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ABSTRACT

The fact that there exists a gap between low-level features and semantic
meanings of images, called the semantic gap, is known for decades.
Resolution of the semantic gap is a long standing problem. The semantic
gap problem is reviewed and a survey on recent efforts in bridging
the gap is made in this work. Most importantly, we claim that the
semantic gap is primarily bridged through supervised learning today.
Experiences are drawn from two application domains to illustrate this
point: (1) object detection and (2) metric learning for content-based
image retrieval (CBIR). To begin with, this paper offers a historical
retrospective on supervision, makes a gradual transition to the modern
data-driven methodology and introduces commonly used datasets. Then,
it summarizes various supervision methods to bridge the semantic gap
in the context of object detection and metric learning.

Keywords: Semantic Gap, Semantic Understanding, Content-based Image
Retrieval, Supervision, Object Detection, Metric Learning.

1 Introduction

Computer vision deals with how computers can gain high-level understanding
of visual contents, which are represented by pixels. High-level understanding of
visual inputs demands the capability to learn the semantics conveyed through
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raw pixels. The fact that there exists a gap between low-level features and
semantic meanings of images, is known for decades. It is the consequence of
“lack of coincidence between the information that one can extract from the
visual data and the interpretation that the same data have for a user in a
given situation” [139]. It is well known as the semantic gap.

There is a growing awareness in the computer vision community that
the key to today’s vision problems lies in resolving the gap between image
pixels and semantics. There has been a substantial amount of progress in
bridging the gap in recent years. In our opinion, this advancement is primarily
attributed to supervised learning and our survey paper is written around this
central idea. Supervision manifests itself through two aspects: (1) large-scale,
high-quality annotated data, and (2) well-designed optimization objectives.
The two aspects often come into play synergistically. For example, the design
of optimization objectives highly depend on annotations. The optimization
procedure often entails a minimum amount of labeled data and it is expected
to scale well with more data.

Table 1 gives an example of how supervision in the form of “annotated
data” advances the object classification field. The figure shows the progress of
top-1 classification accuracy as a function of time with respect to the ImageNet
dataset. Undoubtedly, the large-scale annotated ImageNet dataset contributes
significantly to semantic image understanding. Thus, by associating the
progress in bridging the semantic gap with the construction of large-scale
annotated datasets, we will introduce several commonly used datasets that
help provide supervision to capture the semantic information.

The second aspect, optimization design under supervision, is the main
focus of this paper. Although there is a vast amount of references on this topic,
our goal is to shed light on the role of supervision in bridging the semantic gap.
To illustrate this point, we choose two representative domains for elaboration:
(1) object detection and (2) metric learning in the context of content-based
image retrieval (CBIR). Both are fundamental computer vision problems. We
summarize various forms of supervision used to bridge the semantic gap in
the two fields, including fully-supervised learning, semi-supervised learning,
weakly-supervised learning, self-supervised learning, etc.

Semantic Gap. Understanding semantics is the most fundamental step in
all kinds of computer vision problems as it paves the way for general artificial
intelligence. The semantic gap is a general term widely used in content-based
image retrieval (CBIR). It is defined in [134] as follows. “Humans tend to use
high-level concepts in everyday life. However, what current computer vision
techniques can automatically extract from image are mostly low-level features.
In constrained applications, such as the human face and finger print, it is
possible to link the low-level features to high-level concepts (faces or finger
prints). In a general setting, however, the low-level features do not have a
direct link to the high-level concepts.”
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Figure 1: Illustration of the semantic gap in multiple representation levels between raw pixels
and full semantics [60]. Left to right indicates increasing levels of semantic understanding,
based on information of the previous step. For example, objects are agglomeration of feature
descriptors and object labels are derived based on features for the objects. The rightmost is
closest to human-level understanding of the input such as object relationships and more.

The semantic gap manifests itself through different semantic understanding
levels as shown in Figure 1. The raw media representation lies at the lowest
level. In the context of object detection and image retrieval, the basic repre-
sentation unit is the RGB pixel. At a higher level, low-level feature vectors are
extracted by image analysis tools. This process is sometimes called low-level
computer vision. The extracted features can be in form of segmented blobs, tex-
ture statistics, simple colour histograms, and other hand-crafted feature vectors
used to represent parts or full images. As these feature descriptors are often
human-engineered, they may require the domain knowledge from experts. At
the next higher level, there are object representations which may be prototypi-
cal combinations of feature vectors or other more explicit representations. Once
identified, objects are given symbolic labels such as object names. Labels may
be general or specific, for example, an animal or a wolf. Labelling all objects
does not necessarily capture the full semantics of an image since there may exist
relationship between objects. Furthermore, the amount of labor required by la-
beling is tremendous. At the highest level as shown in Figure 1, we target at un-
derstanding the relations between objects and the holistic meaning of an image.

Semantics is a broad topic and in this survey, we choose object detection
and metric learning as two examples for the following reasons:

1. We focus on resolving the gap between image pixels and semantic mean-
ings of images, also known as the semantic gap. Although there are other
vision applications such as scene graph generation [173], visual question
answering [3], human-object interaction [181] that require richer semantic
understanding, they are higher-level computer vision tasks that build
upon object detection and metric learning. The two topics are funda-
mental and closer to the pixel level, where semantics is hard to capture.

2. Another reason is that there is a decent accumulation of various super-
visions for the two applications, making them good choices to study the
role that supervision plays in bridging the semantic gap.
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That being said, there are many other useful tools such as semantic parsing
[8] in the NLP domain that help understand the semantics.

Comparison with Previous Reviews. Many papers that aimed to study
the semantic gap problem have been published. They are summarized in Ta-
ble 2. The list includes many excellent surveys on the specific problem of image
retrieval [60, 108, 22, 1], video retrieval [90], semantic segmentation [119], etc.

Recent success and dominance of deep learning based methods uphold the
promise to achieve this goal. To this end, there have been many published
surveys on deep learning such as the work of [7, 86, 55], and recent tutorials
given at CVPR and ICCV. Although deep learning based methods have been
proposed to bridge the semantic gap, we are unaware of any comprehensive
survey that attempts to unify them at a higher level. In this survey, we organize
papers and summarize their ideas by grouping them into different supervision
forms such as fully-supervised, unsupervised, semi-supervised, self-supervised
and weak-supervised etc. Another important distinction between our paper
and previous ones is that we do not restrict ourselves to a specific problem
but focus on resolving the semantic gap at a broader context.

Scope of our work. The central theme of our paper is supervision, which
we believe is the key to semantic gap resolution. However, supervision is a
broad topic and we need to limit our scope to two important problems (i.e.,
object detection and metric learning) as they help reveal our insights. There
are still too many papers on these two topics, and compiling an extensive
list of the state-of-the-art methods of both is beyond the scope of a paper of
reasonable length. Instead, for domain-specific surveys, readers are referred to
Tables 3 and 4, respectively.

The first selected illustrative topic is object detection. It is a fundamental
computer vision problem and serves as a building block for image segmenta-
tion [59], object tracking [16, 94, 199, 175], landmark detection [187, 174], etc.
Its goal is to identify the location (i.e., the coordinates of a bounding box)
of an object instance and its corresponding category (for example, persons,
pedestrians, cars, and animals). Previous survey papers have covered different
aspects of object detection such as pedestrian detection [41, 49, 32], face
detection [179, 188, 34], vehicle detection [143], gesture recognition [38, 37],
text detection [184], etc. There are also a number of review papers on generic
object detection methods [54, 4, 198, 102]. Here, our goal is to provide a
connection between object detection and different supervisions. An example
of object detection is given in Figure 2. In a fully-supervised setting, object
classes and their bounding boxes are annotated in each image. However, it is
expensive and often impossible to manually labor all possible objects in the
real world. That is the reason other forms of supervision have to be developed.
We will review various supervisions developed for object detection in Section 3.
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Figure 2: An object detection example.

The second exemplary topic is metric learning for image retrieval. It learns
a distance metric so as to establish similarity or dissimilarity between objects
and find applications in image, video and multimedia retrieval and music
recommendation. While metric learning aims to reduce the distance between
similar objects, it also intends to increase the distance between dissimilar
objects. Typically, deep metric learning requires the class label for each
individual sample. This demanding requirement prohibits its applicability in
wild scenarios. Efforts have been made to relax the stringent requirement
so as to accommodate other learning environments such as semi-supervised,
weakly-supervised, pseudo-supervised, self-supervised and even unsupervised
approaches. We will review deep metric learning methods with different
supervision types in Section 4.

2 Background Review

Object Detection. Different from current deep learning based methods
which extract the feature representation from images implicitly and auto-
matically, traditional object detection methods rely heavily on hand-crafted
features. A traditional object detection pipeline consists of the following three
steps.

1. Extract a region of interest (say, a region that enclose objects).

2. Obtain features from the region of interest. They are often handcrafted
based on the domain knowledge.

3. Classify the region of interest into a certain object class based on extracted
features.
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In the first step, regions of interest (ROIs) are often extracted with a
sliding window approach. It requires the choice of certain hyper-parameters
such as window’s width, height, stride and aspect ratio. As the number of
objects in the scene increases, this brute force enumeration approach can lead
to a very high computational cost. Later, researchers came up with efficient
yet heuristic approaches such as selective search [155], edge boxes [204], box
refinement [93] to generate region proposals. The second step involves feature
engineering that plays a crucial role in the performance. One seminal work
is the Scale Invariant Feature Transform (SIFT) [107]. It was designed to be
robust against changes in translation, scale, rotation, illumination, viewpoint
and occlusion. Other local representative descriptors [111] include Haar-like
features [159], local binary patterns (LBP) [118] and region covariances [153].
The histogram of oriented gradients (HOGs) [27] is an important improvement
over SIFT and offers a better object descriptor. The HOG feature is robust
against local deformation and illumination, and it has been widely used in
classical object detectors. The last step is classification based on features of
each ROI. Most commonly used classifiers include the support vector machine
(SVM) [25], AdaBoost [45] and random forest (RF) [144].

One famous example of the three-step pipeline is the Viola-Jones face
detector [159]. It adopts a sliding window approach to check if a face object
is included in the window. To improve the detection speed, it uses an Ad-
aboost training approach and cascades classifiers to improve the detection
performance. The deformable part model (DPM) [44] offers another mile-
stone in the traditional object detection framework. It consists of a root-filter
and multiple part-filters. DPM improves HOG using hard negative mining,
bounding box regression and context priming. It was the champion solution
in the Pascal-VOC Challenge from 2007 to 2009 [43]. The cascaded pipelines
of “hand-crafted feature description” followed by “discriminative classification”
dominated many computer vision tasks, including object detection, for years.
Even with significant advancement, there is a substantial gap between the clas-
sical object detector and human recognition capability. This gap is attributed
to two main barriers: the limited representation capability of hand-crafted
features and lack of sufficient supervision. Deep learning can learn powerful
features automatically to overcome the first barrier. The construction of larger
and larger labeled datasets addresses the second barrier.

Metric Learning. Metric learning is a branch of machine learning. It learns
a distance metric that establishes similarity and dissimilarity between objects
from training images. The objective is to reduce the distance between similar
objects while increasing that between dissimilar ones. The task is also known
as similarity learning and it is most commonly used in image retrieval [87, 178,
66, 110, 68], person re-identification [172, 185, 97] and face verification [116],
etc.
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For a given query image, a content-based image retrieval (CBIR) system
[134] return a ranked list of images from the database based on a similarity
measure between the query and retrieved images. CBIR is a challenging
problem since it is often that many (or even all) of those returned images do
not look similar to the query one from a human perspective. This is because
that most similarity metrics refer to distances of low-level features. They do
not correlate well with semantic similarity perceived by humans.

Traditional CBIR research focused on two areas: feature design and dis-
tance metric selection. Research on the application of hand-crafted features
to CBIR was rich. SIFT [107] and LBP [118] were widely used features. A
histogram-based similarity measure was proposed in [145] for image retrieval.
The K-means clustering approach was used in [137] to discover the patterns
of data in low-level feature space using the color information. A nonlinear
mapping approach based on sparse kernel learning was studied in [113]. Other
features were designed based on the prior knowledge and domain expertise for
specific application. For example, LOMO [97, 35] was developed to deal with
illumination and viewpoint changes for the matching of person images. As
to distance metrics, common choices include Euclidean, Mahalanobis [23, 28,
170], and Kullback-Leibler distances. Higher performance may be achieved by
mapping the problem to a non-linear space through kernel methods. These non-
linear methods are often used in combinationn of regularization techniques [72]
to avoid overfitting.

Large-Scale Labeled Datasets. Resolution of the semantic gap has been
a long standing problem. There is a substantial progress on this topic in the
last decade. This progress is attributed to the realization of the importance of
supervised learning.

While the semantic gap is bridged by supervision, the key to supervised
learning is the availability of large-scale human annotated datasets. Judged
by today’s standard, the sizes of labeled datasets were quite small before 2010.
This practice can be attributed to several reasons. First, it is about the labeling
cost. The labor required to annotate collected data is substantial. Second,
most traditional methods do not scale well with the data size. When most
solutions do not work well for small datasets, the motivation in building larger
datasets would not be strong. Third, since people can understand semantic
meanings from a small set of examples (i.e., weakly-supervised learning), it
is natural to expect powerful vision algorithms to do the same. For all these
reasons, the importance of “large-scale supersion” was not appreciated and
practiced until the last decade.

The situation began to change with the introduction of the ImageNet
dataset [29], which was viewed as the engine to drive deep learning in early 10s.
That is, deep learning has gained widespread attention and popularity after
[80] achieved record-breaking image classification accuracy in the Large Scale
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Visual Recognition Challenge (ILSVRC) [135] in 2012. Although deep learning
provides a mechanism in extracting powerful representative features, feature
extraction is not the main objective of deep learning but a byproduct. Deep
learning relies heavily on supervision. It attempts to build a mapping from
images to labels by certain neural networks. In other words, it uses human
labels as the ground truth and provides a nonlinear mechanism that minimizes
the error between the predicted and true labels.

The chase of more and more annotated data in today’s machine learning
community is a clear evidence of supervision’s role in bridging the semantic
gap. A tremendous amount of efforts have been spent in data collection and
labeling nowadays. In the following, we will highlight several datasets that are
critical to the development of object detection and metric learning techniques.

Four datasets are commonly used for generic object detection: PASCAL
VOC ([43], ImageNet [29]), MS COCO [100], and Open Imges [78]. The
attributes of these datasets are summarized in Table 5. The selected samples
are shown in Figure 3. Several criteria are used in evaluating the performance
of an object detector, including precision, recall, model sizes, and inference
speed measured by frames per second (FPS). While the average precision (AP)
that combines precision and recall is used to evaluate the performance for a
specific category, the mean AP (mAP) averaged over all categories is used as
the measure of performance over all categories. For more details, readers are
referred to [100].

There are also four datasets that are commonly been used in metric learning.
They are: CUB-200-2011 [160], CAR-196 [79], Standford Online Shopping [117]
and Market-1501 [201]. The first two focus on fine-grained object category
retrieval. The last two are instance-level retrieval datasets. Market-1501 is one
of the largest person-reidentification benchmark dataset. Detailed statistics are
shown in Table 6 and exemplary images are shown in Figure 4. Precision@k,
denoted by P@k, is a popular metric in metric learning. It indicates the
number of relevant images among the top k retrieved images. If there are
R images that belong to the same class as the query, the R-precision (RP)
measures the percentage of correct retrievals among the top R retrieved results.
Another recently proposed metric is MAP@R [115], that combines the idea of
mean average precision with RP to offer a more accurate performance measure.

3 Supervision for Object Detection

3.1 Full Supervision

Deep learning methods have been extensively developed for the fully-supervised
object detection task [53, 64, 51, 129, 136]. Research on this topic has reached
quite a mature stage. Generally speaking, deep-learning-based object detection
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Figure 3: Selected sample images for popular object detection datasets [43, 29, 100, 78].

Figure 4: Selected sample images for popular metric learning datasets [160, 79, 117, 201].
Subfigure (c) is a tSNE [157] visualization of the dataset [117].

methods can be categorized into two types: two-stage detection and one-stage
detection. Recently, there’s an emerging line of transformer-based works [13,
203, 26] which approach object detection as a direct set prediction problem.
We elaborate representatives for each of the category below.

Two-Stage Detection. Two-stage detection methods consist of two stages
in cascade: (1) the region proposal stage and (2) the object classifiction stage.
The common pipeline includes: category-independent region proposals1 are
generated from an image, CNN features are extracted from these regions, and
then category-specific classifiers are used to determine the category label of
each proposal.

1Object proposals,also called region proposals or detection proposals, are a set of
candidate regions or bounding boxes in an image that may potentially contain an object.
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Figure 5: The pipeline of a two-stage object detection framework [53].

Inspired by the impressive image classification performance achieved by
the AlexNet [80] and the success of selective search in finding region proposals
with hand-crafted features ([155, 53, 52]) were among the first to explore CNNs
for generic object detection and developed RCNN as shown in Figure 5. The
training of an RCNN framework consists of the following steps:

1. Region proposal selection Class agnostic region proposals, which are
candidate regions that might contain objects, are obtained via selective
search.

2. Region proposal processing Selected region proposals are cropped from
the image and warped into the same size. They are used as the input
to finetune a CNN model pre-trained by a large-scale dataset such as
ImageNet. In this step, a region proposal with its IOU against a ground
truth box greater than 0.52 is defined as a positive for the ground truth
class and the rest as negatives.

3. Class-specific SVM classifiers training A set of class-specific linear SVM
classifiers are trained using the fixed length features extracted by the
CNN, replacing the softmax classifier learned by finetuning. For the
training of SVM classifiers, positive examples are the ground truth boxes
for each class. A region proposal that has less than 0.3 IOU with all
ground truth instances of a class is negative for that class. Note that
the positive and negative examples used for training SVM classifiers are
different from those for finetuning the CNN.

4. Class-specific bounding box regressor training Bounding box regression
is learned for each object class with CNN features.

There are variants of RCNN for better performancne. Two noticeable ones
are Fast RCNN [51] and Faster RCNN [129] as shown in Figure 6. Fast RCNN
improves both detection speed and accuracy of RCNN. Rather than separately
training a softmax classifier, SVMs, and bounding box regressors as done

2This is a commonly used practice such as in MSCOCO dataset [100].
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Figure 6: The system diagrams of three two-stage object detection methods [102]: RCNN
(top), Fast RCNN (middle), and Faster RCNN (bottom).

in RCNN, Fast RCNN enables end-to-end detector training by developing a
streamlined training process that simultaneously learns a softmax classifier and
class-specific bounding box regression. The core idea of Fast RCNN is to share
the feature extraction process among different region proposals. Fast RCNN
improves efficiency of RCNN considerably, typically 3 times faster in training
and 10 times faster in testing, and there is no storage required for feature
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Figure 7: The system diagrams of two one-stage object detection networks [102]: YOLO
(top) and SDD (bottom).

caching. Faster RCNN offers an efficient and accurate region proposal network
(RPN) in generating region proposals. It utilizes the same backbone network
but exploits features from the last shared convolutional layer to accomplish
the task of RPN for region proposal generation and the task of Fast RCNN
for region classification.

The two-stage region-based pipeline offers state-of-the-art object detec-
tion performance as evidenced by the fact that leading results on popular
benchmark datasets are all based on Faster RCNN [129]. Nevertheless, region-
based methods are computationally costly for mobile/wearable devices with
limited storage and computational resources. Instead of optimizing individual
components of the complex region-based pipeline, researchers looked for an
alternative that detects objects directly without the region proposal step.

One-Stage Detection. By one-stage detection, we refer to an architecture
that predicts class probabilities and bounding box sizes and locations from
full images with a single feed-forward CNN in a monolithic setting. It can be
optimized end-to-end directly on detection performance. DetectorNet [146]
was among the first in exploring this new direction. However, since the network
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Figure 8: Progress of object detection performance on Microsoft COCO over years, where
results are quoted from ([120]).

needs to be trained per object type and mask type, it does not scale well as
the number of classes increases. [128] proposed YOLO (You Only Look Once),
which is a unified detector casting object detection as a regression problem
from image pixels to spatially separated bounding boxes and associated class
probabilities. Unlike the two-stage detection, YOLO predicts detections based
on features from local regions of multiple sizes. Specifically, YOLO divides an
image into an S × S grid, each predicting C class probabilities, B bounding
box locations, and confidence scores. By eliminating the region proposal
generation step entirely, YOLO is fast by design, running in real time at 45
FPS. Fast YOLO [138] can even reach 155 FPS. To preserve real-time speed
without sacrificing much detection accuracy, [103] proposed SSD (Single Shot
Detector), which is faster than YOLO and with an accuracy competitive with
region-based detectors such as Faster RCNN [129]. SSD effectively combines
ideas from RPN in Faster RCNN and YOLO multiscale CONV features to
achieve fast detection speed, while still retaining high detection quality. Like
YOLO, SSD predicts a fixed number of bounding boxes and scores, followed by
a non-maximum-suppression (NMS) step to produce the final detection. The
system diagrams of YOLO and SSD are shown in Figure 7 for comparison.

Recently, there’s a growing trend in applying transformers to the computer
vision tasks [13, 33, 150], among which DETR [13] is a representative for object
detection. Instead of generating “proposals”, it patchfies the given image as
tokens and feeds them to the vision transformer. While previous detectors
rely on NMS as a post-processing step, DETR casts object detection as a
set prediction problem and leverages the Hungarian algorithm to match the
box predictions with ground-truth boxes during training. DETR simplifies
traditional object detection pipeline and obtains 42 AP on COCO using a
Resnet50 backbone.
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Further Performance Improvement. We show the detection performance
improvement over years with respect to the Microsoft COCO challenge in Fig-
ure 8. As to the object detection task in the open image challenge, the current
leader [106] achieved 58.7 box AP in the public leader board. It proposes a
hierarchical transformer whose representation is computed with Shifted win-
dows. Representative methods benchmarked include Fast RCNN [51], Faster-
RCNN [129], FPN [50], Deformable Faster RCNN [130], Cascade RCNN [11],
Mask-RCNN [63] and YOLO families [128]. Generally speaking, the backbone
network, the detection pipeline and the availability of large-scale training
datasets are three most important factors in further detection accuracy im-
provement. Besides, ensembles of multiple models, the incorporation of context
features, and data augmentation all help achieve better accuracy.

3.2 Weak Supervision

Object detectors are trained without bounding box annotations in weak su-
pervision detection (WSD), where only image-level labels are used. The main
challenge of WSD is object localization since a label may refer to any object
in the image. This problem is typically addressed using multiple instance
learning, which is a well-studied topic [9, 24, 161]. Although image-level labels
are easier to collect than bounding boxes, they still require manual efforts.
Besides, they are often limited to a pre-defined taxonomy.

Some recent work adopts captions, which are often freely available on
the web. Learning object detection from captions has been studied but at a
limited scale. CAP2Det [182] parses captions into a multi-label classification
targets and, then, these labels are used to train a WSD model. However, it
requires image-level labels to train the caption parsers. Besides, it is under
the constraint of a closed vocabulary. Another WSD model was trained in
[2] based on a predefined set of words in captions. It is similar to a closed
vocabulary, yet the rich semantic content of captions is discarded. In contrast,
research in [141] and [183] aims to discover an open set of object classes from
image-caption corpora, and learns detectors for each discovered class.

One shortcoming of WSD methods is their poorer object localization
accuracy. Object recognition and localization are disentangled into two inde-
pendent problems in [189]. It learns object localization using a fully annotated
dataset from a small subset of classes and conducts object detection using
open-vocabulary captions.

3.3 Mixed Full/Weak Supervision

Mixed supervision has been studied to exploit both full supervision and weak
supervision. Most mixed supervision methods need bounding box annotations
for all main classes and apply weak supervision to auxiliary classes [168, 47, 127].



Resolving Semantic Gap 21

For example, by following the transfer learning framework, one can transfer
a detector trained on supervised base classes to weakly supervised target
classes [65, 149, 154]. These methods usually lose performance on target classes.

One common limitation of mixed-supervised methods is that they require
image-level annotations within a predefined taxonomy so that they learn the
predefined classes only. To address it, one recent work [31] exploits supervision
from captions that are open-vocabulary and more prevalent on the web. Instead
of training on base classes and transferring to target classes, it uses captions
to learn an open-vocabulary semantic space that includes target classes, and
transfers that to the object detection task via supervised learning.

3.4 Zero-shot Detection

Zero-shot object detection (ZSD) aims to generalize from seen object classes to
unseen ones by exploiting zero-shot learning techniques (e.g., word embedding
projection [46]) for object proposal classification. There exist however different
views on ZSD. According to [5], the main challenge of ZSD lies in modelling
the background class since it is difficult to separate from unseen classes. The
background was treated as a mixture model in [5]. It was furthermore improved
by introducing the polarity loss [125]. On the other hand, it was argued in [202]
that the key challenge of ZSD is the generalization capability of object proposal
models. To tackel with it, they employed a generative model to hallucinate
unseen classes and augment seen examples in the proposal model training
process.

Nevertheless, there is still a significant gap in the performance due to the
unnecessarily harsh constraint; namely, not having any example of unseen
objects, and having to guess how they look like solely based on their word
embeddings [5, 125] or textual descriptions [96]. This has motivated researchers
to simplify the task by making more assumptions such as the availability of
test data during training [126] or the availability of unseen class annotations
to filter images with unseen object instances [57]. Since datasets with natural,
weak supervision are abundant and cheap, an alternative was proposed to
utilize image-caption datasets in [189], which covers a larger variety of objects
with an open vocabulary.

4 Supervision for Metric Learning

4.1 Full Supervision

Metric learning attempts to map image data to an embedding space, where
images of similar semantic content are closer while those of dissimilar semantic
meaning are farther apart. The embedding learned in this way captures
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semantics intuitive to human understanding which are initially not obvious
in the pixel form. In general, this objective can be achieved by leveraging
embedding and/or classification losses.

Embedding Losses. The embedding loss operates on the relationship be-
tween samples in a batch while the classification losses include a weight matrix
that transforms the embedding space into a vector of class logits. Typically,
embeddings are preferred when the task is in form of information retrieval
whose goal is to return a data sample that is most similar to the query one.
A specific example is image retrieval, where the input is a query image and
the output is the most similar image in a database. Another application
context is open-set classification where the test set and the training set classes
are disjoint, and there are cases no proper classification loss can be defined.
For example, when constructing a dataset, it might be difficult (or costly) to
assign the class label to each sample. It might be easier to specify the relative
similarities between samples in form of pair- or triplet-relationship. Pairs and
triplets can provide additional information for existing datasets. Since both
do not have explicit labels, embedding losses become a suitable choice. Pair
and triplet losses provide the foundation to two fundamental metric learning
approaches (See Figure 9).

Contrastive Loss. A classic pair-based loss is the contrastive loss [58] in
form of

Lcontrastive = [dp −mpos]+ + [mneg − dn]+,

where notation [x]+ denotes max(x, 0). In the above equation, it attempts to
make the distance between positive pairs dp smaller than threshold mpos, and
the distance between negative pairs dn larger than threshold mneg. A theoret-
ical downside of this method is that the same distance threshold is applied to
all pairs even though there may be a large variance in their similarities and
dissimilarities. The triplet margin loss [170] is developed to address this issue.

Triplet Loss. A triplet consists of an anchor input, A, a positive input,
P , and a negative input N , where the anchor is more similar to the positive
than the negative. The triplet margin loss is used to ensure that the anchor-
positive distance (dap) is smaller than the anchor-negative distance (dan) by a
predefined margin (m). The triplet loss function can be written in form of

Ltriple =
[
||f(A)− f(P )||2 − ||f(A)− f(N)||2 +m

]
+
,

where f is an embedding function. This triplet loss places fewer restrictions
than the contrast loss in the embedding space. It allows a learned model to
account for the variance in interclass dissimilarities.
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Figure 9: Comparison of the similarity loss and the triplet loss using the siamese network [40].
For Siamese Network, it optimizes to increase the similarity between positive pairs and
decrease the similarity between negative pairs. The Triplet Network enforces the distance
between the anchor and the positive to be smaller than that between the anchor and negative.

Other Loss Functions. A wide variety of loss functions has been defined
based on these fundamental concepts. For example, the angular loss [167] is
a triplet loss where the margin is based on the angles formed by the triplet
vectors. The margin loss [171] modifies the contrastive loss by setting

mpos = β − α, and mneg = β + α,

where α is fixed, and β is learnable. Other pair losses are based on the softmax
function and LogSumExp, which is a smooth approximation of the maximum
function. Specifically, the lifted structure loss [117] is the contrastive loss but
with Log-SumExp applied to all negative pairs. The N-Pairs loss [140] applies
the softmax function to each positive pair relative to all other pairs. It is
also known as InfoNCE [156] and NT-Xent [18]. The tuplet margin loss [186]
combines Log-SumExp with an implicit pair weighting method while the circle
loss [142] weighs each pair’s similarity by its deviation from a pre-determined
optimal similarity value. A general weighting framework was presented in
[169] to understand recent pair-based loss functions. In contrast with pair and
triplet losses, FastAP [12] attempts to optimize for average precision within
each batch using a soft histogram binning technique.

Classification Losses. Classification losses are obtained by including of
a weight matrix, where each column corresponds to a particular class. In
most cases, the training process consists of multiplying weight matrix with
embedding vectors to obtain logits, and then applying a certain loss function
to the logits. The most straightforward one is the normalized softmax loss [164,
104, 190]. It is identical with the cross entropy loss with L2-normalized columns
of the weight matrix.

One variant is ProxyNCA [114], where the cross entropy loss is applied to
the Euclidean distances, rather than the cosine similarities, between embed-
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dings and the weight matrix. A number of face verification losses modified the
cross entropy loss with angular margins in the softmax expression. For example,
SphereFace [104], CosFace [163, 166] and ArcFace [30] apply multiplicative-
angular, additive-cosine and additive-angular margins, respectively. It is
interesting to note that many metric learning papers leave out face verification
losses from their experiments although they are not face-specific. The Soft-
Triple loss [124] takes a different approach by expanding the weight matrix
to have multiple columns per class. It has more flexibility in modeling class
variances.

4.2 Other Forms of Supervision

Embedding of semantic information is hard to learn when the amount of
labeled data is limited or when the data is imbalanced, which is often the case
in real-world scenario. The research community tries to address the semantic
issues by either adopting the weakly labeled data, partially labeled data or
unlabeled data, leading to different supervisions discussed below.

Weak Supervision. Weakly supervised approaches have been explored for
the image retrieval task [148, 56, 48, 95]. For example, Tang et al. [148]
proposed a weakly-supervised multimodal hashing method that exploits local
discriminative and geometric structures in the visual space. [56] performed
pre-training in weak supervision mode and finetuned the network in supervision
mode. [48] developed a weakly supervised deep hashing method that used
tag embeddings for image retrieval with the word2vec semantic embeddings.
[95] developed a semantic guided hashing network for image retrieval by
employing the weakly-supervised tag information and inherent data relations
simultaneously.

Semi-Supervision. The semi-supervised approaches generally use a combi-
nation of labeled and unlabelled data in feature learning. A semi-supervised
deep hashing framework was proposed for image retrieval from labeled and
unlabeled data in [192]. It uses labeled data for empirical error minimization
and both labeled and unlabeled data for embedding error minimization. The
generative adversarial learning approach was also utilized in semi-supervised
deep image retrieval [165, 73]. A teacher-student semi-supervised image
retrieval method was presented in [197], where the pairwise information
learned by the teacher network is used as the guidance to train the stu-
dent network. Pseudo labels are another source of supervision falling into
semi-supervised regime. For example, [69] generates pseudo labels based
on the pretrained VGG16 features via k-means clustering. In [36] a self-
training framework, SLADE, is proposed to improve retrieval performance
by leveraging additional unlabeled data. It first train a teacher model on
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the labeled data and use it to generate pseudo labels for the unlabeled data.
It then train a student model on both labels and pseudo labels to gener-
ate final feature embeddings. The framework significantly improves existing
state-of-the-art.

Self Supervision. There has been an arising amount of interest in self-
supervised learning [62, 18]. It is similar to unsupervised learning but apply
self-generated pseudo-labels to the data during the training process. Self super-
vision is often achieved by clever usage of data augmentation or information
from other modalities. For example, [112] defines a set of pretext tasks for
learning invariant feature representation. In [14], an online vision transformer
was asked to predict the output of a target vision transformer, whose input
is an augmentation of the first transformer’s input. As this requires no anno-
tations, it is self-supervised and exhibits superior performance when applied
to image retrieval. Self-supervised learning also proves useful for initializing
deep metric learning embedding [36], video retrieval [191], and cross-image
retrieval [91].

No Supervision. Though supervised models have shown promising perfor-
mance in image retrieval, it is always difficult to get labeled large-scale data.
Thus, unsupervised models have been investigated and they do not require
class labels to learn features. Generally, unsupervised models enforce the
constraints on hash codes and/or generate the output to learn features. [42]
used deep networks in an unsupervised manner to learn hash codes with the
help of constraints such as the quantization loss, balanced bits and independent
bits. [70] utilized deep networks coupled with unsupervised discriminative
clustering to learn the description in an unsupervised manner. [122] used an
unsupervised convolutional kernel network to learn convolutional features for
image retrieval. They applied it to patch retrieval as well.

[98] imposed constraints (for example, the minimal quantization loss, evenly
distributed codes, and uncorrelated bits) on an unsupervised deep network and
proposed a solution, called DeepBit, for image retrieval, image matching and
object recognition applications. DeepBit has a two-stage training process. In
the first stage, the model is trained with respect to above-mentioned objectives.
To improve its robustness, the network is finetuned in the second stage based on
rotation data augmentation. The analysis of DeepBit is given in [99]. However,
DeepBit suffers from severe quantization loss due to rigid binarization of
data using the sign function without considering its distribution property. To
tackle the quantization problem of DeepBit, a deep binary descriptor with
multiquantization was proposed by [39]. It is achieved by jointly learning the
parameters and the binarization functions using a K-AutoEncoders (KAEs)
network.
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5 Future Research Directions

Supervision has been dominated in form of data labeling in the last decade.
However, this form appears to be quite limited. Humans learn semantics and
knowledge from a wide range of resources, for example, domain knowledge
priors, correlation from different domains and modalities, etc. Although it is
still a mystery how humans learn semantic meanings from the real world, it is
anticipated that supervision on machines will appear in richer form. In this
section, we present two general directions for future research.

5.1 Interpretable and Modularized Learning

Interpretability and modular design are pillars to the construction, debugging
and maintenance of next-generation artificial intelligence (AI) systems. Al-
though deep learning is the dominant methodology in providing the mapping
between image pixels and semantics nowadays, it is neither interpretable nor
modularized and we anticipate the same mapping to be achieved by other
alternatives.

One emerging alternative is successive subspace learning [83, 82, 21, 84, 85,
131]. Simply speaking, SSL is a light-weight unsupervised data embedding (or
feature learning) method and it can be applied to different data types (e.g.,
images, point-clouds, voxels, etc.) The SSL pipeline consists of a sequence of
joint spatial-spectral transforms in cascade with PCA-like transform kernels.
They are rigorously derived using statistical properties of data units such as
pixels, voxels and points. SSL-based embedding is data driven and repeatable.
The SSL pipeline can be connected to a classifier (for example, the random
forest, the support vector machine or the extreme gradient boosting classifier,
etc.) or a regressor (for example, the linear regressor, the logistic regressor,
the support vector regressor, etc.) for final decision.

The representations associated with SSL are unsupervised, interpretable,
modularized, robust to perturbations, effective (i.e., a small embedded di-
mension) and efficient (a smaller model size and low embedding complexity).
Since end-to-end optimization is completely abandoned in SSL, its training
complexity is significantly lower. It can be implemented on low-cost CPUs.
The sizes of SSL models are significantly smaller than those of DL-based
models; thus, suitable for mobile and edge computing. From the angle of
supervision, SSL can incorporate priors conveniently, and fine-tune the AI
system with new observations on the fly.

SSL-based solutions find applications in object classification [19, 20, 109,
180], fake face image detection [17], face gender classification [132], low-
resolution face recognition [133], joint compression and classification [152],
point cloud classification and registration [75, 74, 194, 196, 195], image and
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texture generation [88, 89], anomaly detection [193] and medical image classifi-
cation [105].

5.2 Intelligence Gaps

Intelligence gaps is a collection of three characterized aspects to target, in
order to reach human-level semantic understanding from raw data perception.
The three aspects envision three increasing levels of semantic understanding
which we examine how to fill in below.

Gap between Signals and Semantic Units. Humans have sensors such
as eyes, ears, nose, skin, etc. to receive signals (or stimuli) from the external
world. They include visual, audio, smell, pressure, temperature, etc. Signals
need to be converted to compact representations for future processing in
machines - known as “embedding”. We have witnessed rapid progress in
signal/data embedding. There are a few criteria in evaluating embedding
schemes: interpretability, supervision degree, sensitivity, effectiveness and
efficiency. Most today’s embedding methods rely on deep learning. They are
far from ideal according to these criteria. A new signal embedding idea is to
exploit statistical properties of data units (for example, pixels, vertices, and
points) in an unsupervised feedforward fashion based on SSL as discussed in
Section 5.1. It is interpretable, robust to perturbations, effective (i.e., smaller
embedded dimension), efficient (smaller model size and lower complexity), and
suitable for multi-tasking.

Furthermore, two challenges in signal embedding worth further study: (1)
attention and (2) multi-modal data representation. Both machines and human
brains have limitations on processing speed, memory and communication
capacity. Attention is needed to enable an intelligent system to process the
most relevant input within its limits. Attention is often derived by end-
to-end optimization nowadays (e.g., visual saliency in computer vision and
transformers in natural language processing). Yet, attention can be easily
fooled with small perturbation. For example, it can be shifted from one region
to another in an image by manipulating a few pixels - leading to a totally
different outcome. Adversarial attacks impose a major threat in real-world
applications. Interpretable and robust attention is essential in next generation
AI, which will be assisted by semantic scene and object segmentation. For
multi-modal data representation, subspace decomposition may be leveraged.
That is, we may represent audio, image, video, and 3D data in their individual
subspaces and select a suitable combination and use the direct sum of these
subspaces to construct a multi-modal space. Each subspace can be updated
independently and combined efficiently and dynamically in response to different
needs.
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Gap between Semantic Units and Knowledge. Semantic units are
segmented for ease of re-composition. The study of their relationship yields a
richer information space. For example, the WordNet contains relations between
numerous words so as to result in a huge graph. Knowledge presents the highest
abstraction level of human cognition. Besides knowledge representation and
acquisition, humans can infer missing information and discover knowledge that
are not directly available.

Generally, one can construct individual knowledge graphs based on existing
databases in various domains and then combine them into larger heterogeneous
graphs. Knowledge graphs will be a central piece of the next generation AI.
There are open problems to be addressed, including scalability, ambiguity
resolution, semantic matching, path finding/completion, new entity discovery,
hidden relation extraction, dynamic graph evolution, etc.

To tackle with scalability, a decomposition and re-composition methodology
through interaction of semantic and knowledge spaces could be a direction
to explore. For example, today’s CNNs recognize cars of different colors
and models from various angles through numerous labeled car images. Yet,
this is not how humans acquire the knowledge of “cars”. Humans decom-
pose cars into semantic units such as body, wheels, doors, windows, lights,
etc. and use them to form the knowledge of “cars”. The decomposition/re-
composition process enables humans to learn cars with fewer examples. The
success lies in the interaction of the 3D car structure (knowledge) and the
projected 2D car images (semantic units). Also, it is challenging to recognize
small components of cars such as wheels, doors, windows, lights, etc. alone.
Yet, the 3D structural knowledge of cars can help trace/confirm the parts
and make their recognition easier. The same principle applies to human
perception on objects with occlusion. We can recognize occluded objects
if occlusion is not severe. Generally, one recognizes objects through their
salient regions and, then, their parts through the assistance of knowledge
graphs.

Ambiguity resolution can be done using the context information in the
knowledge space. Ontology is essential to human knowledge acquisition,
organization, and learning. Hierarchical categorization is more stable and
easier to update. Today’s knowledge graphs are flat without ontology incor-
porated. Lack of knowledge hierarchy makes the representation difficult to
scale up. It may be feasible to enforce the ontological relationship in sub-
space decomposition. That is, a high-dimensional knowledge space will be
decomposed into a direct sum of multiple low-dimension knowledge subspaces.
The core knowledge, which is stored in a low-dimension subspace, should
be more stable and error resilient with less frequent update. The refined
knowledge in specific domains is stored in other low-dimensional subspaces.
They will be updated more frequently and optimized locally. Unequal se-
curity can be applied to protect different subspaces from attacks depending
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on their importance. Knowledge space decomposition and re-composition
provides flexibility in face of a rapidly changing, stochastic and adversarial
environment. Mathematically, this decomposition can be achieved by tensor
operations.

Gap between Knowledge and Concept/Decision. Knowledge is what
we know. It’s the accumulation of past experience and insight that shapes the
lens by which we interpret, and assign meaning to, information. In psychology,
decision-making is regarded as the cognitive process resulting in the selection
of a belief or a course of action among several possible alternative options.
Logical inference is the basis of human reasoning. Although this is analogous
to path finding in knowledge graph, path finding is often used to find the
relationship between two entities rather than two concepts. Mathematical
proof based on computer enumeration exists. Yet, it does not have the ability
to infer from one concept to another.

To narrow the gap, we may construct the concept (or rule) graph whose
nodes represent different concepts. For example, from two concepts “a car
runs faster than a horse” and “a horse runs faster than a man”, we infer that
“a car runs faster than a man” through the transitive law. A concept graph
in a general domain could be too complex to build. Yet, it could be feasible
to do it in a special domain. For example, if we focus on “I for health care”,
the number of concepts is much smaller. There is difference between the
concept graph and the traditional expert system. An expert system does
not have links between nodes while links in the concept graph introduce the
logical relationship between two concepts. Common sense reasoning and rules
discovery/creation are possible through inductive learning, that is, path finding
in domain-specific concept graphs.

Humans react to external stimuli with responses such as action, decision
and planning. Rational responses are knowledge-based. Action/decision is
often related to penalties and/or rewards. Reinforcement learning is developed
with this principle via cost function definition and optimization. This proves
to be effective in gaming (for example, chess and go). Game theory offers an
alternative optimal decision process among independent and competing actors
in strategic settings.

Generalization of reinforcement learning and game theory to real-world
situations is however non-trivial since it is difficult to define proper cost func-
tions. Furthermore, human behavior involves intuition, instinct, psychological
factors and constraints (e.g., faith and ethics), which are difficult to model.
For the next generation AI to be fully autonomous, we need a clearly defined
goal. For example, medical diagnosis can be conducted by AI automatically
while medical treatment will be determined by AI and humans jointly since
the latter involves human factors. Also, it is the human who should take the
ultimate responsibility.
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6 Conclusion

Resolving the semantic gap is a topic that has attracted growing attention
in the artificial intelligence community. Unlike previous papers, this survey
drew experiences from two fundamental computer vision problems: object
detection and metric learning in image retrieval. The central theme was on
the role of supervision, which was accomplished by “data annotation schemes”
and “design of loss functions”. We organized the survey by various supervision
forms. Furthermore, we offer a broader perspective on intelligence gaps and
discuss a couple of ideas in resolving these gaps to shed light on future research
directions.
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