
APSIPA Transactions on Signal and Information Processing, 2022, 11, e20
This is an Open Access article, distributed under the terms of the Creative Commons
Attribution licence (http:// creativecommons.org/ licenses/ by-nc/ 4.0/), which permits un-
restricted re-use, distribution, and reproduction in any medium, for non-commercial use,
provided the original work is properly cited.

Original Paper

Enhanced Automatic Areas of Interest
(AOI) Bounding Boxes Estimation
Algorithm for Dynamic Eye-Tracking
Stimuli
Ezekiel Adriel D. Lagmay and Maria Mercedes T. Rodrigo ∗

Ateneo de Manila University, Quezon City, Philippines

ABSTRACT

In eye-tracking research, an area of interest (AOI) is defined as any
object in the visual stimuli which is/are focused on by the viewer, defined
with bounding boxes of any shape. If a study makes use of a small
number of static visual stimuli, then researchers may define AOIs manu-
ally. However, if the stimuli is dynamic, then manual AOI definition is
not efficient or scalable. This paper presents the Enhanced Automatic
AOI Bounding Boxes Estimation Algorithm which automatically esti-
mates the AOI bounding boxes in dynamic stimuli using simple image
segmentation techniques. This algorithm is an improvement on the
Automatic AOI Bounding Boxes Estimation Algorithm. It uses a faster
version of the SLIC algorithm which utilizes the AVX2 SIMD (Single
Instruction, Multiple Data) parallelization paradigm, and replaces the
second K-Means Image Segmentation procedure at the end of the pre-

∗Corresponding author: Ezekiel Adriel D. Lagmay, ezekiel.lagmay@obf.ateneo.edu. The
authors would like to thank the Ateneo Laboratory for the Learning Sciences (ALLS) Eye-
Tracking Team for providing the necessary data sets for testing and analysis. The authors
would also like to thank Proceso L. Fernandez, Ph.D. and Christian Wolf for their guidance
and assistance in the evaluation of the the end results of the Enhanced Automatic AOI
Bounding Boxes Estimation Algorithm.

Received 25 June 2021; Revised 23 November 2021
ISSN 2048-7703; DOI 10.1561/116.00000026
© 2022 E. A. D. Lagmay and M. M. T. Rodrigo

http://creativecommons.org/licenses/by-nc/4.0/
https://orcid.org/0000-0002-7172-4255
https://orcid.org/0000-0001-7881-7756

2 Lagmay and Rodrigo

vious version of the algorithm with Region Adjacency Graph (RAG)
Thresholding. The evaluation of the overall results of the new algorithm
shows that the Enhanced Automatic AOI Bounding Boxes Estimation
Algorithm is superior to its predecessor both in terms of accuracy (recall
and precision) and efficiency (benchmarking).

Keywords: Eye-tracking, image segmentation, dynamic stimuli, areas of inter-
est (AOI), bounding boxes

1 Introduction

1.1 Context of the Study

Eye-tracking is a method of data capture and analysis in which a person’s eye
movements (or gazes) are recorded as the person looks at a given visual stimuli
[9]. These eye movements provide researchers with an objective indicator of
where the person focuses his or her attention [9]. Because a stimulus may
be composed of many parts with varying levels of importance, an important
step in analyzing eye gaze is to divide the stimulus into areas of interest
(AOIs). Defining these AOIs is often a manual process, one that is difficult to
scale as the number of stimuli increases. To automate the process of defining
AOIs, researchers have employed an area of computer vision known as object
detection or “...detecting instances of semantically meaningful objects of certain
classes, such as humans, buildings, or cars in digital images and videos”
[14]. Object Detection has already been used in surveillance, transportation
systems, driver assistance, smart rooms, and visual data summarizing, but
the main challenge to achieving accurate object detection is the handling
of complex data found in images and videos (such as pose, lighting, and
clutter) [14].

The research presented in this paper is a subset of a larger research project
on novice and expert programmer debugging skills [33, 36]. The goal of the
project was to determine how novices and experts differed in the way they read
and traced through buggy code in order to find errors. Participants were given
12 buggy programs, a text editor, and a compiler. As they attempted to debug
these programs, their eye movements and all screen activity were recorded.
Defining AOIs in a context such as this is challenging because the stimulus
is dynamic and therefore AOIs are always changing in shape, form, or even
location. Manual definition of AOIs, an approach used when visual stimuli
is static, was not a feasible approach. It was therefore necessary to develop
algorithms to automatically detect AOIs in order to make the process more
efficient and scalable. This paper presents the algorithm that was developed

Enhanced Automatic Areas of Interest (AOI) Bounding Boxes Estimation Algorithm 3

for this purpose, and can be generalized to other cases in which dynamic AOIs
comprised mainly of text.

Common approaches to addressing AOI definition in dynamic stimuli
usually involve using sophisticated software/algorithms (such as deep learning
packages like TensorFlow) which may require the use of specialized hardware
(such as NVIDIA GPUs) for optimal results (examples include [4, 5, 25]).
However, not all computers or operating systems support those kinds of
hardware. For instance, Apple’s macOS do not officially support NVIDIA
CUDA or OpenCL, and even their computers ship with AMD Radeon GPUs
instead of NVIDIA GPUs [7, 40]. Another alternative would be to use cloud
services (such as Google Cloud, Amazon AWS, and Microsoft Azure; see [39]
for an example), but the main caveat with this is that they either require a
paid subscription or impose limitations on the usage of their features for free
subscription tier users [3, 11, 20]. There are numerous image segmentation
techniques that achieve similar outcomes, and if combined in the proper
sequence, these image segmentation algorithms will enable the identification
of AOIs in dynamic stimuli without the hardware and software compatibility
caveats of deep learning approaches and as well without compromising efficiency
and accuracy. In addition, they are readily available using free and open-source
implementations in contrast to those available on popular cloud services. Lastly,
this paper contributes a method of layering or chaining existing individual
image segmentation algorithms, an approach we have not yet seen in the
literature.

This paper discusses the Enhanced Automatic AOI Bounding Boxes Esti-
mation Algorithm, an improved version of the Automatic AOI Bounding Boxes
Estimation Algorithm introduced by Lagmay [16] and Lagmay and Rodrigo
[17]. This algorithm uses a faster version of the SLIC algorithm which utilizes
the AVX2 SIMD (Single Instruction, Multiple Data) parallelization paradigm
[15], and replaces the second K-Means Image Segmentation procedure at the
end of the previous version of the algorithm with Region Adjacency Graph
(RAG) Thresholding. The source code, data, resources, and results shown here
are all available in the paper’s official GitHub Repository: https://github.com/
KielLagmay/EnhancedAutomaticAOIBoundingBoxesEstimationAlgorithm.

1.2 Research Objectives

The research objectives are as follows:

• To detect and keep track of AOIs automatically for each group of scenes
which takes into consideration the presence of text.

• To develop an AOI bounding boxes estimation algorithm using simple
image segmentation techniques instead of deep learning algorithms.

https://github.com/KielLagmay/EnhancedAutomaticAOIBoundingBoxesEstimationAlgorithm
https://github.com/KielLagmay/EnhancedAutomaticAOIBoundingBoxesEstimationAlgorithm

4 Lagmay and Rodrigo

• To introduce new Image Segmentation techniques which would help
improve the accuracy and efficiency of the previous Automatic AOI
Bounding Boxes Estimation Algorithm.

1.3 Scope and Limitations

This study made use of video output data (in AVI format) from an eye-tracking
experiment that attempted to determine how novice and expert programmers
differed in the way they traced through code. We used data from participants
from a single university in the Philippines (to be discussed further in Section 3).

2 Review of Related Literature

The literature review in this section focuses on publications concerning bound-
ing boxes. Most of the literature that we have found in relation to dynamic
stimuli eye-tracking/AOI are concerned with visualizations but not automatic
determination of bounding boxes. Several methods exist to address the prob-
lem of automatic detection of areas/objects of interest. Some of the methods
that these studies have utilized include Draw-and-Track (wherein the AOI(s)
are first manually defined by the user and then is/are continuously tracked by
the algorithm) [19], Active Video Methodology [14], and Image Segmentation
[6, 8]. The following sections describe each of these techniques in detail.

2.1 Draw-and-Track AOI Detection

Liu et al. [19] tracked a user-defined AOI in a neurosurgical video by using
a rectangle to define AOI borders, and the edge information of the surgery
instrument is used to adjust the tracked position. The overall procedure makes
use of Mean Shift Analysis for data cluster and object tracking, wherein the
instrument is represented in a featured space by its estimated Probability
Density Function [19]. Whenever the instrument changes orientation, the
frame’s edge information is used to update the tracking position [19]. Lastly,
the Tangent Line Problem is used for smoothly “morphing” the AOI [19]. The
final product of AOI detection with tracking is given in Fig. 6 in [19].

2.2 Active Video Methodology

The main limitation of the Draw-and-Track AOI Detection method is that AOI
detection is done manually at the beginning of the algorithm (only the AOI
tracking and update portions are automatic), and hence will not be efficient
for more objects [19]. Huang and Li [14] attempted to solve this issue by
looking into the interesting properties of Active Video which loosely resembles

Enhanced Automatic Areas of Interest (AOI) Bounding Boxes Estimation Algorithm 5

human eye movements in that it follows the Object(s) of Interest (OOIs) by
means of panning, tracking (or dolly), or revolving (or tilting), which is very
reminiscent of saccades [14]. These important properties thus help eliminate
the need for manually defining the initial AOIs by providing actual cues for
video segmentation and enable OOI tracking using the object-centered property
manifested by Active Video [14]. The results are shown in Fig. 7 in [14], with
the colored area in each grayscale video frame being the OOI.

This approach is not appropriate for desktop environments which are not
active videos but rather passive videos: backgrounds are static and multiple
objects appear, disappear, and occlude [14]. Also, in both [14] and [19], the
sample videos used are of only one “scene” type.

2.3 Image Segmentation Algorithms

One essential component of automatically extracting and detecting AOIs
from images and videos is image/video segmentation. This involves grouping
the pixels of an image or video frame into different clusters according to
characteristics such as color and texture. This essentially simplifies the image
by showing the relevant objects shown in it and their respective areas and
boundaries. One such algorithm, based on the K-Means Clustering Algorithm,
is described by Dhanachandra et al. [8]. The results are shown in Figs. 3 and 5
in [8], where each region is indicated with a different grayscale color.

An alternative image segmentation algorithm is based on the DP Clustering
Algorithm which “. . .Determine[s] the cluster numbers and cluster centers
based on the decision graph, on the representation of the input image in
color feature space” [6]. This is based on the notion that “cluster centers are
often surrounded by points which has lower density and have a relatively large
distance from these points with higher density” [6]. The procedure first involves
converting the image into feature spaces using color channel feature, and then
DP Algorithm is applied on the resulting representations, with Euclidean
Distance used to measure distances between all input data, and Gaussian
Kernel as the basic measurement of a point’s density [6]. The results are
shown in Figs. 6 and 7 in [6], where each color represents a specific region in
the image.

2.4 Synthesis

Of the three techniques – Draw-and-Track, Active Video Methodology, and
Image Segmentation – the last item has the most potential for the purposes of
this study, since it is very efficient and generalizable to different scenes. Image
Segmentation is automatic and considers important and essential objects in a
frame (such as taskbars, titlebars, etc.), and most importantly, also considers
lines of text.

6 Lagmay and Rodrigo

3 Methodology

In this section, the video files and their frames that are used in evaluating
the algorithm are first described. This is then followed by the discussion of
the Enhanced Automatic AOI Bounding Boxes Estimation Algorithm itself,
starting with Histogram Equalization which can define AOI Bounding Boxes for
lines of text, followed by K-Means and SLIC Image Segmentation techniques
which enable the detection of Graphical User Interface (GUI) elements on a
more general level. Image Sharpening, which allows the detection of AOIs for
lines of text over a dark background, is discussed next, followed by Bilateral
Filtering and RAG Thresholding which help smoothen the segmented outputs.
Lastly, the methods for evaluating the algorithm, Overlapping Rectangles
Evaluation Algorithm and Benchmarking, are discussed.

3.1 Dataset Description and Collection Methods

This study will be using the video output component of the Individual Dynamic
Data collected from 9 participants from University A. The eye-trackers used
in the study were made by Gazepoint, with a sample rate of 60Hz and an
accuracy of 0.5–1 degree [33]. The screen resolution of the monitors used in
the experiment was 1024× 768, and, by default, the problems were shown in
full screen [33]. There were a total of 12 debugging problems shown to the
participants, with the first three having a single bug while all others have three
bugs [33]. For each problem, the participants were asked to read the given
problem (in PDF form) and walk through its corresponding Java program
code (which was shown in the Notepad++ application) [33]. The participants
were free to make changes to the original program (adding code, deleting code,
etc.) and they have access to a Java compiler via CMD. A typical experiment
set-up used is shown in Figure 1 [33].

3.2 Enhanced Automatic AOI Bounding Boxes Estimation Algorithm

3.2.1 Histogram Equalization for Estimating AOI Bounding Boxes for Lines of Text

As mentioned earlier, Dhanachandra et al. [8] recommends the usage of Partial
Contrast Stretching (or simply Contrast Stretching) to preprocess the images
prior to segmentation to improve image quality and contrast. However, Tables
1 and 2 show that Histogram Equalization gives better outcomes than Contrast
Stretching for this matter, despite the tendency of the former to yield unnatural
looking images [29]. This is because Histogram Equalization approximates a
rectangle area for each line of text, and hence, it could be used to define the
AOIs particularly for text areas [16, 17].

Histogram Equalization is a “computer image processing technique used to
improve contrast in images by spreading out the most frequent intensity values

Enhanced Automatic Areas of Interest (AOI) Bounding Boxes Estimation Algorithm 7

Figure 1: Eye-tracking experiment set-up used by ALLS [33].

Table 1: Histogram equalization results on selected frames of the stimuli, compared to
similar techniques (part 1) [16, 17, 29].

8 Lagmay and Rodrigo

Table 2: Histogram equalization results on selected frames of the stimuli, compared to
similar techniques (part 2) [16, 17, 29].

(or stretching out the intensity range of the image)” [32]. This is based from
image transformation functions (intensity mappings) involving Probability
Density Functions (PDFs) and Integrals, specifically the following equation
[10, 35]:

s = T (r) = (L− 1)

∫ r

0

pr(w)dw (1)

Where w is a dummy variable of integration [10, 35]. The right side of the
equation is the Cumulative Distribution Function (CDF) of random variable r

Enhanced Automatic Areas of Interest (AOI) Bounding Boxes Estimation Algorithm 9

[10, 35]. This is explained further by Gonzalez and Woods [10] and UCI [35].
In the case of discrete values, however, Probabilities (Histogram Values) and
Summations are considered instead [10, 35]. The probability of occurrence of
intensity level rk in a digital image is approximated by [10, 35]:

pr(rk) =
nk

MN
; k = 0, 1, . . . , L− 1 (2)

Where MN is the total number of pixels in the image, nk is the number of
pixels having intensity rk, and L is the number of possible intensity levels in the
image (usually 256) [10, 35]. A plot of pr(rk) vs. rk is known as a histogram
[10, 35]. The discrete counterpart of the transformation of Equation (1) is
given by [10, 35]:

sk = T (rk)

= (L− 1)

k∑
j=0

pr(rj)

=
(L− 1)

MN

k∑
j=0

nj ; k = 0, 1, . . . , L− 1

(3)

In other words, each pixel in the input image with intensity rk is mapped
to a corresponding pixel with level sk in the output image [10, 35]. Here, the
transformation (mapping) function T (rk) is known as Histogram Equalization
or Histogram Linearization Transformation.

In Python, Histogram Equalization is available through Scikit-Image
(skimage)’s exposure module via the function equalize_hist() [28].

3.2.2 K-Means and SLIC Image Segmentation for Estimating AOI Bounding Boxes
for Non-Text (GUI) Elements

However, using Histogram Equalization for AOI approximation is still insuffi-
cient for two reasons. Firstly, it treats adjacent non-text elements (i.e., the
GUI) as a single AOI. It does not recognize them as separate components
(ex. Taskbars, Titlebars, Menu Items, etc.). In eye-tracking research, these
items need to be recognized as separate components. To remedy this, Image
Segmentation Algorithms (as discussed in [6, 8, 12]) can be used along with
Histogram Equalization to help approximate AOI boundaries most especially
for non-text elements. Specifically, K-Means Image Clustering and Simple
Linear Iterative Clustering (SLIC) are used to further simplify the image and
help determine AOI areas most especially for non-text elements [1, 8]. The
K-Means Image Segmentation procedure is explained in detail in [8].

As with its predecessor, the Enhanced Automatic AOI Bounding Boxes
Estimation Algorithm uses the SLIC Image Segmentation Algorithm (summa-
rized in Fig. 2 in [15] and sample results in Fig. 1 in [1]; original paper in [1])
[1, 16], but with optimizations to the following [15]:

10 Lagmay and Rodrigo

1. CIELAB conversion and quantization – Convert RGB images into quan-
tized CIELAB images represented with unsigned 8-bit integers. This
procedure is parallelized on a per-pixel basis [15].

2. Cluster assignment – Use Manhattan Distance instead of Euclidean
Distance as distance metric since a distance value is always represented
with 16-bit unsigned integers instead of 32-bit floating point numbers, and
because Manhattan Distance is more computationally efficient as only
addition, subtraction, and conditional move are involved. To perform the
Cluster Assignment Procedure using integer-only arithmetic (illustrated
in Fig. 3 in [15]), a minimum distance value dij is maintained to its
cluster during an iteration, and for each cluster k, dij is updated into
distance to the centroid if it has less value. Lastly, the cluster labels
are represented with unsigned 16-bit integers as well. This procedure
is parallelized using a tiling scheme such that assignment of cluster k
and cluster l can run in parallel if two regions of interest do not overlap.
(illustrated in Fig. 5 in [15]) [15].

3. Centroid update – Each centroid moves to rounded integers of its center
of mass in order to maintain the property that the elements of centroids
and pixels are represented with integers. This step is parallelized by
accumulating 5-dimensional pixel vectors for each cluster in each thread
and gathering from threads [15].

4. Connectivity enforcement – Parallelized by utilizing the parallel CCL
procedure by Gupta et al. [13] with some modifications in that adjacent
pixels are treated as neighbors only if they have the same cluster number.
Also, 4-connectivity (wherein only the north, east, south, and west pixels
of each pixel are considered adjacent) was used instead of 8-connectivity
for performance reasons [15].

This process can be optimized further using SIMD Vectorization and Row
Subsampling (such as AVX2 for x86-64 systems or NEON for ARM systems),
which reduces memory access during clustering [15]. Row Subsampling draws
samples from a set of image rows (analogous to a long contiguous line of
memory) and then only the rows from the sample are used for cluster assignment
and centroid update, as opposed to Pixel Subsampling which treats each pixel
in an image as an independent unit and then draws a proportion p of pixels
from the image (see also Fig. 4 in [15]). Because of this, processing a row
subsample results in less cache miss and that it could be easily implemented
and optimized using SIMD unlike pixel subsamples [15]. Specifically, for each
iteration i, rows whose index y satisfies y mod Stride ≡ i are sampled [15].
Centroid updates are then performed in the same way as the standard k-means
clustering, but without weighted update or gradient step [15].

Enhanced Automatic Areas of Interest (AOI) Bounding Boxes Estimation Algorithm 11

The overall FastSLIC algorithm is given in Algorithm 1 [15].

Algorithm 1: Overall FastSLIC Algorithm [15]
Input: W ×H quantized CIELAB Image Iij = {lij , aij , bij}, initial K

centroids Ck = {xk, yk, lk, ak, bk}, grid size S, compactness m,
color quantization scale n, max iteration N , Subsampling
stride Stride

Output: superpixel assignment Aij

1 repeat
// The assignment procedure is further described in

Algorithm 2 by Kim [15]
2 Assign clusters and store the assignment into Aij with Offset and

Stride.
3 Update the centroids from assignment Aij in parallel.
4 Offset← (Offset+ 1) mod Stride;
5 until iterated N times;
6 Assign clusters and store into Aij with Stride = 1.
7 Enforce connectivity of Aij .

3.2.3 Image Sharpening as a Helper to Histogram Equalization for Estimating AOI
Bounding Boxes on Text Over Dark Backgrounds

Secondly, while Histogram Equalization works for text on a light background,
it is not able to estimate AOIs for a line of text on a dark background (this
would be detrimental most especially if a line of text happens to be on a
command-line terminal). This can be solved by performing Image Sharpening
on the video frame before performing Histogram Equalization on it. Image
Sharpening and Blurring are both Image Filtering techniques which change
the intensity of the noise in the picture by normalizing or averaging a block of
pixels in an image to have low values difference [2]. In Image Blurring, each
pixel value changes according to its neighboring pixels by taking the total
average of all pixels [2]. The size of the pixels which the manipulation function
is run on is called the kernel (usually 3× 3) [2].

Image Sharpening uses a similar process, but the goal is to pop out details
in the image by making each pixel value different from its neighbors [2]. The
PIL Python Library has the Image, ImageFilter, and ImageFile libraries that
can sharpen an image via the filter(ImageF ilter.SHARPEN) method that
is called on the image object [26]. More specifically, ImageF ilter.SHARPEN
implements a spatial filter using convolution to sharpen an image [26]. The
convolution matrix used is [[−2,−2,−2], [−2, 32,−2], [−2,−2,−2]] (as opposed
to the usual matrix configuration of [[−1,−1,−1], [−1, 9,−1], [−1,−1,−1]])
[2, 26].

12 Lagmay and Rodrigo

3.2.4 Other Image Processing Techniques Utilized and Overall Algorithm

Lastly, in order to clearly define boundaries, procedures which help “smoothen”
the image are carried out. In between the K-Means Image Segmentation and
SLIC Image Segmentation procedures, an Image Smoothing procedure known
as Bilateral Filtering is performed [21]. Bilateral Filtering uses a Gaussian filter
“. . . in the space domain, but it also uses one more (multiplicative) Gaussian
filter component which is a function of pixel intensity differences” [21]. The
Gaussian function of space ensures that only pixels that are “spatial neighbors”
are considered for filtering, while the Gaussian component applied in the
intensity domain ensures that only those pixels with intensities similar to that
of the central pixel are included to compute the blurred intensity value [21].
Thus, unlike other techniques, Bilateral Filtering is very effective at removing
noise while at the same time preserving edges since “for pixels lying near
edges, neighboring pixels placed on the other side of the edge, and therefore
exhibiting large intensity variations when compared to the central pixel, will
not be included for blurring” [21].

In addition, after the SLIC Image Segmentation step but before finally
saving to a .png file, the video frame undergoes a process called RAG Thresh-
olding which constructs an RAG from the image, defines edges as the difference
in mean color, and then merges regions which have similar mean color [30].

The overall implementation of the Enhanced Automatic AOI Bounding
Boxes Estimation Algorithm in Python can be found in the function esti-
mateAOIBoundingBoxes of the EstimateAOIBoundingBoxes_Standalone.py
file in the official GitHub Repository, and the procedure is illustrated in
Figure 2. Note that unlike in the original Automatic AOI Bounding Boxes
Estimation Algorithm in [16], the temp image(s) are in the JPEG image format
instead of the PNG format. Hence, the original PNG file is first converted
into a JPEG file at the start of the algorithm, but the final output is still
saved as a PNG file. In addition, the user is free to change the parameters
for each of the steps in the Enhanced Automatic AOI Bounding Boxes Esti-
mation Algorithm by passing a dictionary of parameters to the paramList
parameter.

3.3 Results Evaluation

The Enhanced Automatic AOI Bounding Boxes Estimation Algorithm was
tested on the grayscale representation of 10 selected frames obtained from the
video output data of three participants: Frame 267 from Participant 2, Frames
691 and 703 from Participant 3, and Frames 18, 125, 139, 170, 176, 225, and
803 from Participant 4. The results are shown in Tables 3 and 4.

Enhanced Automatic Areas of Interest (AOI) Bounding Boxes Estimation Algorithm 13

Figure 2: Illustration of the Enhanced Automatic AOI Bounding Boxes Estimation
Algorithm.

14 Lagmay and Rodrigo

3.3.1 Overlapping Rectangles Evaluation Algorithm

To check the accuracy of the generated AOI bounding boxes to the ground
truth, the Overlapping Rectangles Evaluation Algorithm (an improved version
of Intersection Over Union (IOU), which is explained in detail in [27]) will be
used, since simple IOU would not be trivial in the case of multiple images or a
single image with multiple text rectangles [38]. More specifically, “the way the
overlap information is accumulated during the calculation of the evaluation
measures leaves room for ambiguity” [38]. Hence, a more accurate way of
evaluating AOI rectangle bounding boxes must meet the following criteria [38]:

1. The evaluation measure should intuitively tell how many text rectangles
have been detected correctly, and how many false alarms have been
created (quantitative evaluation).

2. It should give an easy interpretation of the detection quality (qualitative
evaluation).

3. It should support one-to-one matches, one-to-many matches, and many-
to-one matches.

4. The measure must scale up to multiple images without losing its power
and ease of interpretation.

The first two goals in the criteria are contradicting yet related in that
“the number of rectangles we consider as detected depends on the quality
requirements which we impose for a single rectangle in order to be considered
as dectected” [38]. Hence, two-dimensional plots are used to bridge the two
goals: the y-axis is used to plot two measures on object counts (Recall ROB and
Precision POB) [38]. The formulas for ROB and POB are given in Equation (4)
[38]:

ROB =
No. of correctly detected rectangles
No. of rectangles in the database

POB =
No. of correctly detected rectangles

Total no. of detected rectangles

(4)

To compute the measures given in Equation (4), it is required to determine
for each ground truth rectangle Gi whether it has been detected or not, and to
determine for each detection result rectangle Di whether its detection is correct
or not [38]. In order to meet the third item in the criteria, the method in [18]
for calculating the overlap matrices σ and τ was utilized [38]. The matrices
are then analyzed in order to determine the correspondence between the two
rectangle lists: a non-zero value in an element with indices (i, j) indicates

Enhanced Automatic Areas of Interest (AOI) Bounding Boxes Estimation Algorithm 15

Table 3: Enhanced Automatic AOI Bounding Boxes Estimation Algorithm results for some
frames (part 1).

16 Lagmay and Rodrigo

Table 4: Enhanced Automatic AOI Bounding Boxes Estimation Algorithm results for some
frames (part 2).

Enhanced Automatic Areas of Interest (AOI) Bounding Boxes Estimation Algorithm 17

that ground truth rectangle Gi overlaps with result rectangle Dj , but the two
rectangles are matched only if area recall and area precision are higher than
the respective constraint [38]:

σij > tr

τij > tp
(5)

Where tr ∈ [0, 1] and tp ∈ [0, 1] are the constraints on area recall and area
precision, respectively [38]. The matching criteria are then defined for each of
the following cases (illustrated in Fig. 2 in [38]):

• One-to-one matches: One ground truth rectangle Gi matches with a
result rectangle Dj if row i and column j of both matrices contain only
one element satisfying Equation (5) [38].

• One-to-many matches (splits): One ground truth rectangle Gi

matches against a set So of result rectangles Dj , j ∈ So if a sufficiently
large proportion of the ground truth rectangle has been detected (i.e.,∑

j∈So
σij ≥ tr), and each contributing result rectangle overlaps enough

with the ground truth rectangle to be considered a part of it (i.e.,
∀j ∈ So : τij ≥ tp) [38].

• Many-to-one matches (merges): One result rectangle Dj matches
against a set Sm of ground truth rectangles if a sufficiently large portion
of each ground truth rectangle is detected (i.e., ∀i ∈ Sm : σij ≥ tr),
and each ground truth rectangle has been detected with enough area
precision (i.e.,

∑
i∈Sm

τij ≥ tp) [38].

• Many-to-many matches (splits and merges): This is translated
into several splits or a set of splits and one-to-one matches, since it is
currently not supported (each ground truth rectangle in the matching
set is either part of a split if it is matched against several detected
rectangles, or it is part of a one-to-one match if it is matched against a
single detected rectangle) [38].

ROB and POB can now be defined as follows given the matching strat-
egy [38]:

ROB (G,D, tr, tp) =

∑
i MatchG (Gi, D, tr, tp)

|G|

POB (G,D, tr, tp) =

∑
j MatchD (Dj , G, tr, tp)

|D|

(6)

18 Lagmay and Rodrigo

Where MatchG and MatchD are piecewise functions which take into ac-
count the different types of matches and evaluate the quality of the match [38]:

MatchG (Gi, D, tr, tp) =

1 if Gi matches
against a single
detected rectangle

0 if Gi does not
match against any
detected rectangle

fsc (k) if Gi matches
against several
(→ k) detected
rectangles

MatchD (Dj , G, tr, tp) =

1 if Dj matches
against a single
detected rectangle

0 if Dj does not
match against any
detected rectangle

fsc (k) if Dj matches
against several
(→ k) detected
rectangles

(7)

Where fsc (k) is a parameter function of the evaluation scheme which
controls the penalty for splits or merges, set to a constant 0.8 by default [38].

In the case of N images, several lists of ground truth rectangles Gk ∈ G, k =
1..N are compared with several lists of result rectangles Dk ∈ D, k = 1..N [38].
Instead of accumulating results on multiple images by summing the recall or
precision values, object recall and object precision are defined as follows [38]:

ROB

(
G,D, tr, tp

)
=

∑
k

∑
i MatchG

(
Gk

i , D
k, tr, tp

)∑
k |Gk|

POB

(
G,D, tr, tp

)
=

∑
k

∑
j MatchD

(
Dk

j , G
k, tr, tp

)∑
k |Dk|

(8)

The object-related Recall and Precision measures in Equation (8) depends
on two constraints tr and tp which impose constraints on the detection quality
[38]. The performance diagrams (shown in Fig. 5 in [38]) are created by fixing

Enhanced Automatic Areas of Interest (AOI) Bounding Boxes Estimation Algorithm 19

one constraint to a set value, allowing the second one (the x-axis) to vary, and
plotting object recall and precision on the y-axis of two graphs [38].

The graphs provide a straightforward interpretation: if object recall never
drops to zero when area recall approaches 1 then most of the text rectangles
detected rarely cuts parts of the ground truth rectangle (area coverage of
100%), while if object recall drops to zero when area precision approaches 1
then all result rectangles exceed the ground truth boundaries [38]. Also, the
particular amount of area which is detected additionally can be seen by the
point/range where the object recall dramatically drops when area precision
increases [38].

By default, tr is fixed to 0.8 while tp is set to a lower value of 0.4 due
to the fact that a detection result which cuts parts of the text rectangle is
more disturbing than a detection which results in a too large rectangle [38].
In addition, the area of a rectangle grows with the square of its side lengths;
this is shown in Fig. 3 in [38], wherein the detected rectangle has 50% area
precision since it is twice as large as the ground truth rectangle, although the
difference in the corner coordinates is quite small [38].

While Performance Diagrams are a very intuitive way to illustrate the
performance of an object detection algorithm, it is often useful to determine
a single performance value for an algorithm, either for direct comparison of
the performances of different algorithms, or to optimize the parameters of the
detection algorithm, or to control the algorithm [38]. This is a difficult task
to achieve, since a “single value is hardly able to characterize the complex
behavior of a detection algorithm” [38]. In addition, a “good indicator should
cover the performance of the evaluated algorithm across a whole range of
quality constraints” [38]. Hence, the proportion of the graph area which is
beneath the performance graphs is used as a “reliable and objective measure,”
which is equivalent to the mean value of object measures over all possible
constraint values [38]. Firstly, the area proportion is separately calculated for
object recall and object precision [38]:

ROV =
1

2T

T∑
i=1

ROB

(
G,D,

i

T
, tp

)
+

1

2T

T∑
i=1

ROB

(
G,D, tr,

i

T

)

POV =
1

2T

T∑
i=1

POB

(
G,D,

i

T
, tp

)
+

1

2T

T∑
i=1

POB

(
G,D, tr,

i

T

) (9)

The final performance value is the harmonic mean of the two measures
[38]:

PerfOV = 2
POV ·ROV

POV +ROV
(10)

Note that the parameter T is a “granularity parameter which controls the
trade-off between the computational complexity of the evaluation algorithm

20 Lagmay and Rodrigo

and the precision of the integration approximation” [38]. Since it is not likely
that the object-related measures change sharply after changing the quality
constraints in very small steps, T is set to 20 by default [38].

Since the Enhanced Automatic AOI Bounding Boxes Estimation Algorithm
(and its predecessor) is not yet able to give the actual bounding boxes and their
coordinates, the final outputs are each inputted into the adaptiveThreshold
OpenCV method with the following parameters to obtain their edge information
[23, 24, 34]:

• maxV alue = 255

• adaptiveMethod = cv2.ADAPTIV E_THRESH_GAUSSIAN_C

• thresholdType = cv2.THRESH_BINARY

• blockSize = 15

• C = 0.01

The edge information obtained from the adaptiveThreshold method for
each result are then used as the basis for the manual drawing of the actual
AOI Bounding Boxes and the collection of their coordinates. The bounding
boxes used for the Overlapping Rectangles Evaluation procedure are shown
here for the Ground Truth (Table 5), the Result of the New Algorithm (Tables
6 and 7), and the Result of the Old Algorithm (Tables 8 and 9).

The actual values of the AOI Bounding Box coordinates can be found in
the Overlapping Rectangles Evaluation.xlsx Excel File in the Overlapping
Rectangles Evaluation folder of the official repository of this paper. These
values are then converted into XML format and then passed into the DetEval
Program (the actual implementation of [38]) [37]. evalfixed was used to
evaluate the algorithm (using fixed constraint parameters), while evalplots
was used to generate files containing data for plotting via the Matplotlib
Python library (after the files were manually compiled into a single CSV file
for each of the data groups) [37].

3.3.2 Benchmark Evaluation

Lastly, a benchmark comparison was also done to measure the runtime of the
algorithms by using time.time() before (start) and after (end) running the
function corresponding to the algorithm, then getting the difference between
end and start, with the unit in seconds [22]. The benchmarking tests were
done on a MacBook Pro (Mid-2014 13” Retina Display model) with a 2.6 GHz
Dual-Core Intel Core i5 processor, an 8 GB 1600 MHz DDR3 memory, and an
Intel Iris 1536 MB graphics processor, running macOS 10.15 Catalina (as of
the time the paper was written).

Enhanced Automatic Areas of Interest (AOI) Bounding Boxes Estimation Algorithm 21

4 Results

This section begins with the discussion of the benchmarking results, which is
then followed by some experimental results involving changing the parameters
for the SLIC Components and the RAG Cut Threshold, and as well changing
the format of the temp image files to PNG instead of JPEG. The Results section
concludes with a brief discussion of the Overlapping Rectangles Evaluation
Algorithm results, which give the accuracy of the Enhanced Automatic AOI
Bounding Boxes Estimation Algorithm.

4.1 Benchmarking Results

The benchmarking results for the improved algorithm are shown in Table 10
[22]. It can obviously be seen that the runtime of the improved algorithm
is significantly faster than the previous version (see Table 11). Please note,
however, that the values shown here are rounded off to two decimal places;
for the actual values, please see the AutomaticAOIBoundingBoxesEstima-
tionBenchmarks_New.txt (benchmark results for the new algorithm) and
AutomaticAOIBoundingBoxesEstimationBenchmarks_Old.txt (benchmark re-
sults for the old algorithm) files in the Benchmark Results folder of the official
GitHub repository.

4.2 SLIC Components and RAG Cut Threshold Parameter Testing

The Enhanced Automatic AOI Bounding Boxes Estimation Algorithm was
tested for different values of the SLIC Components Parameter and the RAG
Cut Threshold Parameter. Specifically, 5000, 7000, and 9000 were used as test
values for the SLIC Components Parameter, while 3 and 5 were used as test
values for the RAG Cut Threshold Parameter. Based from the results, a SLIC
Components Parameter value of 9000 and a RAG Cut Threshold Parameter
value of 3 qualitatively give the most accurate results in that boundaries
between adjacent estimated AOI bounding boxes for non-text (GUI) elements
are clear-cut and well-defined. Note that throughout the algorithm evaluation
procedure, SLIC Compactness is set to 1 since that value balances the color
and space factors during the SLIC Image Segmentation Algorithm [31]. The
overall results of the parameter testing are given in Tables 12–17.

4.3 Utilization of the JPEG Format for Temp Image File(s)

As mentioned earlier, the temp image file(s) generated during the execution
of the Enhanced Automatic AOI Bounding Boxes Estimation Algorithm are
saved in JPEG format instead of PNG, unlike its predecessor [16]. However,
it was decided to do an experiment wherein the temp image file(s) generated

22 Lagmay and Rodrigo

by the new algorithm are saved in PNG format similar to that of the old
algorithm, and qualitatively, it gave less accurate results in that it causes
oversegmentation (i.e., fails to estimate AOI bounding boxes in a more general,
less-specific manner). Tables 18 and 19 show this point.

4.4 Overlapping Rectangles Evaluation Algorithm Results

Table 20 and Figure 3 show the results of the Overlapping Rectangles Eval-
uation Algorithm on the Old (Automatic AOI Bounding Boxes Estimation
Algorithm) and New (Enhanced Automatic AOI Bounding Boxes Estimation
Algorithm) Algorithms [37, 38]. It can be clearly seen that the new version has
better Recall and Precision scores than the old version in [16], hence implying
that the Enhanced Automatic AOI Bounding Boxes Estimation Algorithm is
more accurate than its predecessor. Please note that the values shown here are
rounded off to at most two decimal places; for the actual values, please refer to
the Predicted-New-Results.xml and Plot-Summary-New.txt files (for the new
algorithm), and the Predicted-Old-Results.xml and Plot-Summary-Old.txt

Figure 3: The resulting performance graphs of the old and new Automatic AOI Bounding
Boxes Estimation Algorithms [37, 38].

Enhanced Automatic Areas of Interest (AOI) Bounding Boxes Estimation Algorithm 23

files (for the old algorithm), in the Overlapping Rectangles Evaluation folder
of the official GitHub repository.

5 Conclusion

The Enhanced Automatic AOI Bounding Boxes Estimation Algorithm is able
to address the following research objectives:

• To detect and keep track of AOIs automatically for each group
of scenes which takes into consideration the presence of text.
Like its predecessor, the Enhanced Automatic AOI Bounding Boxes
Estimation Algorithm uses Image Sharpening followed by Histogram
Equalization prior to the image segmentation proper to be able to esti-
mate AOI bounding boxes for lines of text, regardless of the background.

• To develop an AOI bounding boxes estimation algorithm using
simple image segmentation techniques instead of deep learning
algorithms. The Enhanced Automatic AOI Bounding Boxes Estimation
Algorithm utilizes free and open-sourced image segmentation algorithms
in Python stacked together which are able to detect AOIs without the
need for either specialized GPUs or cloud computing solutions.

• To introduce new Image Segmentation techniques which would
help improve the accuracy and efficiency of the previous Au-
tomatic AOI Bounding Boxes Estimation Algorithm. The new
algorithm uses a faster version of SLIC which utilizes AVX2 SIMD
parallelization and replaces the second K-Means Image Segmentation
procedure at the end of the previous algorithm with RAG Thresholding.
Hence, it performs faster than the previous version, and its recall and
precision values are also higher than that of the old algorithm. The
evaluation method used has also improved significantly from the previ-
ous version, as it is now able to capture one-to-many and many-to-one
scenarios [38].

There are, however, still areas for improvement, most especially on adding
the capability for giving out the actual AOI bounding boxes (and their coordi-
nates) automatically. But the use of Adaptive Thresholding to get the edge
information looks very promising in meeting that goal. In addition, it is also
planned to test out the Enhanced Automatic AOI Bounding Boxes Estimation
Algorithm on more video frames in order to get a much clearer picture of its
accuracy.

The methodologies laid out in this study were applied to a study that
compared how novice and expert programmers differ in the way they debug

24 Lagmay and Rodrigo

programs. However, these methods may be applied to almost any eye-tracking
study that makes use of dynamic stimuli. User experience studies that make
use of eye-tracking to monitor how users interact with dynamic interfaces
with textual elements can make use of these methods to automatically define
bounding boxes of areas of interest.

Table 5: AOI Bounding Boxes for the ground truth [23, 24, 34].

Enhanced Automatic Areas of Interest (AOI) Bounding Boxes Estimation Algorithm 25

Table 6: AOI Bounding Boxes for the Enhanced Automatic AOI Bounding Boxes Estimation
Algorithm (new version) (part 1) [23, 24, 34].

26 Lagmay and Rodrigo

Table 7: AOI Bounding Boxes for the Enhanced Automatic AOI Bounding Boxes Estimation
Algorithm (new version) (part 2) [23, 24, 34].

Enhanced Automatic Areas of Interest (AOI) Bounding Boxes Estimation Algorithm 27

Table 8: AOI Bounding Boxes for the Automatic AOI Bounding Boxes Estimation Algorithm
(old version) (part 1) [23, 24, 34].

28 Lagmay and Rodrigo

Table 9: AOI Bounding Boxes for the Automatic AOI Bounding Boxes Estimation Algorithm
(old version) (part 2) [23, 24, 34].

Enhanced Automatic Areas of Interest (AOI) Bounding Boxes Estimation Algorithm 29

T
ab

le
10

:
B

en
ch

m
ar

k
re

su
lt

s
fo

r
th

e
E

nh
an

ce
d

A
ut

om
at

ic
A

O
I

B
ou

nd
in

g
B

ox
es

E
st

im
at

io
n

A
lg

or
it

hm
on

se
le

ct
ed

fr
am

es
(n

ew
ve

rs
io

n)
[2

2]
.

Fr
am

e
Fr

am
e

Fr
am

e
Fr

am
e

Fr
am

e
Fr

am
e

Fr
am

e
Fr

am
e

Fr
am

e
Fr

am
e

A
tt

em
pt

18
12

5
13

9
17

0
17

6
22

5
26

7
69

1
70

3
80

3

1
25

.3
7s

20
.7

9s
25

.8
9s

24
.5

8s
25

.8
6s

25
.0

0s
21

.2
1s

19
.6

5s
18

.7
5s

19
.9

4s
2

24
.1

1s
20

.8
9s

25
.8

5s
24

.5
2s

26
.0

4s
24

.8
2s

21
.2

5s
19

.5
5s

18
.1

4s
19

.9
6s

3
23

.9
9s

20
.6

2s
25

.9
3s

24
.3

9s
25

.5
3s

24
.6

5s
21

.1
5s

19
.2

3s
18

.0
7s

19
.8

5s
4

24
.0

1s
20

.6
9s

25
.8

7s
24

.4
4s

25
.6

4s
24

.6
8s

21
.1

1s
19

.3
9s

18
.1

4s
19

.8
0s

5
24

.0
4s

20
.6

6s
25

.6
8s

24
.3

5s
25

.6
2s

24
.6

4s
21

.0
9s

19
.4

5s
17

.9
8s

19
.8

7s
A
ve

ra
ge

24
.3

1s
20

.7
3s

25
.8

4s
24

.4
6s

25
.7

4s
24

.7
6s

21
.1

6s
19

.4
5s

18
.2

1s
19

.8
8s

T
ab

le
11

:
B

en
ch

m
ar

k
re

su
lt

s
fo

r
th

e
A

ut
om

at
ic

A
O

I
B

ou
nd

in
g

B
ox

es
E

st
im

at
io

n
A

lg
or

it
hm

on
se

le
ct

ed
fr

am
es

(o
ld

ve
rs

io
n)

[2
2]

.

Fr
am

e
Fr

am
e

Fr
am

e
Fr

am
e

Fr
am

e
Fr

am
e

Fr
am

e
Fr

am
e

Fr
am

e
Fr

am
e

A
tt

em
pt

18
12

5
13

9
17

0
17

6
22

5
26

7
69

1
70

3
80

3

1
34

.3
1s

34
.4

5s
34

.9
7s

34
.3

7s
34

.0
0s

34
.3

6s
34

.4
0s

34
.5

0s
35

.1
0s

33
.9

6s
2

34
.4

6s
34

.3
4s

34
.4

0s
34

.4
1s

34
.3

7s
34

.3
1s

34
.2

8s
34

.5
2s

34
.1

0s
33

.9
9s

3
34

.5
8s

34
.6

8s
34

.6
4s

34
.1

7s
34

.8
1s

34
.2

9s
34

.5
5s

34
.2

7s
34

.3
3s

34
.3

8s
4

34
.1

8s
34

.3
8s

34
.5

9s
34

.1
5s

34
.6

6s
34

.2
5s

34
.6

0s
34

.0
4s

34
.2

8s
34

.4
0s

5
34

.3
4s

33
.8

7s
34

.2
5s

34
.6

0s
34

.2
4s

34
.6

4s
34

.3
9s

34
.0

3s
33

.8
8s

34
.4

8s
A
ve

ra
ge

34
.3

7s
34

.3
4s

34
.5

7s
34

.3
4s

34
.4

2s
34

.3
7s

34
.4

5s
34

.2
7s

34
.3

4s
34

.2
4s

30 Lagmay and Rodrigo

Table 12: SLIC Components and RAG Cut Threshold Parameter testing results (part 1a).

Enhanced Automatic Areas of Interest (AOI) Bounding Boxes Estimation Algorithm 31

Table 13: SLIC Components and RAG Cut Threshold Parameter testing results (part 1b).

32 Lagmay and Rodrigo

Table 14: SLIC Components and RAG Cut Threshold Parameter testing results (part 2a).

Enhanced Automatic Areas of Interest (AOI) Bounding Boxes Estimation Algorithm 33

Table 15: SLIC Components and RAG Cut Threshold Parameter testing results (part 2b).

34 Lagmay and Rodrigo

Table 16: SLIC Components and RAG Cut Threshold Parameter testing results (part 3a).

Enhanced Automatic Areas of Interest (AOI) Bounding Boxes Estimation Algorithm 35

Table 17: SLIC Components and RAG Cut Threshold Parameter testing results (part 3b).

36 Lagmay and Rodrigo

Table 18: Comparison of results when the temp image file(s) are saved in PNG format in
the new algorithm (part 1).

Enhanced Automatic Areas of Interest (AOI) Bounding Boxes Estimation Algorithm 37

Table 19: Comparison of results when the temp image file(s) are saved in PNG format in
the new algorithm (part 2).

38 Lagmay and Rodrigo

Table 20: Overlapping rectangles evaluation algorithm results for the old and new Automatic
AOI Bounding Boxes Estimation Algorithm [37, 38].

Recall Precision Harmonic mean Final single
ICDAR ICDAR ICDAR performance

Algorithm 2003 Score Overall % 2003 Score Overall % 2003 Score value (%)

Old 0.56 0.40 42.40 0.29 0.28 28.80 0.38 0.33 34.30
New 0.64 0.50 51.10 0.41 0.34 36.00 0.50 0.41 42.20

Biographies

Ezekiel Adriel D. Lagmay received a degree in Computer Science with
Specialization in Data Science and Analytics from the Ateneo de Manila
University in 2018 and received his Masters degree in Computer Science
in 2020. He is currently a Learning Management Systems (LMS) Analysis
Research Assistant for the Ateneo Laboratory for the Learning Sciences. His
main research interests are Eye-Tracking, Learning Management Systems
Analysis, Web Development, and Software Engineering.

Maria Mercedes T. Rodrigo is a professor of the Department of Informa-
tion Systems and Computer Science at Ateneo de Manila University, and
established the Ateneo Laboratory for the Learning Sciences back in 2011. Her
areas of specialization are educational technology, intelligent tutoring systems,
and affective computing. She is currently studying students’ behavior and
affect while using intelligent tutors, educational games, and other learning
software.

References

[1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk,
“SLIC Superpixels,” EPFL Technical Report, 149300, 2010.

[2] A. Almutawakel, “OpenCV: Filters & Arithmetic Operations,” 2017,
https ://medium.com/@almutawakel .ali/opencv- filters- arithmetic-
operations-2f4ff236d6aa.

[3] AWS, “AWS Free Tier,” https://aws.amazon.com/free/?nc2=h_ql_pr_
ft&all-free-tier.sort-by=item.additionalFields.SortRank&all-free-tier.
sort-order=asc&awsf.Free%20Tier%20Types=tier%2312monthsfree%
7Ctier%23always-free&awsf.Free%20Tier%20Categories=categories%
23ai-ml.

[4] G. Bertasius, L. Torresani, and J. Shi, “Object Detection in Video with
Spatiotemporal Sampling Networks,” ECCV 2018, 2018.

https://medium.com/@almutawakel.ali/opencv-filters-arithmetic-operations-2f4ff236d6aa
https://medium.com/@almutawakel.ali/opencv-filters-arithmetic-operations-2f4ff236d6aa
https://aws.amazon.com/free/?nc2=h_ql_pr_ft&all-free-tier.sort-by=item.additionalFields.SortRank&all-free-tier.sort-order=asc&awsf.Free%20Tier%20Types=tier%2312monthsfree%7Ctier%23always-free&awsf.Free%20Tier%20Categories=categories%23ai-ml
https://aws.amazon.com/free/?nc2=h_ql_pr_ft&all-free-tier.sort-by=item.additionalFields.SortRank&all-free-tier.sort-order=asc&awsf.Free%20Tier%20Types=tier%2312monthsfree%7Ctier%23always-free&awsf.Free%20Tier%20Categories=categories%23ai-ml
https://aws.amazon.com/free/?nc2=h_ql_pr_ft&all-free-tier.sort-by=item.additionalFields.SortRank&all-free-tier.sort-order=asc&awsf.Free%20Tier%20Types=tier%2312monthsfree%7Ctier%23always-free&awsf.Free%20Tier%20Categories=categories%23ai-ml
https://aws.amazon.com/free/?nc2=h_ql_pr_ft&all-free-tier.sort-by=item.additionalFields.SortRank&all-free-tier.sort-order=asc&awsf.Free%20Tier%20Types=tier%2312monthsfree%7Ctier%23always-free&awsf.Free%20Tier%20Categories=categories%23ai-ml
https://aws.amazon.com/free/?nc2=h_ql_pr_ft&all-free-tier.sort-by=item.additionalFields.SortRank&all-free-tier.sort-order=asc&awsf.Free%20Tier%20Types=tier%2312monthsfree%7Ctier%23always-free&awsf.Free%20Tier%20Categories=categories%23ai-ml

Enhanced Automatic Areas of Interest (AOI) Bounding Boxes Estimation Algorithm 39

[5] W. Cao, J. Yuan, Z. He, Z. Zhang, and Z. He, “Fast Deep Neural Networks
With Knowledge Guided Training and Predicted Regions of Interests for
Real-Time Video Object Detection,” Special Section on Sequential Data
Modeling and Its Emerging Applications, 6, 2018, 8990–9.

[6] Z. Chen, Z. Qi, F. Meng, L. Cui, and Y. Shi, “Image Segmentation via
Improving Clustering Algorithms with Density and Distance,” Procedia
Computer Science, 55, 2015, 1015–22.

[7] A. Cranz, “Apple and Nvidia Are Over,” 2019, https://gizmodo.com/
apple-and-nvidia-are-over-1840015246.

[8] N. Dhanachandra, K. Manglem, and Y. J. Chanu, “Image Segmenta-
tion using K-Means Clustering Algorithm and Subtractive Clustering
Algorithm,” Procedia Computer Science, 54, 2015, 764–71.

[9] A. T. Duchowski, Eye Tracking Methodology: Theory and Practice, 2nd
ed., Springer-Verlag, 2007.

[10] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed.,
Pearson, 2008.

[11] Google, “Google Cloud Free Program,” 2021, https://cloud.google.com/
free/docs/gcp-free-tier.

[12] M. Grundmann, V. Kwatra, M. Han, and I. Essa, “Efficient Hierarchical
Graph-Based Video Segmentation,” in Computer Vision and Pattern
Recognition (CVPR), 2010.

[13] S. Gupta, D. Palsetia, M. M. A. Patwary, A. Agrawal, and A. Choud-
hary, “A New Parallel Algorithm for Two-pass Connected Component
Labeling,” in 2014 IEEE International Parallel & Distributed Processing
Symposium Workshops, 2014, 1355–62.

[14] J. Huang and Z.-N. Li, “Automatic Detection of Object of Interest and
Tracking in Active Video,” The Journal of Signal Processing Systems,
65(9), 2010, 49–62.

[15] A. Kim, “FastSLIC: Optimized SLIC Superpixel.”
[16] E. A. D. Lagmay, Development of an Algorithm for Dividing Video

Stimuli into Areas of Interests (AOI) For Dynamic Eye-Tracking Data
Pre-Processing, Ateneo de Manila University, 2020.

[17] E. A. D. Lagmay and M. M. T. Rodrigo, “A Method for Automatically
Estimating Areas of Interest Boundaries for Text Areas,” in Proceedings
of Information and Computing Education Conference (ICE2019), Davao
City, Philippines, 2019.

[18] J. Liang, I. T. Phillips, and R. M. Haralick, “Performance evaluation of
document layout analysis algorithms on the UW data set,” Document
Recognition IV, Proceedings of the SPIE, 1997, 149–60.

https://gizmodo.com/apple-and-nvidia-are-over-1840015246
https://gizmodo.com/apple-and-nvidia-are-over-1840015246
https://cloud.google.com/free/docs/gcp-free-tier
https://cloud.google.com/free/docs/gcp-free-tier

40 Lagmay and Rodrigo

[19] B. Liu, M. Sun, Q. Liu, A. Kassam, C.-C. Li, and R. J. Sclabassi,
“Automatic Detection of Region of Interest Based on Object Tracking in
Neurosurgical Video,” in Proceedings of the 2005 IEEE Engineering in
Medicine and Biology 27th Annual Conference, Shanghai, China, 2005,
6273–6.

[20] Microsoft, “Azure Machine Learning Pricing,” https://azure.microsoft.
com/en-us/pricing/details/machine-learning/%5C#pricing.

[21] A. Mordvintsev, K. Abid, and eastWillow, “Smoothing Images,” 2016,
https ://opencv24- python- tutorials . readthedocs . io/en/ latest/py_
tutorials/py_imgproc/py_filtering/py_filtering.html.

[22] NPE, “Measure Time Elapsed in Python (Answer),” 2011, https ://
stackoverflow . com / questions / 7370801 / measure - time - elapsed - in -
python.

[23] OpenCV, “Image Thresholding,” 2017, https://docs.opencv.org/3.4.0/
d7/d4d/tutorial_py_thresholding.html.

[24] OpenCV, “Miscellaneous Image Transformations,” 2018, https://docs.
opencv.org/3.4.3/d7/d1b/group__imgproc__misc.html.

[25] K. Panetta, Q. Wan, S. Rajeev, A. Kaszowska, A. L. Gardony, K. Naranjo,
H. A. Taylor, and S. Agaian, “ISeeColor: Method for Advanced Visual
Analytics of Eye Tracking Data,” IEEE Access, 8, 2020, 52278–87.

[26] Pythontic.com, “Sharpen-filter Using Pillow – The Python Image Process-
ing Library,” https://pythontic.com/image-processing/pillow/sharpen-
filter.

[27] A. Rosebrock, “Intersection Over Union (IoU) for Object Detection,”
2016, https://www.pyimagesearch.com/2016/11/07/intersection-over-
union-iou-for-object-detection/.

[28] Scikit-Image, “Histogram Equalization,” https://scikit-image.org/docs/
0.9.x/auto_examples/plot_equalize.html.

[29] Scikit-Image, “Histogram Equalization (Examples),” https://scikit-image.
org/docs/dev/auto_examples/color_exposure/plot_equalize.html.

[30] Scikit-Image, “RAG Thresholding,” https://scikit-image.org/docs/dev/
auto_examples/segmentation/plot_rag_mean_color.html.

[31] Scikit-Image, “slic,” https://scikit-image.org/docs/dev/api/skimage.
segmentation.html#skimage.segmentation.slic.

[32] S. Sudhakar, “Histogram Equalization,” 2017, https://towardsdatascience.
com/histogram-equalization-5d1013626e64.

[33] C. L. S. Tablatin and M. M. T. Rodrigo, “Analysis of Static Code Reading
Patterns,” in 18th Philippine Computing Science Congress, Cagayan de
Oro City, Philippines, 2018, 32–43.

[34] TutorialsPoint, “OpenCV - Adaptive Threshold,” https://www.tutorials
point.com/opencv/opencv_adaptive_threshold.htm.

[35] UCI, “Histogram Equalization,” https://www.math.uci.edu/icamp/
courses/math77c/demos/hist_eq.pdf.

https://azure.microsoft.com/en-us/pricing/details/machine-learning/%5C#pricing
https://azure.microsoft.com/en-us/pricing/details/machine-learning/%5C#pricing
https://opencv24-python-tutorials.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_filtering/py_filtering.html
https://opencv24-python-tutorials.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_filtering/py_filtering.html
https://stackoverflow.com/questions/7370801/measure-time-elapsed-in-python
https://stackoverflow.com/questions/7370801/measure-time-elapsed-in-python
https://stackoverflow.com/questions/7370801/measure-time-elapsed-in-python
https://docs.opencv.org/3.4.0/d7/d4d/tutorial_py_thresholding.html
https://docs.opencv.org/3.4.0/d7/d4d/tutorial_py_thresholding.html
https://docs.opencv.org/3.4.3/d7/d1b/group__imgproc__misc.html
https://docs.opencv.org/3.4.3/d7/d1b/group__imgproc__misc.html
https://pythontic.com/image-processing/pillow/sharpen-filter
https://pythontic.com/image-processing/pillow/sharpen-filter
https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://scikit-image.org/docs/0.9.x/auto_examples/plot_equalize.html
https://scikit-image.org/docs/0.9.x/auto_examples/plot_equalize.html
https://scikit-image.org/docs/dev/auto_examples/color_exposure/plot_equalize.html
https://scikit-image.org/docs/dev/auto_examples/color_exposure/plot_equalize.html
https://scikit-image.org/docs/dev/auto_examples/segmentation/plot_rag_mean_color.html
https://scikit-image.org/docs/dev/auto_examples/segmentation/plot_rag_mean_color.html
https://scikit-image.org/docs/dev/api/skimage.segmentation.html#skimage.segmentation.slic
https://scikit-image.org/docs/dev/api/skimage.segmentation.html#skimage.segmentation.slic
https://towardsdatascience.com/histogram-equalization-5d1013626e64
https://towardsdatascience.com/histogram-equalization-5d1013626e64
https://www.tutorialspoint.com/opencv/opencv_adaptive_threshold.htm
https://www.tutorialspoint.com/opencv/opencv_adaptive_threshold.htm
https://www.math.uci.edu/icamp/courses/math77c/demos/hist_eq.pdf
https://www.math.uci.edu/icamp/courses/math77c/demos/hist_eq.pdf

Enhanced Automatic Areas of Interest (AOI) Bounding Boxes Estimation Algorithm 41

[36] M. M. Villamor and M. M. T. Rodrigo, “Do Friends Collaborate and
Perform Better?: A Pair Program Tracing and Debugging Eye Tracking
Experiment,” in 18th Philippine Computing Science Congress, Cagayan
de Oro City, Philippines, 2018, 9–16.

[37] C. Wolf and M. Bacconnier, “DetEval – Evaluation Software for Object
Detection Algorithms,” https : / /perso . liris . cnrs . fr / christian .wolf /
software/deteval/index.html.

[38] C. Wolf and J.-M. Jolion, “Object Count/Area Graphs for the Evaluation
of Object Detection and Segmentation Algorithms,” Technical Report
LIRIS-RR-2005-024, 2005.

[39] J. Wolf, S. Hess, D. Bachmann, Q. Lohmeyer, and M. Meboldt, “Au-
tomating Areas of Interest Analysis in Mobile Eye Tracking Experiments
based on Machine Learning,” The Journal of Eye Movement Research,
11(6), 2018, https://dx.doi.org/10.16910%2Fjemr.11.6.6.

[40] M. Wuerthele, “OpenGL, OpenCL deprecated in favor of Metal 2 in
macOS 10.14 Mojave,” 2018, https://appleinsider.com/articles/18/
06/04/opengl-opencl-deprecated-in-favor-of-metal-2-in-macos-1014-
mojave.

https://perso.liris.cnrs.fr/christian.wolf/software/deteval/index.html
https://perso.liris.cnrs.fr/christian.wolf/software/deteval/index.html
https://dx.doi.org/10.16910%2Fjemr.11.6.6
https://appleinsider.com/articles/18/06/04/opengl-opencl-deprecated-in-favor-of-metal-2-in-macos-1014-mojave
https://appleinsider.com/articles/18/06/04/opengl-opencl-deprecated-in-favor-of-metal-2-in-macos-1014-mojave
https://appleinsider.com/articles/18/06/04/opengl-opencl-deprecated-in-favor-of-metal-2-in-macos-1014-mojave

	Introduction
	Context of the Study
	Research Objectives
	Scope and Limitations

	Review of Related Literature
	Draw-and-Track AOI Detection
	Active Video Methodology
	Image Segmentation Algorithms
	Synthesis

	Methodology
	Dataset Description and Collection Methods
	Enhanced Automatic AOI Bounding Boxes Estimation Algorithm
	Histogram Equalization for Estimating AOI Bounding Boxes for Lines of Text
	K-Means and SLIC Image Segmentation for Estimating AOI Bounding Boxes for Non-Text (GUI) Elements
	Image Sharpening as a Helper to Histogram Equalization for Estimating AOI Bounding Boxes on Text Over Dark Backgrounds
	Other Image Processing Techniques Utilized and Overall Algorithm

	Results Evaluation
	Overlapping Rectangles Evaluation Algorithm
	Benchmark Evaluation

	Results
	Benchmarking Results
	SLIC Components and RAG Cut Threshold Parameter Testing
	Utilization of the JPEG Format for Temp Image File(s)
	Overlapping Rectangles Evaluation Algorithm Results

	Conclusion

