
APSIPA Transactions on Signal and Information Processing, 2022, 11, e1
This is an Open Access article, distributed under the terms of the Creative Commons 
Attribution licence (http:// creativecommons.org/ licenses/ by-nc/ 4.0/ ), which permits un-
restricted re-use, distribution, and reproduction in any medium, for non-commercial use, 
provided the original work is properly cited.

Overview Paper

Recent Advances on Non-Line-of-Sight
Imaging: Conventional Physical Models,
Deep Learning, and New Scenes
Ruixu Geng1, Yang Hu2* and Yan Chen3

1School of Information and Communication Engineering, University of 
Electronic Science and Technology of China, Chengdu 611731, China 
2School of Information Science and Technology, University of Science and 
Technology of China, Hefei 230026, China
3School of Cyber Science and Technology, University of Science and 
Technology of China, Hefei 230026, China

ABSTRACT

As an emerging technology that has attracted huge attention, non-line-of-
sight (NLOS) imaging can reconstruct hidden objects by analyzing the
diffuse reflection on a relay surface, with broad application prospects in
the fields of autonomous driving, medical imaging, and defense. Despite
the challenges of low signal-to-noise ratio (SNR) and high ill-posedness,
NLOS imaging has been developed rapidly in recent years. Most current
NLOS imaging technologies use conventional physical models, construct-
ing imaging models through active or passive illumination and using
reconstruction algorithms to restore hidden scenes. Moreover, deep
learning algorithms for NLOS imaging have also received much attention
recently. This paper presents a comprehensive overview of both conven-
tional and deep learning-based NLOS imaging techniques. Besides, we
also survey new proposed NLOS scenes, and discuss the challenges and
prospects of existing technologies. Such a survey can help readers have
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an overview of different types of NLOS imaging, thus expediting the
development of seeing around corners.

Keywords: Non-line-of-sight (NLOS), deep learning, active NLOS imaging,
passive NLOS imaging.

1 Introduction

With the rapid development of photon-sensitive sensors and imaging algorithms,
optical imaging capabilities have been greatly improved in recent years. Within
the line of sight, high-quality imaging can be achieved at a relatively long
distance. However, due to the inherent physical constraint of visible light,
traditional optical imaging is difficult to see objects outside the line of sight.
To break that restriction, non-line-of-sight (NLOS) imaging analyzes the
diffuse reflection from a relay wall to image hidden objects, which has broad
applications in many fields, such as medical imaging, autonomous driving, and
robotic vision [81, 65].

According to whether a controllable light source is used, NLOS imaging
can be divided into active imaging and passive imaging. Active NLOS imaging
often uses expensive external light sources with high temporal resolution
(e.g., ultrafast laser) to illuminate the diffuse relay surface. Simultaneously,
a sensitive time-resolved detector is used to detect the light reflected on the
relay surface, hidden objects, and relay surface in sequence. The collected
effective light is often referred to as the three-bounce light since it is reflected
by three surfaces (relay surface, hidden objects, and relay surface) in succession.
Then, the collected three-bounce light is analyzed by different algorithms (e.g.,
backprojection [111, 4], inverse methods [35] and wave-based methods [61,
64]) to reconstruct the hidden scene. Since the active methods can collect
different kinds of information, including intensity, time, and coherence, the
active methods can perform a high-resolution 3D reconstruction. On the other
hand, passive methods do not use a controllable external light source but use
ambient light or light emitted by hidden objects to complete NLOS imaging.
Despite the low cost, passive methods usually can only collect intensity [94]
or limited coherence information [7, 11] and usually complete low-quality 2D
reconstruction or localization, while a few recent works can estimate both
hidden shape and depth with partial occluder [93, 96].

Four typical NLOS imaging setups are shown in Figure 1, and there are
many challenges when realizing the NLOS imaging. First, due to the high-order
loss with distance and environmental noise during the light transport process,
NLOS imaging is an ill-posed problem with low SNR, making high-quality
reconstruction extremely difficult [106]. Different hidden scenes may produce
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Figure 1: Four typical NLOS imaging setups.

the same measurement, which deepens the ill-posedness of the problem [63].
Second, the spatial resolution of the reconstruction result is limited by the
size of the scanning area (aperture size) and the system’s temporal resolu-
tion. When the size of the hidden scene is large or complex, the spatial
resolution will be limited by the computational complexity [81]. Third, the
data collection time is too long [116]. Typical time-resolved NLOS imaging
needs a scanning process to obtain data, making it difficult to reconstruct in
real-time with high quality. Although array detectors (e.g., SPAD array) are
promising to eliminate the scanning process [42], they have not yet been fully
explored.

Despite the difficulties, many emerging innovative methods have achieved
NLOS imaging under certain scenarios in recent years. Figure 2 summarizes
recent NLOS imaging research. It can be seen that the conventional methods
based on physical imaging models are still the mainstream of research in
recent years. Conventional methods rely on imaging setup and illumination
(e.g., active or passive), which are committed to developing three factors in
NLOS imaging: advanced hardware systems, accurate forward imaging models
and effective reconstruction algorithms. For example, [114] deployed confocal
settings and dual-telescope to complete an amazing 1.43 km NLOS imaging.
Liu et al. exploited the phasor field to convert NLOS imaging model to LOS
imaging model [65, 64], thus achieving high-quality reconstruction of complex
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Figure 2: An overview of NLOS imaging.

scenes. [81] subtly converted NLOS reconstruction into a three-dimensional
deconvolution problem. All these works have greatly promoted the development
of NLOS imaging.

Besides conventional methods, the application of deep learning in NLOS
imaging has also been rapidly developed. According to network design prin-
ciples, the deep learning methods used in NLOS imaging are divided into
end-to-end networks [21] and physics-based networks [20, 74]. Compared with
conventional algorithms, deep learning algorithms can thoroughly learn the
scene prior, automatically extract features, and complete the reconstruction of
hidden objects. Although NLOS imaging based on deep learning is still at the
early stage, it has broad research prospects for practical applications. More-
over, some new types of NLOS scenes, such as “imaging behind occluders” [36]
that used two reflections behind obstacles and keyhole imaging [73], have also
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been proposed, enriching the applications of NLOS imaging. This article aims
to make a detailed review of the various types of NLOS imaging research
mentioned above, including conventional active and passive methods, deep
learning-based NLOS imaging, and new NLOS scenarios. The corresponding
challenges and opportunities will also be discussed. We hope this article
can help readers have a systematic understanding of existing NLOS imaging
research.

Compared to the existing surveys [68, 23], this article is much more com-
prehensive with the coverage of different NLOS imaging scenes, deep learning
algorithms, and new NLOS imaging scenarios. As an emerging technology
that has developed rapidly in recent years, the algorithms and applicable
scenarios of NLOS imaging are constantly growing. Survey [68] summarized
the research of NLOS imaging in detail by classifying existing methods based
on ToF information, coherent information, and intensity information. However,
it completes the review from the perspective of the information used, and has
less introduction to imaging models, reconstruction algorithms, and recent
deep learning methods. Besides, in [68], the passive imaging problem was
only a subset of different exploited information and thus not described in
detail. Another review [23] provided and summarized the key technologies
of laser-based active NLOS imaging, which however lacked the description of
passive NLOS imaging, deep learning methods and new NLOS scenes. On the
contrary, this article summarizes the latest active and passive NLOS imaging
research based on physical methods and provides a detailed summary and
analysis of the latest deep learning algorithms, including the advantages, types,
challenges, and prospects. Besides, this article also summarizes several new
types of NLOS imaging scenarios. Notice that such summarization can help
readers have an overall understanding of NLOS imaging, which however cannot
be found in the existing surveys [68, 23].

The remainder of this article is organized as follows. In Section 2, we first
introduce the existing work of active NLOS imaging from three aspects: the
hardware, forward propagation model, and reconstruction algorithms. We
also discuss the challenges and prospects of active NLOS imaging. Then,
in Section 3, the related work, including the hardware, forward model, and
reconstruction algorithms, as well as the challenges and prospects of passive
NLOS methods, are summarized respectively. In Section 4, we review the
deep learning algorithms that have emerged in recent years from their mo-
tivations, network structures, loss functions, corresponding challenges, and
prospects. The new NLOS imaging scenarios are discussed in Section 5 and
conclusions are drawn finally in Section 6. Figure 2 clearly illustrates the
relationship between the structure of this article and the current development
of NLOS imaging technologies. It should be noted that imaging through a
scattering medium [10, 59] does not belong to the NLOS imaging scope in this
article.
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2 Active Methods

Active NLOS imaging employs a controllable light source (usually a narrow-
band laser) and a detector to obtain reflected information, which is then used
to reconstruct hidden scenes. This section introduces recent advances of active
NLOS imaging from three parts: hardware devices, physical light transport
models, and reconstruction algorithms. Besides, the challenges and prospects
of active NLOS imaging are analyzed at the end of the section. Table 1
summarizes active imaging systems, where each row of the table lists the light
source, sensor, information, and task for different NLOS imaging techniques.

2.1 Hardware Devices in Active Methods

A variety of detectors, from professional interferometers [115] and single-
photon counters [13, 112] to ordinary cameras and even cell-phone cameras,
have been used in NLOS imaging. Different detectors need to be combined
with corresponding illumination sources to complete specific NLOS tasks. Here,
we introduce such combinations to describe what hardware is used in active
NLOS imaging.

2.1.1 Pulsed Laser and High Temporal Resolution Detector

NLOS imaging was first proposed in a time-resolved imaging work by [86],
first theoretically evolved by [47] and experimentally demonstrated by [111].
All of these works [86, 47, 111] were in the context of active time-resolved
transient imaging, also called “light-in-flight imaging” or “freezing light in
motion” [23].

Transient imaging uses an ultrafast pulsed laser as the light source and a
high time-resolved detector as the camera to measure the time of the photon
arrival event in each pulse period, and then obtain the time distribution of
photon events through the accumulation of multiple pulse periods, which then
is converted to transient images. Considering that transient imaging is based
on pulsed lasers and high-time-resolved detectors, the combination of pulsed
laser and high-time-resolved detector is one kind of hardware used in active
NLOS imaging.

Streak Cameras When NLOS imaging was first experimentally achieved
by [111], the time-resolved detector was a streak camera with extremely high
temporal resolution. As an important optical time characteristic measurement
detector, streak camera has been widely used in the experimental research
of ultrafast physical processes such as laser fusion and high energy density
physics [99]. When the ultrafast light signal passes through the slit of the
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streak camera, the photoelectric conversion is completed. These photoelec-
trons are accelerated and focused under the high-voltage electric field’s action
and enter the scanning system. Within the linear range of the voltage, the
vertical distance between the photoelectron’s position and the original move-
ment direction is proportional to the time of which the photoelectron enters
the scanning plate, hence completing the conversion of time information to
space information. Finally, using the function between the optical signal’s
spatial information and the scanning speed of the streak camera, the temporal
information of the optical signal is obtained, which can be reconstructed to
get transient images.

The temporal resolution of the streak camera is remarkably high. In [111],
the theoretical resolution could reach 2 ps (limited by a finite temporal-point
spread function of the camera, the effective temporal resolution was 15 ps), and
the most advanced streak camera at present can reach a temporal resolution
of 200 ∼ 300 fs. However, streak cameras are too expensive (typically more
than 70,000 £), limiting the practical application of NLOS imaging. Therefore,
later works attempt to use an inexpensive time-resolved detector to complete
active NLOS imaging.

SPAD (Single Photon Avalanche Diode) In 2015, [13] demonstrated
that SPAD (Single Photon Avalanche Diode) is feasible for NLOS imaging. In
Geiger mode, a single photon may trigger an avalanche of about 108 carriers,
which can be used as a single photon counter and get pretty accurate photon
timing. The current commercial SPAD covers the wavelength range from
300 to 1700nm. Among them, Si SPAD corresponds to 300 ∼ 1100nm, Ge
SPAD corresponds to 800 ∼ 1600nm, and InGaAs SPAD corresponds to
900 ∼ 1700nm [121]. Therefore, most existing methods with visible light
(e.g., 675nm in [81]) used Si SPAD (e.g., PDM series from Micro Photon
Devices), while the recent 1.43 km NLOS imaging [114] with infrared spectrum
(∼1550 nm) used InGaAs/InP negative-feedback SPAD.

Combined with time-correlated single-photon counting technology, SPAD
can be used to obtain a histogram of photon arrival time of different points,
that is, transient images. In addition to the relatively lower cost (about
10,000£), compared to streak cameras, SPAD has the following advantages.
First, as a subset of APDs (avalanche photodiode), although the temporal
resolution (∼ 20 ps) is lower than streak cameras, the SPAD has a higher
quantum efficiency (∼70%) which means that it is more suitable for NLOS
imaging scenes with weak effective signals. The work in [114] which used
SPAD to complete an amazing 1.43 km NLOS imaging is a typical example.
Moreover, SPAD has been widely used in commercial LiDAR systems, and
the SPAD array, which can avoid the mechanical raster scan process, has the
potential to save scanning time and realize real-time data collection for active
NLOS imaging.
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Pulsed Laser In transient imaging, the laser plays the role of illumination,
triggering, and synchronization. Compared with time-resolved detectors, lasers
have relatively low requirements and are more affordable than detectors. Never-
theless, it should still meet the following requirements. First, the pulse period
of the laser should be adjustable to ensure that it can meet the requirements
of different scene sizes without causing excessive noise. Second, in order to
achieve accurate synchronization, the pulse width of the laser should be narrow
with low jitter. Besides, its wavelength should be consistent with the response
frequency of the detector.

Although the combination of pulsed lasers and time-resolved detectors
suffer from long scanning time when collecting data, it is still the most popular
active NLOS imaging camera method. It can obtain accurate time information
and the potential applications of scanning-free technologies, such as SPAD
array [42, 77, 84].

2.1.2 Modulated Light Source and ToF Camera

In addition to the pulse-based ToF measurement, by encoding the ToF into
phase measurement, a ToF camera combined with a modulated light source
has also been proposed to obtain the light travel time to complete NLOS
imaging [35, 44]. Compared with pulse-based photon-level detectors, ToF
cameras have some obvious advantages. First, it can complete data collection
without scanning, thereby reducing data collection time. Second, its price is
much lower (about 1000 £) than streak camera and SPAD. However, due to the
influence of frequency aliasing, the measurement distance of the ToF camera
is limited (no more than 10m). Besides, due to the longer exposure time,
the ambient noise of the ToF camera is usually greater, limiting the temporal
resolution to ns level with cm imaging resolution. However, in practical active
NLOS imaging scenarios, the modulated light source and ToF camera are on
the same side, which would increase the direct bounce signal from the wall
and decrease the hidden signal (the third-bounce light), resulting in poor SNR.
Therefore, in general, the ToF camera is more suitable for NLOS scenes that
require real-time performance without high imaging quality.

2.1.3 Active Light Source and Interferometry

Pulse-based detectors and coherent-based ToF cameras are the two main
active NLOS imaging cameras. However, their resolution is strongly restricted,
difficult to break through the ∼mm level. The resolution of the pulse-based
detector is limited by the pulse width of the laser (∼ps), while the coherent ToF
camera is limited by the modulation frequency (∼ns). To achieve higher resolu-
tion (∼µm), interferometers have also been applied to NLOS imaging. Unlike
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those ToF-based cameras that can only be used for active imaging as mentioned
above, the interferometer can not only be combined with narrowband LEDs or
coherent light for active imaging, but also be used with ambient light for passive
imaging. For active methods, Xin et al. used the imaging device in [30] to com-
plete the NLOS imaging of coin-sized scenes and achieved femtosecond scale
resolution [115]. Willomiitzer et al. utilized lasers with two wavelengths to com-
plete high-resolution NLOS imaging based on superheterodyne interferometry
(SHI) with a resolution of about 50µm [113]. Some studies performed passive
NLOS imaging by applying narrowband or ambient illumination to hidden
objects, which will be introduced in Section 3. Compared with streak cameras,
SPAD, and ToF cameras, the interferometers can achieve higher resolution
but with the disadvantages of higher hardware complexity and cumbersome
calibration.

2.1.4 Laser and Conventional Camera

In this paper, a conventional camera refers to a camera that uses conven-
tional intensity sensors, such as CCD or CMOS array, which cannot record
spatial/temporal coherent information or ToF information. Since transient
images cannot be measured, imaging using traditional cameras is often called
steady-state imaging. Because conventional cameras can only record intensity
information, they are mainly used in passive NLOS imaging. However, because
the conventional camera has the advantages of not requiring scanning and
low cost, Chen et al. completed RGB active NLOS imaging using lasers with
different wavelengths for illumination and exploiting conventional cameras to
collect intensity information [19]. Due to the lack of distance information, it
is not easy to complete high-precision three-dimensional reconstruction only
using conventional cameras.

2.1.5 LiDAR

Although most existing works have used separate light sources and detectors,
recent work [122] exploited a commercial LiDAR, which integrated light source
and detector, to complete NLOS imaging. For the imaging area on the relay
surface that is close to LiDAR, most of the collected information is the direct
reflection from the relay surface. However, for the area on the relay surface
that is closer to the hidden object, the collected information mainly encodes
the shape of the hidden object, which can be utilized to restore 3D shapes. The
existing commercial LiDAR can only provide point cloud output, instead of
transient images. Therefore, the classic active NLOS reconstruction methods,
such as FBP [111], LCT [81] and phasor field [65], cannot currently be used in
LiDAR-based systems. [122] used deep learning to fuse point cloud information
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and reflection intensity information to complete the reconstruction. Compared
with separate laser and time-resolved detectors, integrated LiDAR have lower
cost and faster imaging speed, with the cost of poor imaging detail. To replace
the separate laser and cameras in NLOS systems, existing commercial LiDAR
needs to solve the problem of crosstalk between multi-channel lasers under
NLOS conditions and provide original temporal signals rather than point cloud
after processing.

2.2 Forward Propagation Model

The forward propagation model of active NLOS imaging aims to establish
the imaging model of measurement. The current imaging models are mainly
divided into ToF-based imaging models and wave-based imaging models. The
ToF-based imaging model [111, 81] uses geometric optics to establish the model
with the flight distance and surface albedo or normal direction as constraints.
The wave-based imaging model [61, 64] mainly uses wave optics to construct
the propagation and reflection of waves with boundary conditions.

2.2.1 ToF-Based Model

The transient-based forward model established using time of flight as a con-
straint is a classic active NLOS imaging model. This type of model is based on
point-by-point scanning, leading to a long scanning time. Therefore, there are
many methods proposed to improve the scanning mechanism, represented by
the confocal setting [81]. Besides, 3D reconstruction is an ill-posed problem,
and using partial occlusion to add additional constraints is also a representative
improvement [106]. Therefore, we review the general ToF-based NLOS image
formation model, followed by the confocal imaging and occlusion-based models.

General NLOS Imaging Model The imaging model fits the optical trans-
port process by expressing the measurement data τ as a function of the hidden
object space Ω ∈ R3. As shown in Figure 1(a), the emitted laser first irradi-
ates at the illumination point µ on the wall, causing the first bounce. Then,
the second bounce occurs on the surface of the hidden object. Finally, the
detection point µ′ on the wall is collected after the third bounce. For a given
illumination point µ, the collected signal τ by the detection point µ′ at time t
can be expressed as [81]

τ(µ, µ′, t) =

∫
Ω

ρ(s)F (µ → s → µ′)R(µ → s → µ′)

B(µ → s → µ′)ds

(1)

where s represents a point on the hidden object, and ρ(s) represents the albedo
of point s. F refers to the optical transfer process from the illumination point
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µ to the detection point µ′, reflected at the surface of hidden object s. R
means the amplitude attenuation. B represents the bidirectional reflectance
distribution function (BRDF).

According to geometric optics, with the speed of light c, the optical trans-
port process F should satisfy ∥µ−s∥2+∥µ′−s∥2 = ct, which can be represented
by delta function δ(). Please note that this δ() function is established based
on two assumptions: (1) Only three-bounce light is considered; (2) There is no
interreflection in the hidden scene. The attenuation is inversely proportional to
the square of the distance. Therefore, assuming that light scatters isotropically,
Equation (1) can be re-written as

τ(µ, µ′, t) =

∫
Ω

1

∥µ− s∥22∥µ′ − s∥22
ρ(s)

δ(∥µ− s∥2 + ∥µ′ − s∥2 − ct)ds

(2)

Equation (2) can be discretized into a linear transform of equations

τ = Aρ (3)

where A is the optical transport matrix, which maps the hidden scene ρ to
measurement τ . In the general NLOS setup, ρ has three spatial dimensions
of x, y, and z, and τ has 5 dimensions (4 spatial dimensions and 1 time
dimension). Therefore, the calculation complexity of matrix A is extremely
high. Besides, it is an under-constrained problem inherently. In addition,
too many scanning points lead to a long scanning time. In order to solve
these problems, many new methods have been proposed (see Section 2.5.2 for
details). The confocal setup [81] and adding additional obstacles [34, 106] are
frequently used methods in recent studies, as introduced in the following.

Confocal NLOS Imaging Model Through a beam splitter, the laser and
the detector can be placed coaxially, which means “confocal”, as shown in
Figure 1(b). In the confocal NLOS imaging model, the illumination and
detection points are same during each scan, that is, µ = µ′, which can be
substituted into Equation (2)

τ(µ, t) =

∫
Ω

1

∥µ− s∥42
ρ(s)δ(2∥µ− s∥2 − ct)ds (4)

O’Toole et al. proved that under confocal conditions, the imaging model could
be further converted to the convolution of the hidden object albedo ρ after
resampling with the system response function, which can be solved quickly by
Fourier transform. However, under the confocal setting, the SPAD detector
receives direct reflections, which may aggravate the pile-up effect [5]. In order
to alleviate the influence of direct reflections, [114, 81] illuminate and image
two slightly (to avoid affecting the confocal imaging model) different points on
the relay wall.
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Occlusion-Based Active NLOS Imaging Model For the occlusion-based
imaging model, all that needs to be done is to add the visible item V (µ, µ′, s)
to the imaging model, which means the occlusion relationship between (µ, s)
and (µ′, s). Generally, V (µ, µ′, s) is a boolean variable, that is, V (µ, µ′, s) = 0
if and only if there is no occlusion, otherwise V (µ, µ′, s) = 1 [106]. In the study
with partial occlusion, the value of V (µ, µ′, s) is allowed to be continuous [34].
An interesting but predictable fact in NLOS imaging is that the occlusion
term V (µ, µ′, s) can be unified into the optical transport matrix A and reduce
the condition number, which is helpful for reconstruction.

It should be noted that Equation (2) only considered 3-bounce diffuse
reflections. Since the number of photons decreases exponentially with the
order of diffuse reflections, 3-bounce reflections is sufficient for current NLOS
imaging. The limitations of 3-order reflections are discussed in detail in [63].

2.2.2 Wave-Based Model

The wave-based NLOS imaging model regards the forward imaging model as
the propagation of waves from hidden objects to detectors in 3D space. Lindell
et al. recorded the light field in space as Ψ(x, y, z, t), then the forward model
can be converted to wave propagation from Ψ(x, y, z, t = 0) to Ψ(x, y, z = 0, t).
Specifically, The time-dependent field Ψ can be written as a superposition of
plane waves [61]

Ψ(x, y, z, t) =

∫∫∫
Φ (kx, ky, kz) e

2πi(kxx+kyy+kzz−ft)

dkx dky dkz

(5)

where the wave vector k = 2π ·(kx, ky, kz) indicates the direction of propagation
of the independent plane wave [61]. f = c

√
k2x + k2y + k2z means the relationship

between the wave vector k and frequency f when the speed of light is c. The
function Φ represents the amplitude and phase of each plane wave at t = 0.
After that, f-k migration is used to solve the problem in the frequency domain
through fast Fourier transform (FFT) and Stolt interpolation (see Section 2.4.2
for details).

The phasor field methods [65, 64, 87], which have attracted widespread
attention recently, regard the NLOS imaging as a diffraction-based LOS (line-
of-sight) optical imaging problem. The projector function and diffraction
function are determined by selecting a suitable LOS template, thereby directly
reconstructing the hidden scene. Although based on wave propagation, these
methods are all suitable for ToF measurement, making it easy to collect data
and apply the model to public NLOS imaging datasets.
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2.3 Reconstruction Topology

The reconstruction algorithms of active NLOS imaging have been developed
rapidly in recent years [81, 115, 64]. Here, we review these reconstruction
methods from two aspects: topology and methodology. Reconstruction topol-
ogy is classified according to different reconstruction targets (Volumetric,
Surface and High-level representation), and reconstruction methodology is
based on different reconstruction methods (Inverse method and Wave-based
methods).

2.3.1 Volumetric

The volumetric NLOS methods reconstruct the hidden scene by estimating
the albedo values of the hidden scenes, which is the most naive idea in NLOS
reconstruction. In 2012, Velten et al. used filter back projection (FBP) to
estimate the albedo of the hidden object surface based on the measurement
data and completed the NLOS reconstruction for the first time [111]. Many
classic algorithms, such as light cone transform (LCT) [81], which exploited
confocal settings to convert NLOS reconstruction into a 3D deconvolution
problem, and wave-based algorithms [61, 64], all aim to restore the albedo of
voxels.

The volumetric methods usually have a faster recovery speed (less than 1s
for 64× 64 spatial resolution [118]). However, because they do not estimate
the surface parameters (e.g., normals and BRDFs) of the hidden scene, these
methods are not good at recovering details [109, 118].

2.3.2 Surface

Unlike the above methods that use volumetric albedo to represent NLOS
scenes, a line of work aims to reconstruct the surface of hidden objects.
Such methods usually use special photon measurements (rather than using
all photon measurements in volumetric albedo methods [81, 111]) to get de-
tailed geometry. Tsai et al. found that the first-returning photons contain the
shortest length information to the hidden object, from which the boundary
and the surface normal vector of the hidden object can be reconstructed
[108]. Xin et al. showed that the discontinuities of ToF measurement are
produced by special light paths (Fermat Paths), which contain the surface
information of the hidden scene [115]. Since these discontinuities are in-
dependent of photon intensity, this approach is robust to different BRDFs.
Besides, by introducing surface normal into the previous transport matrix
in Equation (8), the surface normal reconstruction and volumetric albedo
reconstruction can be combined to achieve good results [34]. Similarly, fusing
the surface reconstruction into the convolution kernel of the LCT [81] can also
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achieve better reconstruction results than using only the volumetric albedo
representation [118].

The above methods restore the surface of the hidden object directly, while
other methods adopt the concept of reverse rendering, that is, to reconstruct
the hidden surface by finding the surface parameters (such as BRDF and surface
normal) of the hidden object that can fit the measurement data. Considering
that accurate reverse rendering methods are time-consuming, a differential
renderer can be used to speed up rendering [109].

2.3.3 High-Level Representation

Besides volumetric and surface-based methods, with the rapid development of
deep learning in recent years, some works have exploited high-level representa-
tion to complete NLOS reconstruction [20, 21]. Specifically, in a data-driven
manner, an encoder is used to extract high-dimensional features of the mea-
surement data, while a decoder is used to map them to the hidden object space
to complete the reconstruction. Due to the lack of suitable data sets and the
incomplete exploration of the network structure, such methods usually have
limited generalization capabilities and reconstruction effects. However, com-
pared to traditional reconstruction methods [81, 115, 64, 118], the high-level
representation methods based on deep learning have faster inference speed
(less than 100 ms) and stronger feature extraction capabilities, which is a kind
of promising methods.

To emphasize the application prospect of deep learning in NLOS imaging,
this paper puts all deep learning methods into Section 4. Therefore, please
refer to Section 4 for detailed discussion and challenges of the high-level
representation methods.

2.4 Reconstruction Methodology

Active reconstruction algorithms can be divided into two categories according
to reconstruction methodology: inverse methods and wave-based (forward)
methods.

2.4.1 Inverse Methods

It can be seen from the forward propagation model Equation (1) that what the
active NLOS imaging completed is the inverse process, that is to recover the
hidden scene ρ from the measurement τ(µ, µ′, t). Under the assumptions of
isotropic reflection, no interreflection and only three-bounce light, Equation (1)
degenerates into a linear model, which can be solved by a variety of inverse
methods (e.g., back projection [4, 69] and matrix inverse [35, 81]).
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Back Projection For general NLOS imaging scenes, the Dirac function in
Equation (3) essentially represents an ellipsoidal constraint

r + rl = ct (6)

The reconstruction of this model is similar to the ellipsoidal Radon trans-
form used in CT. In confocal NLOS imaging, the ellipsoidal constraint degen-
erates into a spherical constraint, and the corresponding reconstruction also
becomes the spherical Radon transform in CT. Therefore, the back projection
algorithm can be directly used to complete the NLOS reconstruction task.
In 2012, Velten et al. used the back projection algorithm to complete the
NLOS imaging experiment for the first time [111]. Afterward, researches such
as the use of GPU acceleration [4] and error back projection using iterative
algorithms [69] have also been proposed. Since it has been widely used in CT,
the back projection algorithm is simple, easy to understand, and has a low
space complexity (O(N3)), which can effectively reconstruct simple hidden
scenes. However, the back projection algorithm’s time complexity is relatively
high (O(N5)), and it is difficult to use other prior information, unable to
reconstruct a complex optical transport process.

Matrix Inverse In addition to the back projection algorithm based on the
ellipsoidal constraint, NLOS reconstruction can also be completed by directly
solving the inverse process of Equation (3), that is

ρ = A−1{τ} (7)

One straightforward approach is to directly solve the pseudo-inverse of the
optical transport matrix A, such as using the singular value decomposition.
Taking singular value decomposition as an example, since the optical transport
matrix A is with the size of N3 × N3, the time and space complexity of
the algorithm to find the matrix inversion directly is O(N3×3=9) and O(N6)
respectively, as discussed in [81]. Another obvious disadvantage of direct
inversion is that it is difficult to use the inherent non-negativity, sparsity, and
other priors (see Section 4.1 for details) in NLOS imaging, leading to bad
results. A common alternative is to solve the following optimization problem
[35] iteratively

ρopt = argmin
ρ

1

2
∥Aρ− τ∥22 + Γ(ρ) (8)

Among them, Γ(ρ) enables this type of iterative inverse method to utilize
multiple constraints. Although iterative methods [31, 13] can further reduce
errors and achieve good reconstruction results, they require multiple iterations,
which is still difficult to apply in real-time. [81] found that under confocal
conditions, the forward imaging process can be expressed in the form of three-
dimensional convolution, thus using efficient deconvolution algorithms (such
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as Wiener filtering) to perform the efficient reconstruction. It reduced the
time complexity to O(N3log(N)), which greatly improved the reconstruction
speed.

Inverse Rendering Back projection [111, 69] and matrix inverse meth-
ods [35, 81] are both based on voxel representation in reconstruction topology.
The voxel-based representation is easy to solve mathematically, but the accu-
racy is usually low due to ignoring factors such as BRDF and non-Lambert
reflections [109]. On the other hand, by representing the surface of the hidden
object, a more accurate forward imaging model (see [109]) can be established,
based on which the optimization methods can be used to solve it to com-
plete the surface reconstruction. Since the imaging models based on surface
parameters (such as BRDF and surface normal) rely on rendering, the cor-
responding reconstruction methods are also referred as inverse rendering, or
analysis-by-synthesis. Compared with voxel-based inverse methods, inverse
rendering can reconstruct more details, but often requires higher temporal
complexity [34, 118].

2.4.2 Wave-Based Methods

The theoretical basis of the three types of algorithms mentioned above is
geometric optics. Besides that, wave-based methods have also achieved rapid
development in recent years. Lindell et al. described NLOS imaging as a
wave propagation problem in three-dimensional space. Inspired by inverse
methods used in seismology, it completed NLOS imaging using f-k migration
[61]. In that work, referring Ψ(x, y, z, t) as the field in 3D space as a space-time
function, the NLOS reconstruction is converted as

Ψ(x, y, z = 0, t) ⇒ Ψ(x, y, z, t = 0) (9)

where Ψ(x, y, z = 0, t) and Ψ(x, y, z, t = 0) can be regarded as the available
measurement data and the hidden target scene, respectively. With t = 0,
the functions Φ and Ψ in Equation (5) are related by a Fourier transform.
By replacing dkz with df and using Stolt interpolation, Equation (5) can be
converted to another representation. In the new representation, when z = 0,
functions Φ and Ψ are again a pair connected by Fourier transform. In this way,
taking Ψ(x, y, z = 0, t) as input, the hidden scene Ψ(x, y, z, t = 0) can be easily
reconstructed through three steps: 3D Fourier transform, Stolt interpolation,
and inverse 3D Fourier transform. Strictly speaking, f-k migration [61] is
an inverse method (reconstruction through the reverse process of forward
propagation). However, compared to other typical inverse methods such as
back projection [111, 4], matrix inverse [35] and inverse rendering [109], f-k
migration does not have an obvious inversion process (e.g., ADMM, [81]), but
is more like a forward process completed in the frequency domain.
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Besides, Liu et al. [65, 64] and [87] introduced virtual wave phasor to
NLOS imaging. Based on the phasor field, NLOS imaging can be transformed
into a LOS optical imaging problem and then solved by the existing algorithm
in diffraction imaging. Different from other methods, phasor field methods [65,
64] transform the relay wall into a virtual aperture (or lens of any LOS
system). The reconstruction is the diffraction integral of the wavefront of the
virtual aperture, which is equivalent to the forward propagation process of the
measurement data. Therefore, phasor field methods [65, 64] do not need to
reverse the forward process like inverse methods [111, 81] – they can directly
complete the reconstruction through wavefront propagation.

The wave-based approaches have two attractive advantages: (1) It is more
robust to the material of the relay surface; (2) It can easily combine NLOS
imaging with other related fields, such as LOS imaging and seismic imaging.
These advantages, as well as the phase acquisition problem in wave-based
approaches, are explained in detail in Faccio et al.’s review [23].

It should be noted that not all of the above algorithms are suitable for
confocal settings. Specifically, FBP [111, 4], phasor field [65, 64], and matrix
inverse methods [35] are applicable to all NLOS systems. In contrast, LCT [81]
and f-k migration [61] are only applicable to confocal NLOS systems. [61]
proposed a conversion method from non-confocal data to confocal data, so
that confocal algorithms can also be used to reconstruct non-confocal data.
From the perspective of time complexity, for confocal settings, a series of
algorithms after LCT [81] (including f-k migration, [61]) can reach the time of
O(N3logN) complexity due to the efficient calculation of FFT in the frequency
domain, while only the phasor field algorithm [64] can achieve the same
temporal complexity for non-confocal NLOS scenes. Figure 3 illustrates the
measurement with a dragon as the hidden scene, and the reconstruction results
obtained by different reconstruction methods [111, 81, 65, 61]. It can be seen
that existing methods can already reconstruct complex hidden scenes. In
general, the wave-based methods [65, 61] are more suitable for hidden scenes
with rich details.

2.4.3 Detection, Location and Identification

Under some scenarios, we do not necessarily need to complete the difficult but
low-level task of imaging/reconstruction. On the contrary, some high-level vi-
sion tasks, such as detection, localization, and recognition of hidden objects, are
needed. For the detection task, we only need to judge whether there is a peak
in the measurement data. For localization tasks, a naive but effective algorithm
is back projection [29, 16]. Through back projection, the distribution prob-
ability of objects in three-dimensional space can be established to determine
the object’s position. Compared with the reconstruction task, the localization
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(a) Measurement

FBP

[111]

LCT

[81]

FBP

[111]

LCT

[81]

Figure 3: Reconstructions completed by different methods. (a) Measurement data; (b)
Hidden object (dragon); (c) Reconstruction results under several typical methods, including
FBP [111], LCT [81], f-k migration [61] and phasor field [65]. This figure is finished based
on the public code and data of [81, 80, 34, 61].

task can greatly reduce the number of scanning points and the resolution of
discrete voxels with much less reconstruction time and space complexity.

For recognition tasks, traditional algorithms are limited by their ability to
understand high-level semantics, making it difficult to map from experimental
data to label results directly. Therefore, NLOS recognition is typically based
on data-driven methods (see Section 4 for details).

2.5 Challenges and Prospects

Despite considerable progress in recent years, active NLOS imaging still faces
many challenges, including ill-posedness with low SNR, limited resolution, and
long data acquisition time.
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2.5.1 Ill-posedness with Low SNR

Since the collected effective signal is three-bounce of reflected light, and the
signal intensity has an attenuation of r2 ∼ r4 [81] (varies with different
reflective materials) with distance r, the signal strength is weak. In many
NLOS scenes (such as long-distance imaging, [114, 57]), the echo can reach the
order of a single photon. On the other hand, there are various kinds of noise.
All of the dark count and after-pulse of SPAD, the pile-up effect of TCSPC,
and the ambient light can cause noise. Therefore, NLOS imaging tasks have
a very low SNR, which makes NLOS imaging very challenging. Moreover,
hidden objects in different locations may contribute the same measurement
value [63], which further exacerbates the problem’s ill-posedness.

The methods of improving the SNR have been discussed in [57, 114, 56],
including improving the receiving device to increase the detection efficiency
and thus the signal strength, combining spatial filtering with multimode fiber,
spectral filtering with narrow-band filters and temporal filtering through gate-
mode SPAD, and using polarizers to minimize noise. Based on the above
methods, an amazing 1.43 km NLOS imaging can be achieved. In addition to
improving the signal-to-noise ratio from the hardware, it is also important to
improve the reconstruction algorithm to alleviate the ill-posedness through
various prior constraints, such as the sparsity, non-negativity, surface normal,
partial occlusion (as discussed in Section 2.2.2) and the recently developed
data-driven scene prior (see in Section 4).

2.5.2 Long Data Acquisition Time

Active NLOS imaging requires a full raster scan of a relay wall. This point-by-
point scanning mechanism leads to long data acquisition time, which hinders
real-time NLOS imaging applications. Current work usually uses a multi-
function I/O device (e.g., NI DAG USB-6343) to control the galvanometer
mirrors (e.g., Thorlabs GVS012) to scan point by point and completes the
event synchronization with the photon counter(e.g., TCSPC, PicoHarp 300).
Limited by the scanning speed of the galvanometer and the minimum number
of photons at each point, the scanning frequency is only 1 to 10 Hz (depending
on the imaging conditions) in state-of-the-art NLOS systems, such as LCT
[81] and f-k migration [61]. When the number of scanning points is 64× 64,
the scanning speed of less than 10Hz is difficult to complete real-time data
acquisition.

Reducing Scanning Points In theory, each scan point in NLOS imaging
contains the whole hidden object’s shape information. Therefore, although
reducing the scan points would inevitably reduce the imaging quality, it
is possible only to scan a few points to complete the imaging task. Liu
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et al. studied the impact of randomly removing some test points on the
reconstruction results [62]. Ye et al. applied compressed sensing to NLOS
imaging, and only 5 × 5 points can achieve a resolution of 64 × 64, thereby
greatly reducing the time required for scanning [116]. Isogawa et al. further
changed the scanning methods, using the circular scanning path, and proposed
C2NLOS(Circular and confocal NLOS) [40]. C2NLOS improved the limit
of the scanning speed of the galvanometer through circular scanning and
reduced the number of scanning points, thereby reducing the data acquisition
time.

SPAD Array In addition to reducing the scanning points, the development
of SPAD array to achieve scannerless NLOS imaging is a very promising
direction. There have been the latest researches that develop algorithms
suitable for SPAD array [64, 77] or directly use 32 × 32 SPAD camera to
complete scannerless NLOS imaging [42]. Multiple lasers simultaneously
illuminating would cause crosstalk problems, which is unacceptable. Therefore,
the current NLOS imaging systems based on SPAD array all adopt the structure
of “one laser, multiple pixels”. In essence, this is equivalent to multiple parallel
conventional non-confocal NLOS imaging systems. Therefore, any algorithm
suitable for non-confocal reconstruction, including but not limited to back
projection [4], f-k migration [61] and phasor field, can be used in NLOS imaging
systems based on SPAD array. [42] verified that the reconstruction quality
using commercial SPAD array based on phasor field [64] is close to the early
single-pixel NLOS imaging [111].

Steady-state Imaging Another possible alternative is to replace the pulsed
laser with a steady-state laser [19] or even an ordinary condensing light source
(such as a projector) [18] and use a conventional camera to collect the imaging
area directly. These steady-state methods usually rely on data-driven deep
learning methods for reconstruction, which will be discussed in Section 4.

2.5.3 Limited Resolution

Like LiDAR and Radar, the resolution of NLOS imaging is also divided into
axial resolution ∆z and transverse resolution ∆x. Time jitter γ, the time
domain response of the imaging system greatly influences ∆x, and it also
determines ∆z. γ mainly depends on the detector’s temporal resolution, laser
pulse width, laser spatial divergence, and other components. In the recent long-
distance NLOS imaging research [114], the time jitter γ has been formulated.
Another factor of ∆x is the size of the scanning area (equivalent to the size of
the aperture). Usually, we use w to represent the radius of the scanning area,



22 Ruixu Geng et al.

Figure 4: The principle and spatial resolution of active (confocal) NLOS imaging. (a) The
detector receives the photon arrival time histogram at each point, and these histograms form
a 3D Volume of measurements τ , which can be used to recover the hidden object (albedo)
ρ. The measurement data is from [81]. (b) The resolution of the imaging system. (c) The
influence of the distance between the object and the wall z and the scan area size w on the
horizontal resolution ∆x.

as shown in Figure 4(b). For a confocal system, the resolution of the system
in two directions ∆z and ∆x are [81]{

∆x ≈ c
√
w2+z2

2w γFWHM

∆z ≈ cγFWHM

2

(10)

Among them, γFWHM refers to the full width at half maximum (FWHM)
of the time jitter γ, as illustrated in Figure 4(a). From Figure 4(c), it can be
seen that reducing the time jitter γ and increasing the size of the scanning
area w are effective ways to improve the confocal system resolution. For other
active NLOS scenes, [13, 44, 63] discussed the limits of spatial resolution. [63]
also analyzed how the position and the normal direction of the hidden object
affect the imaging results from the Fourier domain.

3 Passive Methods

Passive NLOS imaging aims to see hidden scenes without using a controllable
external light source, which is a very challenging problem. This section has a
similar structure to Section 2. It reviews passive NLOS imaging from three as-
pects: data acquisition devices, physical models, and reconstruction algorithms.
Finally, we discuss the challenges and prospects of passive NLOS imaging.
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Table 2 summarizes the existing passive NLOS imaging technologies, as well
as their lighting conditions, sensors, available information, and target tasks.

3.1 Cameras in Passive Methods

3.1.1 Conventional Camera

In the absence of a controllable light source, the light field remains steady.
Therefore, the most useful information is intensity, which can be recorded
by conventional cameras, that is, charge-coupled device (CCD) and comple-
mentary metal-oxide-semiconductor (CMOS). Most passive NLOS imaging
research used conventional cameras to collect data. However, their illumination
was uncontrollable and different, including ambient light [2, 94] and active
incoherent light [45].1 When using ambient light, the hidden scene produces
shadows (or speckles) on the wall. The only information available at this
time is the intensity information of the shadows. However, if a narrowband
spatially-incoherent source is used for illumination, the obtained speckles can
encode the hidden scene’s information, which can be reconstructed by the
optical memory effect [25, 27, 82].

Conventional cameras are the most inexpensive but have at least two
limitations among all the cameras discussed in this article. First, the shadow
is very sensitive to ambient light intensity, that is, SNR decreases as the
ambient light intensity increases. Second, for broadband illumination, the
optical memory effect is no longer valid, due to which the problem is extremely
ill-posed and usually requires additional constraints and priors.

3.1.2 Interferometer

Considering the limitations of intensity information, some studies employ
interferometry to obtain phase information and use coherence to solve it, as
illustrated in Table 2. Batarseh et al. used the Dual-Phase Sagnac Interferom-
eter (DuPSaI) to measure the spatial coherence of the light field [7], thereby
completing the detection and positioning of the hidden broadband ambient
light source. Beckus et al. combined spatial coherence and intensity informa-
tion to complete multi-modal passive NLOS imaging [8]. In addition to spatial
coherence, temporal coherence can also be used to obtain depth information.
Boger-Lombard et al. utilized a diffuser and an ordinary camera to provide
passive ToF information through the time coherence of the measurement [11].
The interferometer enables depth information measurement in passive NLOS
scenes and can be fused with intensity information to improve imaging quality.

1Although active illumination is used, it is still considered as passive NLOS imaging
because the light source is on the side of the hidden object and is uncontrollable.
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However, it requires a precise and complex calibration process, and the depth in-
formation it contains is very limited, which can only be used for discrete scenes.

3.2 Forward Imaging Model

Considering the classic intensity-based passive NLOS imaging scene, as shown
in Figure 1(c), the goal is to reconstruct the hidden scene based on the speckle
area’s intensity information d on the wall. Assuming that each point on the
hidden scene is an independent point light source, the measured intensity
information is

Iτ (d) =

∫ ∫
s∈S

A(s, d)Iρ(s)ds (11)

Here Iτ is the observed projection image of resolution p× q, Iy(τ) is the light
intensity on the projection area d. Iρ is the hidden target image of resolution
m× n displayed on the screen, and Iρ(s) is the intensity of the pixel point s
of Ix. Besides, A(s, d) is the optical transport from the point light source s to
area d on the relay wall, and S denotes all pixels on the whole screen. The
model can be discretized as

Iτ = AIρ +N (12)

where N is an additional background term.
It can be seen that Equations (3) and (12) look very similar. Because

passive NLOS imaging usually only collects intensity information, the condition
number of A in Equation (12) is larger, meaning more ill-posed. In addition to
the above-mentioned intensity-based forward model, imaging models based on
other principles and settings (including the Fresnel model, [8], partial occlusion,
[94, 96], spatial coherence, [7, 8], and polarizers, [103] can all be discretized
to inverse optimization problems similar to Equation (12). Passive methods
based on speckle coherence have a special imaging model and reconstruction
process, which will be explained in the following (see Equation (13)).

3.3 Reconstruction with constraints

Passive NLOS imaging is extremely ill-posed, and it is difficult to complete high-
quality reconstruction only with conventional cameras. Existing researches
reduce the condition number of the transport matrix A by adding additional
constraints, thereby improving the imaging quality, as shown in Table 2. This
section will discuss reconstruction algorithms under three common constraints,
including partial occluder [94, 117], coherence, [8] and polarizer, [103]. Data-
driven scene priors are another common constraint, which will be explained in
Section 4.
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Figure 5: Passive NLOS imaging: (a) Common constraints in passive NLOS imaging; (b)
Passive NLOS imaging results.

3.3.1 Partial Occluder

In the most primitive cameras, large-area obstructions can be used to form
pinholes to tighten the beam and complete imaging [79]. In other early
computational imaging applications, such as stereo vision [3], light field recovery
[110, 6] and image synthesis [97], partial occlusion also played an important role.
In the field of passive NLOS imaging, many state-of-the-art works also exploit
partial occlusion. Among them, some tasks need to know or estimate the prior
knowledge of occlusion (such as position and shape) before they can reconstruct
hidden scenes using the prior as constraints [94]. Others only utilized partial
occlusion to improve the conditioning of the problem without knowing its
specific information [107, 12, 117, 2, 96], as illustrated in Figure 5(a).

Passive NLOS imaging modelled by Equation (12) can be solved as an
optimal problem

Iρ,opt = argmin
Iρ

1

2
∥AIρ − Iτ∥22 + Γ(Iρ) (13)

where Γ represents regularization terms, such as total variation (TV) or other
sparsity constraints. When the position of the partial occlusion p is known, the
optical transport matrix A can be estimated, after which the inverse problem
can be solved through Equation (13). The results of [94], a representative
work using TV regularization, are shown in Figure 5(b). When the partially
occluded position p cannot be obtained, the constraints at different times can
also be used to estimate the optical transport matrix A and the corresponding
hidden scene Iρ. For example, Aittala et al. performed matrix decomposition
through an unsupervised learning method to complete passive NLOS imaging
[2]. This is essentially similar to blind deconvolution [17, 49, 55], as discussed
in [117].
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3.3.2 Polarizer

Although partial occlusion is inevitable in many NLOS scenes, adding occlusion
may still change the hidden scene. However, in practical applications, it is not
the hidden scene but the imaging system that can be changed. A demonstrated
alternative method is to add a polarizer in front of the camera, as shown in
Figure 5(a). In this case, a small angle difference between the light paths leads
to a large intensity change, and the optical transport matrix A becomes [103]

A′(s, d) = A(s, d)λ (ωi,ωo,p)

where λ indicates the light leaking/blocking effect caused by the polarizer.
ωi,ωo and p indicate viewing vector, incident vector and the polarizer axis,
respectively. λ decreases the condition number of matrix A, thereby improving
the image quality.

3.3.3 Coherence

Three types of coherence, speckle coherence, spatial coherence and time coher-
ence, have been used in passive non-line-of-sight imaging. Among them, speckle
coherence does not require a special interferometer, but needs a narrowband
incoherent light source as illumination. The speckle coherence model is based
on the optical memory effect [27], which completes NLOS imaging through the
scattering medium and corner objects by analyzing the coherence information
between hidden object intensity and measured speckle

[Iτ ⋆ Iτ ](θ) = [Iρ ⋆ Iρ](θ) (14)

where ⋆ represents the autocorrelation operation. Using the phase recovery
algorithm [26, 9], hidden object’s diffraction-limited image Iτ can be recovered
from its autocorrelation [45]. The field of view of speckle autocorrelation
imaging depends on the range of memory effect, which is generally very small.
This is the bottleneck that limits the speckle correlation based on the memory
effect.

Reconstruction algorithms based on spatial and temporal coherence are no
longer subject to the viewing angle limitation caused by the optical memory
effect [27], but require a very sensitive and costly interferometer. Since the
interference effect is sensitive to the light source’s number and size, spatial
coherence and temporal coherence can usually only be used to complete the
positioning, detection of discrete points, and very simple shape restoration. The
combination of coherence and intensity information can effectively overcome
this limitation. For example, multi-modal passive NLOS imaging that combines
intensity information and spatial coherence can achieve promising results [8].
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3.3.4 Deep Learning

Data-driven scene priors are another common constraint, which can be ex-
ploited by deep learning methods. Although data-driven passive methods [104,
119, 120] also belong to passive NLOS imaging, this article will explain it in
Section 4 together with active data-driven NLOS methods to highlight the
application of deep learning in this field. Besides, in Section 4, unsupervised
passive NLOS imaging algorithms [2] based on physical constraints (matrix
factorization) are also introduced.

3.4 Challenges and Prospects

Because there is no controllable light source, passive NLOS imaging can only
obtain intensity information and limited coherent information, leading to low
reconstruction quality. The two main challenges for passive NLOS imaging
are high ill-posedness and limited measurement.

3.4.1 Ill-posedness

Passive NLOS imaging is an extremely ill-posed problem. The reasons can
be summarized as follows. (1) The collected data contains little effective
information. Since most of the information collected by passive NLOS imaging
is intensity information, it can be regarded as a projection of a hidden scene
on a two-dimensional plane, without any available temporal information. (2)
There is no effective space coding. The problem of passive NLOS imaging is
somewhat similar to the recent lensless imaging, but there are no encoders
such as moiré fringes [102], optical phased array [24] and known scattering
medium [91], which results in the data collected on diffuse reflection surfaces
(without valid BRDF encoding) being messy and the degree of ill-posedness
being high. (3) The influence of ambient light. When there is ambient light, it
is difficult to separate the ambient light from the effective speckle, which also
leads to an increase in the ill-posedness [68].

Adding Constraints Adding constraints is an effective way to improve the
condition. When the additional constrained parameters are unknown, accurate
estimation of constrained parameters (such as the position and shape of partial
occlusion) can also improve the imaging effect. Besides partial occlusion [94,
117] and polarizer [103] discussed above, the data-driven methods have a good
application prospect, which will be discussed in Section 4.

3.4.2 Limited Measurement

In practical application scenes, adding appropriate constraints between the
hidden object and the observation wall may not be allowed, which leads to the



Recent Advances on Non-Line-of-Sight Imaging 29

limitation of passive NLOS measurement. Therefore, passive NLOS imaging
only exploiting intensity information is extremely challenging [94]. Existing
research can obtain coherence through the interferometer, which contains some
depth information but is limited by the shape and size of hidden objects and
cannot complete high-quality reconstruction.

Multimodal Measurements Fusion Beckus et al. combined spatial co-
herence information and intensity information to complete multimodal passive
NLOS imaging, which provides a path to improve the imaging quality [8].
The basic principle of passive NLOS imaging is to collect visible light emit-
ted/reflected from hidden objects. However, in addition to visible light, hidden
objects also emit/reflect electromagnetic waves on other wavelengths, such as
infrared (∼780 nm) and radio signals everywhere in the environment. On the
other hand, NLOS imaging based on infrared wave [67] and radio [33] has also
been explored in recent years. Therefore, if visible light can be fused with other
types of electromagnetic waves to obtain multimodal measurement information,
it will hopefully break through the bottleneck of passive NLOS imaging and
achieve high-quality reconstruction without occlusion and scene constraint.

4 Deep Learning Methods

Conventional physics-based reconstruction algorithms have been discussed
above. In recent years, with the successful application of data-driven algorithms
(e.g., deep learning, [53]) in blind deconvolution [50], depth estimation [22],
and LOS imaging [71, 58, 101], recent works have also explored the possibility
of deep learning in NLOS imaging. This section first explains the significance
of using deep learning algorithms from a priori perspective, then introduces the
end-to-end learning algorithms, as well as the hybrid algorithms that combine
deep learning with physical models. Finally, we discuss the challenges and
prospects of deep learning algorithms. Table 3 summarizes the existing deep
learning-based NLOS imaging technologies and their network, input, output,
and training datasets.

4.1 Priors in NLOS Imaging

Some priors have been effectively used in NLOS imaging, as reviewed below.

Non-negative Prior The non-negative prior includes two parts. First, for
the optical transport matrix A, by definition, the value of each element is
non-negative; Second, for the reconstruction model based on the albedo ρ,
the albedo of each voxel is also non-negative. The non-negativity of the light
transport matrix and albedo ρ together constitute non-negative prior.
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Sparsity Prior Since the measurement data only contains the surface
information of the hidden scene, which is sparse in the entire 3D space, the
albedo (target scene) ρ has a sparsity prior. A common sparse constraint is
to directly use the L1-norm constrain, that is, ∥ρ∥1, and [35] added different
weights to each voxel. Another sparse constraint is a gradient constraint,
which limits the gradient in the depth axis is sparse. The last type of sparsity
constraint is that there should be only one non-zero value on the z-axis
corresponding to each (x, y) coordinate [35]. Most NLOS reconstruction
algorithms used sparse constraints as the main component of the regularization
term Γ(ρ) [34, 118].

Total Variational (TV) Prior TV represents the sum of discrete gradients,
and the TV regularization term is widely used in edge-preserving denoising [90,
15] and sparse reconstruction of low-sample data (e.g., compressed sensing)
[105]. For 3D NLOS reconstruction, TV prior represents the sparsity of hidden
objects, especially sparsity on the z-axis, which is the gradient constraint
discussed above. For two-dimensional NLOS imaging, the TV prior is mainly to
restore the image from the inverse problem and maintain the edge information.
Due to the effectiveness of the total variation constraint, many NLOS imaging
studies have used the TV prior as the regularization term [94, 74, 103, 114].

Other Priors The above three types of priors apply to most NLOS imaging
problems. Besides, there are some priors suitable for specific NLOS imaging.
Specifically, for ToF-based NLOS imaging, the ellipsoid constraint [111, 81],
as well as the surface parameter constraint (e.g., the discontinuity of the
ToF measurement contains the information of the surface normal) [108, 115]
are two important priors. For NLOS imaging with partial occluders, the
prior knowledge of the occluder’s position and shape are also significant for
high-quality reconstruction [106, 117]. Besides, the BRDF prior also plays an
important role in improving imaging results [44].

4.1.1 Unexploited Prior – Scene Prior

However, there are still some priors that have not been effectively used. There-
fore, using this undeveloped prior information is a meaningful way to improve
NLOS imaging quality.

Scene priors is an important kind of unexploited priors, which includes both
low-level features (e.g., smoothness) and high-level features (e.g., semantic
information) of hidden scenes. Scene priors are particularly important for
specific reconstruction tasks, such as NLOS imaging in autonomous vehicles
or medical imaging. Compared with other priors, most scene priors are im-
plicit and difficult to extract manually. Therefore, conventional physics-based
methods are challenging to formulate and efficiently utilize these scene priors.
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Figure 6: Two types of models of NLOS imaging based on deep learning: (a) End-to-End
Networks. (b) Physics-based Models. The reconstruction results in [20] and [120] are used
as a demonstration.

The data-driven methods based on deep learning can learn the input data
distribution, thereby efficiently completing the mapping from the input space
to the output space, which has been utilized in a wide range of applications in
recent years. For NLOS imaging, if there is enough reliable data, the data-
driven methods can learn the scene prior effectively and improve reconstruction
quality. Moreover, although the data-driven methods take a long time in the
training phase and require high-performance computing hardware, it can
almost achieve real-time processing in the test phase, which helps improve the
real-time performance of NLOS imaging.

Limited by datasets and generalization, data-driven NLOS imaging research
is still in the early stage. In recent years, several studies utilized deep learning
to propose innovative reconstruction algorithms. The existing works can be
roughly divided into two categories. One is to exploit the powerful representa-
tion ability of deep learning to build an end-to-end neural network directly
(Figure 6(a)). The other is to combine the advantages of deep learning with
physical models’ constraints to improve imaging performance (Figure 6(b)).

4.2 End-to-End Algorithms

NLOS imaging can be expressed as an inverse problem, as shown in Equa-
tion (7). Therefore, an end-to-end deep learning model can be built, where the
input is the measurement (e.g., τ), and the output is the reconstruction of the
hidden scene (e.g., ρ̂). Then, a loss function is used to measure the difference
between the output ρ̂ and ground truth ρ, followed by back-propagation used
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to optimize the network weights, and finally, a good reconstruction result can
be obtained.

Most of the existed NLOS imaging works based on deep learning used
the end-to-end network structure, as reviewed in Table 3. Chen et al. used
conventional cameras and continuous laser illumination to collect steady-state
NLOS imaging data and corresponding hidden scenes [19]. After that, a U-
Net [88] based network was trained to complete the mapping from the measure-
ment to the corresponding hidden scenes. In [19], the loss function was a multi-
scale (for different resolutions) L2 loss function. Similarly, [120] and [119] used
the U-Net based network structure, with cross-entropy and ordinary L2 norm
as loss function to complete the passive NLOS imaging in Figure 1(c) and (d).
They achieved better imaging performance than conventional methods [94, 103],
as shown in Figure 5(b). For ToF-based transient NLOS imaging scenes, Cho-
pite et al. synthesized a large number of training images through rendering and
noise models, and modified part of the input and output in U-Net from 2D ten-
sor to 3D tensor using L2 loss [21]. Finally, based on the end-to-end deep neural
network [21] completed the mapping from transient measurement to depth map.

In addition to reconstruction tasks, recognition is also an important goal
in NLOS scenes. Due to the limited capability of conventional algorithms in
high-level semantics, NLOS recognition mainly uses data-driven end-to-end
algorithms based on deep learning. Lei et al. completed the recognition of
MNIST [52] and human posture under different NLOS settings [54]. [14] showed
that the deep neural network can classify and recognize hidden scenes with
only one SPAD scanning point. In addition, a recent study [41] has combined
LSTM [38] and physical models to complete 3D human pose estimation.
Besides, Satat et al. used deep neural networks to complete object classification
through scattering media [92]. For passive NLOS scenes, Tancik et al. utilized
CNN for positioning and recognition, achieving a high recognition accuracy
[104]. Besides, [104] also explored the use of variational autoencoder (VAE)
[46] to complete NLOS reconstruction.

4.3 Network Combined with Physical Models

The end-to-end method is convenient for training, but it is highly dependent on
the dataset. When the dataset scale is large enough, end-to-end learning can
learn the mapping well to achieve good results. However, end-to-end learning
may have problems such as over-fitting and poor generalization ability when
the data size is insufficient. Due to the cumbersome data acquisition process,
NLOS imaging lacks real large-scale datasets (most of the existing large-scale
datasets are synthetic). Hence, some state-of-the-art studies in recent years
proposed a reconstruction algorithm combining deep learning and physical
models instead of the end-to-end network only, as shown in Table 3.

Metzler et al. used the optical memory effect (see Section 3.3) to complete
NLOS imaging [74]. Instead of using conventional phase recovery algorithms
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(e.g., hybrid input-output (HIO), [26] and alternating minimization (Alt-Min),
[78], [74] adopted U-Net to complete phase recovery, with the L1 norm after
autocorrelation as loss function. Recently, Chen et al. proposed an innovative
NLOS imaging network structure rather than using the well-known U-Net
like other works [20]. It first embedded the synthesized transient images
into a feature space (feature embedding), then propagated to the hidden
volume. After that, the network is divided into several parts with clear physical
meaning, such as visibility network, image rendering, and depth estimation.
To some extent, the physical model constrains the deep network to have good
generalization ability. Although [20] contains multiple components, it can still
conveniently run in an end-to-end mode during training. Another example
of exploiting deep learning to promote the development of NLOS imaging is
LiDAR-based imaging [122]. For traditional physical models, using commercial
LiDAR as the equipment is still a very challenging problem. However, the
recent work of Zhu et al. showed that by performing deep learning to complete
feature extraction, LiDAR can be used to complete high-quality and robust
3D NLOS reconstruction [122].

Aittala et al. regarded the measurement data as the product of the hidden
object and the light transport matrix [2] (as shown in Equation (12)). Exploit-
ing deep neural models to generate matrices satisfied matrix decomposition
completes passive NLOS imaging based on unsupervised learning. [98] used
unsupervised learning to complete active NLOS imaging. Specifically, [98]
exploited multilayer perceptron layers (MLP) to construct a neural transient
field that maps measurement data into a hidden scene, and utilized a physi-
cal model to constrain the results, thereby obtaining superior reconstruction
results. Technically, such unsupervised learning methods [2, 98] are not data-
driven methods, but the idea of using deep neural networks to simulate matrix
factorization is instructive.

4.4 Challenges and Prospects

NLOS imaging based on deep learning still faces many challenges, including
lack of datasets, lockstep network structure, and limited generalization capa-
bility. Here, we discuss these three challenges and the corresponding prospects
separately.

4.4.1 Dataset

Data-driven algorithms’ performance largely depends on the dataset’s quality
(such as scale and reliability). However, for transient NLOS imaging, acquiring
a sample of data requires a raster scan of the imaging area, which takes about 1
to 5 min [81, 40]. Therefore, constantly changing hidden objects and collecting
tens of thousands of measurements to form a large-scale dataset is extremely
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difficult. For NLOS imaging scenes based on traditional cameras, although
data collection is less time-consuming, it is still complicated to continuously
change scenes and construct large-scale dataset because data augmentation
operations such as crop and flip are not suitable for NLOS imaging.

Most existing works construct a rendering model to synthesize datasets
for training, that is, they first use public datasets in other fields as the
hidden object (ground truth) and then synthesize measurement data through
a rendering model. For transient NLOS imaging, the rendering model includes
two parts: transient rendering and sensor model [20, 21]. The SPAD-based
photon calculation model has been studied in detail, and they take into account
factors such as noise, crosstalk and afterpulsing [37]. For other types of NLOS
imaging, Metzler et al. used Berkeley Segmentation Dataset 500 [72] as a
hidden scene to calculate autocorrelation, which is then used to train the phase
recovery network [74]. For passive NLOS imaging using traditional cameras and
ambient light, diffuse surface illumination models, such as the Phong Model [85],
can be used for rendering to obtain synthesized passive NLOS data [120].

Due to the sensitivity of deep learning algorithms to abnormal data, improv-
ing the accuracy of rendering models is extremely important to data-driven
NLOS imaging methods. Another alternative is designing an automated/real-
time data collection system to collect data in the experimental setup.

4.4.2 Network Architecture

According to Sections 4.2 and 4.3, most NLOS imaging networks currently use
the classic network structure (or with tiny changes), such as U-Net [88] and
ResNet [32]. However, these well-known network structures are not necessarily
suitable for NLOS imaging. Compared with recent works in other inverse
problems, such as low-light image recovery [66] and image deblurring [89],
networks designed for specific tasks achieve better results. Therefore, it can
be expected that in the future, more novel network architectures based on the
characteristics of NLOS imaging (e.g., [20]) will be proposed to improve the
performance of NLOS imaging.

4.4.3 Generalization

Limited by the dataset and network structure discussed above, current data-
driven NLOS imaging algorithms have limited generalization capabilities. [21]
and [20] can get good test results on the public NLOS data [81, 28] through
training on the synthetic training set, which means that they have a certain
generalization ability. However, this does not mean that the generalization
capabilities of current algorithms are sufficient. Faced with new parameters
(such as BRDF, time jitter, aperture size) and new hidden scenes that do not
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exist in the training dataset, the trained network may not necessarily achieve
acceptable results.

The most two direct ways to increase the generalization ability are im-
proving the dataset’s quality and the network structure, as discussed above.
Another method is to use transfer learning so that a network trained on one
kind of data can be quickly transferred to another kind of data. Besides, unsu-
pervised learning is also a promising method. It does not rely on large amounts
of data, but can use deep neural networks’ powerful representation capabilities
to train a model that meets the physical constraints (e.g., the optical transport
matrix in [2]), which has more substantial generalization capabilities.

5 New NLOS Scenes

In Section 4, most existing NLOS imaging studies have been introduced. These
studies are accomplished in active and passive NLOS scenarios, as shown in
Figure 1. However, NLOS imaging is not limited to these scenes, and more new
types of scenes are waiting to be developed. In this section, we take the recent
two bounce NLOS imaging [36] and keyhole NLOS imaging [73] as examples
to introduce potential new NLOS scenes and their prospects.

5.1 Two Bounce NLOS Imaging

Henley et al. introduced the novel “two-bounce NLOS imaging”, as shown in
Figure 7(a) [36]. In this new scene, the hidden object is blocked by an occluder,
but there are two diffuse reflection surfaces W1 and W2 on both sides of the
hidden object. The observer can reconstruct the hidden scene by scanning the
laser on one of the diffuse reflection surfaces (e.g., W1) and using a traditional
camera to capture the two-bounce light on the other reflection surface (e.g., W2).
In other NLOS imaging, hidden objects play a role in reflecting light. However,
in two bounce NLOS imaging, hidden objects play a role in blocking light. By
capturing the projection of light on W2 after being blocked by a hidden object,
whether there is a hidden object point in each voxel can be judged.

As discussed in [36], two bounce NLOS imaging can be applied to seeing
behind trucks for autonomous vehicles and imaging between windows for search
and rescue. These applications are extensions to traditional NLOS imaging
(i.e., three-bounce NLOS imaging or passive NLOS imaging) applications and
illustrate the broad application prospects of “turning walls into mirrors”.

5.2 Keyhole Imaging

For all the NLOS imaging systems introduced above, there is a limitation that
a large illumination/imaging area is required. However, in some NLOS scenes
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Figure 7: New NLOS scenes. (a) Two bounce NLOS imaging. (b) Keyhole NLOS imaging.

(e.g., hidden objects are blocked in a room with curtains), large imaging areas
are not allowed, and only a few small holes can be used. Metzler et al. used a
beam splitter to propose an imaging system similar to confocal NLOS but does
not require scanning, called keyhole imaging, as shown in Figure 7(b) [73]. In
this system, the pulsed laser and the time-resolved detector only use a small
hole to illuminate and detect the hidden space. When the object in the hidden
space moves with time, expectation-maximization can be used to complete the
task of NLOS shape reconstruction and localization.

6 Conclusion

In this paper, we reviewed the existing NLOS imaging techniques with different
illumination conditions. Besides, we also discussed the recent data-driven
reconstruction algorithm and introduced some new types of NLOS scenes.
All these works demonstrated that NLOS imaging can significantly improve
imaging equipment’s view and capabilities, allowing hidden objects to be seen.
There are still several challenges that need to be addressed in the future work,
including how to improve the SNR and reduce the ill-posedness of the problem,
how to use more effective prior information, and how to reduce scanning time,
making NLOS imaging technology more practical.
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