣D′∣∣ = 100 modified the

Table 4. Accuracy () of protected models under fine-tuning attacks
with new dataset (CIFAR-100 to CIFAR-10) for fixed CNN and

fine-tuned CNN

Fixed Fine-tuned
Model CNN CNN

SHF 44.14 83.46
NP 36.70 83.52
FFX 52.29 86.18
SHF+ NP 37.67 82.40
SHF+ FFX 37.00 79.67
SHF+ NP+ FFX 26.47 71.10
Plain 72.85 90.60

weights. Therefore, the models in Table 1 are different from
those in Table 3, so the accuracy was not equal to that of the
incorrect key set in Table 1.

Although the accuracy improved with respect to the size
of the adversary’s dataset, it was still lower than the per-
formance of the correct key set K as presented in Table 1.
Therefore, the results show that the compromised mod-
els were not as good as the original models, even when
fine-tuning with a small subset of a dataset. As a result,
the attacker is not able to use the model to full capacity,
suggesting robustness against this type of attack.

F) Robustness against fine-tuning attack with
new dataset
Wesimulated this attack scenario by fine-tuning theCIFAR-
100 to the CIFAR-10 under both conditions (fixed CNN and
fine-tuned CNN). We fine-tuned the CIFAR-100 model for
25 epochs. The parameters of the SGD optimizer were a
learning rate of 0.001 and amomentum of 0.9, and a StepLR
scheduler was used with a step size of 7 and a gamma value
of 0.1.

Table 4 shows the results of fine-tuning the CIFAR-
100 dataset to the CIFAR-10 dataset. Training only the last
layer (fixed CNN) did not provide good accuracy even for
the non-protectedmodels (plain). However, for “fine-tuned
CNN,” the non-protected (plain) model was fine-tuned to
an accuracy of 90.60, which was closer to the baseline
accuracy (i.e. 95.45). In contrast, the fine-tuned accuracies
of the protected models were lower (83.46 for SHF, 83.52
for NP, and 86.18 for FFX) than that of the plain model.
For the fine-tuned CNN, the results show that the protected
models were still transferable, although this was not as good
as fine-tuning from the non-protected models.

Table 3. Accuracy () of protected models under fine-tuning attacks with incorrect key and small dataset

CIFAR-10 CIFAR-100

Model
∣∣D′∣∣ = 100

∣∣D′∣∣ = 500
∣∣D′∣∣ = 1000

∣∣D′∣∣ = 10000
∣∣D′∣∣ = 100

∣∣D′∣∣ = 500
∣∣D′∣∣ = 1000

∣∣D′∣∣ = 10000

SHF 12.69 38.33 46.73 86.31 2.65 8.52 12.30 58.99
NP 10.57 37.25 47.41 87.06 3.00 8.19 11.57 60.70
FFX 10.15 32.30 40.52 86.04 1.00 6.58 9.62 58.64
SHF+ NP 14.03 37.50 46.36 85.37 2.70 7.88 11.77 57.80
SHF+ FFX 12.54 46.28 55.11 83.74 2.54 18.21 29.83 56.14
SHF+ NP+ FFX 11.15 39.59 48.13 83.27 3.23 12.09 24.14 54.51



a protection method of trained cnn models with secret key from unauthorizedaccess 9

Table 5. Comparison of proposed protected model NP and state-of-the-art passport-protected model in terms of classification accuracy () for CIFAR
datasets

Model
Correct

K/Passports
Estimated

K ′/Passports Training overhead Inference overhead
Network

modification Key management

CIFAR-10
NP (Proposed) 93.41 37.44 Negligible Negligible No Easy
Scheme V1 [4] 94.62 70.00 15–30 [4] 10 [4] Yes Difficult

CIFAR-100
NP (Proposed) 73.10 8.78 Negligible Negligible No Easy
Scheme V1 [4] 75.52 35.00 15–30 [4] 10 [4] Yes Difficult

G) Comparison with state-of-the-art methods
Both watermarking and encryption algorithms can be used
to protect the copyright of digital products, but the former
is imperceptible, while the latter is ameans of direct encryp-
tion. It is difficult to compare both approaches in terms of
their aims and robustness against attacks. In particular, in
conventional model watermarking methods, the embedded
watermark is independent of model performance. There-
fore, we compared the proposed protectedmodel (NP) with
the state-of-the-art passport protected model, Scheme V1
[4] in terms of classification accuracy with/without cor-
rect key/passports, overheads, network modification and
key management, for both the CIFAR-10 and CIFAR-100
datasets. Scheme V1 [4] was not trained and tested using the
same settings as the proposed method because the network
in V1 was modified with passport layers and the hyperpa-
rameters were based on the modified network. In contrast,
the proposed method used a standard ResNet18 and was
trained with cyclic learning rates [36] and mixed precision
training [37].

CIFAR-10: In terms of accuracy when the correct
key/passport was given, the accuracy of V1 was slightly
higher than that of NP at 1.21. However, it was confirmed
that if block sizeM = 2 was used, NP achieved higher accu-
racy than V1 (i.e. 95.32). When estimated incorrect key set
was given, the accuracy of NP significantly dropped. In con-
trast, when reverse-engineered (i.e. estimated) passports
were used, the accuracy of V1 was high (70).

CIFAR-100: Similarly, for CIFAR-100, the accuracy of V1
was also slightly higher. However, when an estimated key
was given, the proposed method was more resistant than
V1.

In terms of overhead, V1 modifies a network with addi-
tional passport layers; therefore, it introduces a training and
inference overhead for both datasets. The overheads in [4]
are based on the relative recorded time taken as mentioned
in the paper by the original authors. In contrast, the pro-
posed model NP does not have any noticeable overhead,
and there is nomodification in the network for both datasets
[4]. Moreover, the block-wise transformation in the pro-
posedmodel protection can be efficiently implementedwith
vectorized operations; therefore, pre-processing with the
block-wise transformation does not cause any noticeable
overheads in both training and testing. From a key man-
agement perspective, V1 requires a trained model to gener-
ate passports, and the proposed model NP does not need

any model to generate keys. Therefore, the key manage-
ment of the proposedmethod is simple and straightforward
(Table 5).

V . ANALYS IS AND D ISCUSS ION

In this section, we analyze the block-wise transforma-
tions utilized in the proposed model-protection method
in terms of pixel correlation and key sensitivity. Then, we
discuss possible key improvement, the selection of trans-
formations, and the application range of the proposed
scheme.

A) Image correlation analysis
To gain insights into the classification performance of
block-wise transformed images, we carried out adjacent
pixel correlation tests on a test image, “dog,” in the hori-
zontal, vertical, and diagonal directions as shown in Fig. 4.
From the figure, all transformations were confirmed to
maintain some correlation between pixels differently. The
pixel correlation distribution of the image transformed by
SHF was similar to that of the plain image. For NP and
FFX, the pixel correlation distributions were different from
that of the plain image. In addition, the pixel correlation of
FFXwas slightly weak due to the use of FFX, comparedwith
the other ones, so this property might have caused a lower
accuracy than those of the other transformations in Table 1.
Accordingly, there is some correlation between pixels in
the transformed images, so block-wise transformations can
achieve a high classification accuracy.

B) Key sensitivity test
We carried out key sensitivity tests for models with M = 4
and 8 on the CIFAR-10 and CIFAR-100 datasets. We define
key sensitivity as the difference in accuracy between the cor-
rect key set and the modified key set (i.e. the correct key set
with a small change), which is given by

Key Sensitivity = ACC− ACC′, (12)

where ACC is the classification accuracy with a correct key
set, and ACC′ is that with a key set that has a small change
from the correct key set.

To make a small change, we swapped two random ele-
ments in the correct key for SHF, and one element in the
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Fig. 4. Horizontal, vertical, and diagonal correlation test results for plain image and images transformed by SHF, NP, and FFX (M = 4). (a) represents horizontal,
vertical, and diagonal correlation distribution of plain image, (b) represents that of image transformed by SHF, (c) represents that of image transformed by NP, and
(d) represents that of image transformed by FFX.

correct key was flipped for NP and FFX (i.e. “0” to “1” and
“1” to “0”). Table 6 shows the result of the key sensitiv-
ity tests, where the values in the table were averaged over
c×M ×M times to cover changes in the different posi-
tions of the keys. From the results, we observed that low key

sensitivity values reflected a higher accuracy for the incor-
rect keys, and high ones corresponded to a lower accuracy
for the incorrect ones, as shown in Table 1. The key sensitiv-
ity in the table gives some insights into the difference among
transformations.
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Table 6. Key sensitivity of various transformations withM = 4 and 8

CIFAR-10 CIFAR-100

Transformation M = 4 M = 8 M = 4 M = 8

SHF 1.79 0.31 4.5 0.34
NP 9.68 0.11 18.9 1.97
FFX 5.17 0.29 10.43 0.52
SHF+ NP 3.8 0.59 7.68 1.04
SHF+ FFX 5.15 0.67 8.63 1.04
SHF+ NP+ FFX 5.65 0.72 10.13 1.06

C) Discussion
Key improvement: When M = 2, the key space for the
block-wise transformations is relatively small, so brute force
attacks are possible. To improve the key space, there are two
ways: (1) to use a larger block size such as 8× 8, 8× 4, etc.
and (2) to use a combined transformation such as SHF +
NP or SHF + FFX. Note that a value of M affects not only
the key space but also the classification accuracy and key
sensitivity. Accordingly, users are requested to find a good
trade-off among them.

Selection of transformations: Classification accuracy
and model protection performance depend on the type of
transformation and block size M. We recommend the fol-
lowing selection of transformations accordingly. When a
higher classification accuracy is required, NP or a combined
transformation such as SHF + NP or SHF + FFX with a
small block size M is recommended. When higher protec-
tion performance is preferred, a larger M with SHF or a
combined transformation is suitable.

Application range: In this paper, the proposed model-
protection method focuses on image classification tasks
because the three encryptionmethods used in this paper are
designed for image classification tasks. When these encryp-
tion methods are applied to other tasks such as image seg-
mentation and image retrieval, the performance may drop
compared with that of using plain images. Therefore, the
proposedmodel protection is limited to image classification
tasks, and novel image transformations are expected to be
designed for applying other tasks.

V I . CONCLUS ION

Weproposed amodel protectionmethod that utilizes block-
wise transformations with a secret key set to transform
input images. Specifically, the transformation methods are
pixel shuffling, negative/positive transformation, and FFX.
The performance accuracy of a protected model was closer
to that of a non-protected model when the key set was cor-
rect, and it dropped drastically when an incorrect key set
was given, suggesting that a protected model is not usable
evenwhen themodel is stolen. The proposedmethod is also
applicable to large datasets like the ImageNet dataset, which
has never been tested by previous model-protection meth-
ods. Moreover, the proposed model-protection method
does not introduce any overhead in both training and infer-
ence time. It is also robust against fine-tuning attacks in

which the adversary has a small subset of a training dataset
to adapt a new forged key set and key estimation attacks.
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