APSIPA Transactions on Signal and Information Processing, 2022, 11, e6

This is an Open Access article, distributed under the terms of the Creative Commons
Attribution licence (hitp:// creativecommons.org/ licenses/by-nc/ 4.0/ ), which permits un-
restricted re-use, distribution, and reproduction in any medium, for non-commercial use,
provided the original work is properly cited.)

Original Paper
Identifying Code Reading Strategies in
Debugging using STA with a Tolerance
Algorithm

Christine Lourrine S. Tablatin!? and Maria Mercedes T. Rodrigo!*

LAteneo de Manila University, Quezon City, Philippines
2Pangasinan State University, Urdaneta City, Pangasinan, Philippines

ABSTRACT

The purpose of this study was to identify the common code reading
strategies of the high and low performing students engaged in a debugging
task. Using Scanpath Trend Analysis (STA) with a tolerance on eye
tracking data, common scanpaths of high and low performing students
were generated. The common scanpaths revealed differences in the code
reading patterns and code reading strategies of high and low performing
students. High performing students follow a bottom-up code reading
strategy when debugging complex programs with logical and semantic
errors. A top-down code reading strategy is employed when debugging
programs with simple control structures, few lines of code, and simple
error types. These results imply that high performing students use
flexible debugging strategies based on the program structure. The
generated common scanpaths of the low performing students, on the
other hand, showed erratic code reading patterns, implying that no

*Corresponding author: Christine Lourrine S. Tablatin, tablatinchristine@gmail.com.
We thank the Ateneo de Manila, Ateneo de Davao, University of Southeastern Philippines,
University of San Carlos, Private Education Assistance Committee of the Fund for Assistance
to Private Education for the grant entitled “Analysis of Novice Programmer Tracing and
Debugging Skills using Eye Tracking Data” and Ateneo de Manila University’s Loyola Schools
Scholarly Work Faculty grant entitled “Building Higher Education’s Capacity to Conduct
Eye-tracking Research using the Analysis of Novice Programmer Tracing and Debugging
Skills as a Proof of Concept”. We also thank Bobby Roaring for helping us in choosing the
most appropriate statistical analysis to use in this study.

Received 30 July 2021; Revised 30 November 2021

ISSN 2048-7703; DOI 10.1561/116.00000040
© 2022 C. L. S. Tablatin and M. M. T. Rodrigo



2 Tablatin and Rodrigo

obvious code reading strategy was applied. The identified code reading
strategies of the high performing students could be explicitly taught to
low performing students to help improve their debugging performance.

1 Introduction

Programming skill necessitates not just the production of code but also the
comprehension of existing source code. Thus, the skill of program comprehen-
sion is as important as program writing when learning how to program [16,
14]. Source code comprehension is a vital activity in software development,
and code reading strategies affect the programmer’s success rate in performing
comprehension tasks such as debugging [31].

One of the most intriguing approaches to analyze how programmers perform
code comprehension tasks is the use of eye-trackers [3|. Eye-trackers are used to
capture visual attention by collecting eye movement data of participants while
performing a task and have recently become a common tool used to perform
empirical studies in programming [27, 4]. The earliest study that leveraged the
use of eye-tracking data to understand the comprehension process of students
while reading algorithms was conducted in 1990 [10]. Since then, researchers
have become active in exploring the cognitive processes of programmers using
eye-tracking data while performing code comprehension tasks and debugging
[27, 23]. While efforts have been made to understand the comprehension
processes using eye-tracking data, we still have limited knowledge about the
code reading patterns and strategies employed in debugging. Most of the
approaches used in analyzing eye-tracking data to determine the code reading
patterns and strategies were based on visual effort metrics like fixation count
and fixation duration on specific Areas of Interest (AOI) [24, 6, 18, 28, 26, 23,
9] while a limited number of studies [32, 7, 21, 19] focused on analyzing the
sequential nature of the scanpath [20].

Analyzing the scanpath as a whole entity to determine code reading patterns
instead of independently measuring eye movement attributes has become
essential to draw explicit conclusions on the nature and interpretation of the
cognitive processes [1]. However, finding common code reading patterns to
identify visual strategies is challenging since their individual scanpaths tend
to be different from each other [4, 13] and are highly individualistic [19]. One
study [30] used Scanpath Trend Analysis (STA) with a tolerance to address the
challenge of bringing multiple scanpaths together taking into consideration the
individual differences of scanpaths to generate common scanpaths that would
reveal common code reading patterns of high and low performing students
engaged in a debugging task. According to the findings, the generated common



Identifying Code Reading Strategies in Debugging using STA 3

scanpaths are more comparable to the individual scanpaths by adjusting the
appropriate tolerance level parameter in the stage of identifying trending
scanpaths. The study also confirmed previous findings that high-performing
students logically read code while low-performing students make random
selection of code statements to find bugs [21].

Understanding how students read and comprehend source code does not
only provide information on how they think while performing the task but
also provides insights on how we can improve the overall learning process
by improving learning materials and knowing when learning intervention is
needed. Further, exploring the strategies used by experts or high performing
students while performing comprehension tasks such as debugging will allow
us to uncover effective strategies that could be explicitly taught to improve
code reading and code comprehension skills of students [3]. Thus, the main
goal of this study was to identify the code reading strategies of high and low
performing students while performing code comprehension to detect bugs.
Specifically, this study sought answers to the following questions:

1. How can we identify the common scanpath of high and low performing
students to reveal their common code reading patterns?

2. How do the code reading patterns vary between high and low performing
students?

3. What code reading strategies can be inferred from the code reading
patterns of high and low performing students?

Our previous study focused on identifying the common code reading patterns
of only one program using STA with a tolerance. This paper attempts to
validate the findings from our prior work by analyzing a larger dataset to infer
code reading patterns and strategies of high and low performing students while
debugging codes.

2 Methodology

This paper is an analysis of a larger eye tracking study on programmer tracing
and debugging skills as well as the development of higher education’s capacity
to conduct eye tracking research. The experimental setup and procedure
discussed in [30], which investigates the use of STA algorithm with a tolerance
to determine the common code reading patterns of high and low performing
students engaged in a debugging task, is also used in this study. This study,
on the other hand, builds on the prior one to validate the initial findings by
using a larger dataset.



4 Tablatin and Rodrigo

2.1 Participants

Students aged 1823 years old who were in their 2nd year to 4th year level
in college and had taken the college-level fundamental programming course
were recruited to participate in this study. The 64 participants composed of
47 males and 17 females were recruited from four private universities in the
Philippines: 16 from Ateneo de Davao University (ADDU), 17 from University
of the Cordilleras (UC), 16 from University of San Carlos (USC), and 15 from
University of Southeastern Philippines (USeP).

2.2 Dataset

The eye tracking data consisting of 238,733 data points were collected and
saved in an individual CSV file composed of information regarding the fixation
timestamp, the location of fixations, fixation durations, blinking counts, pupil
dilations, and separate values for the left and right eye movements. In the
context of this study, only the timestamps, the values of x and y coordinates,
and the fixation durations of each participant on 12 programs were extracted
from the segmented CSV file to construct the individual scanpaths.

To determine the difference in the code reading patterns and strategies, the
study used two participant groupings: high performing and low performing.
The scores of the participants in the debugging tasks were used to assign
them to a particular group. High performing group consisted of students who
scored above and equal to the mean score, while the low performing group
consisted of students who scored lower than the mean score. Moreover, two
datasets were used in the analysis of the scanpaths using STA algorithm with
a tolerance. The first dataset consists of the timestamp, fixation points (z and
y coordinates), and fixation duration of each program code by each participant.
For the second dataset, instead of using the actual fixation durations on
each AOI, the proportional fixation durations for each AOI were used. The
proportional fixation duration for each AOI was computed as a ratio of fixation
duration on an AOI to the overall fixation duration on all AOIs.

2.3 Ezxperimental Procedure and Setup

We used a Gazepoint GP3 eye tracker in the eye-tracking experiment with
a sampling rate of 60 Hz and 0.5-1 degree of accuracy [15]. The source code
was presented in a full-screen window with screen resolution set to 1366 x 768.
Then participants were asked to read 12 program codes with known errors, and
the errors were marked using the mouse. There is no need for the participants
to correct them.



Identifying Code Reading Strategies in Debugging using STA 5

:
v 1,517 1222 YR

LTk
230§

3 Errors
Previous Reset Finish Next

Figure 1: Screenshot of the slide sorter program.

2.8.1 Hardware/Software Setup

The experimental setup consisted of a laptop, a monitor, a mouse, a keyboard,
and a GazePoint table-mounted eye-tracking device. The hardware is set up by
extending the laptop’s display to the monitor connected to it. The eye tracker
was placed in front of the 17-inch monitor to allow the participant to view the
codes while the eye tracker records the eye movements. The optimal setup
between the user and the eye tracker is 100 cm horizontal distance and 40 cm
vertical distance. The eye tracker was then put to the test to see if it was
already operational. The participant was asked to sit comfortably, and then
the eye-tracker was adjusted to detect the eyes of the participant. Calibration
of the eye-tracker on the participant was done by asking the participant to
follow the white circle/red dot to check if the calibration is proper. Calibration
was done since the accuracy and precision of the eye tracker data depend on a
successful calibration. When the calibration was successful, the participant
started the experiment.

After setting up the hardware, the GazePoint Analysis and Control software
was opened from the laptop and brought to the screen for tester viewing. A
new project is then created for the experiment before the stimulus is prepared
in the background. A slide sorter program (see Figure 1) was created with
buttons Previous, Next, Reset, and Finish buttons to display the program
description followed by the program code with injected bugs. To navigate
across the slides, click the Previous and Next buttons. The Reset button is
used to clear the marked error locations on a particular slide, while the Finish
button saves the marks and ends the debugging session.



6 Tablatin and Rodrigo

Table 1: Code description, line numbers of injected defects and metric value of codes.

Lines Line(s) Cyclomatic  Nested

Code Description of code with error complexity block depth
P01 What’s the next number? 17 10 2 1
P02 Reverse of strings 15 15 2 2
P03  Arrow 16 14 1 1
P04 Q prime 26 15,22, 29 6 4
P05 Parenthesis matching 24 13,17, 23 6 2
P06 Palindrome 19 15, 18, 22 3 3
P07 Rock, paper, and scissor 34 20, 26, 30 9.5 1.5
P08 The diamond pattern 27 11,13, 18 7 2
P09 Paralleloword 29 15, 24, 30 7 3
P10 Consecutive words 16 11, 14, 16 3 2
P11 Earthquake’s class 25 11, 18, 24 7 1
P12 Basic calculator 28 11, 22, 27 5 1

2.3.2 Task Stimuli and Injected Defects

The analysis of the eye tracking data focused on 12 short programs written
in Java programming language that served as stimuli in the eye tracking
experiment. These programs are typically written by novice programmers.
Nine of the 12 short Java programs had three defects each, while three programs
have one each. The bugs were intentionally added to the program codes, and
the participant’s task was to find these bugs in the static source codes. In this
paper, we refer to this task as debugging. Few of these injected bugs take a
minimal number of scans to detect. But quite a number takes a considerable
amount of time and may involve the participant’s analytical skills and prior
knowledge in programming.

Each program was assigned either one or three bugs, with different numbers
of lines of codes, cyclomatic complexity, and nested block depth as shown in
Table 1. Errors to locate range from easiest to spot (syntax errors) to the
hardest (semantic and logical errors). Table 2 presents the characteristics of
the errors that were injected into each program code. We can see from the
table that the injected errors were of various types and located in different
lines and sections of the programs.

2.4 Data Pre-Processing

All the eye movements of the participants were stored in a CSV file format.
From the CSV file, the timestamp, location of fixations, and fixation durations
were extracted. To map the fixations in the stimuli, the AOIs were drawn using



Identifying Code Reading Strategies in Debugging using STA

UOTJRIR[IOP POYISIN 0¢ OTJURUG poewr e ur smjeuered oN
sojonb
ApO(q 9INYONLI)S [RUOTIIPUOD OS[H 9z XRIUAG a[qnop jo peeagsur aydonsody
Apoq 9IN)ONIIS [RUOIIPUO)) 0% XBIUAG UO[02TWIOS JUISSIT L0d
Apoq wreIsoiq 4 o130 98essouW J091100U]
amjoniys doo[ 10J © opIs
-ur Apoq 9INJONI}S [RUOIIIPUO)) ST o130 98RSSOUI JO0IIOOU]
aanjonijs doof 10 GT XBIUAG UO[02IWIS JO PBIISUT BUIWO)) 90d
JIOUID) RS
ApoQ 9INJONI)S [RUOIITPUO)) €z [eotso] IO PURTWITWIOD JO 9SN }I9II0U]
9INJONI)S [RUOIIIPUO)) L1 OTjuRUIOG I09e1odo uoSLIedUIOd J09I1I00U]
uor)eZI
“[RIHUL pue UOTjR.IR[I9P S[qRLIBA €1 onjueuLg PoZI[RI}IUL J0U S[qRLIBA god
Apoq 9IMN)ONI}S [RUOIIIPUO)) 6% XBIUAG S10)0RIq JO PRIISUI SOSOIUDIR]
amjoni)s dooy 10 44 XBIUAG UO[ODIWIAS JO PBIISUT BUIWIO))
aamjoniys doojf 104 G XRJUAQ UO[0D [RUOYIPPY rod
Apoq urerdorg il [eo130] upyurid jo peojsur jutid jo as() s0d
aanjoniys dooy 10 QT XBIUAG UO[02IWIdS [RUOIPPY a0d
UOI}RIR[IIP O[(RLIBA 01 XeIUAQ UO[OITIOS SUISSIJA] 10d
UO0I109S WRISOIJ our| odAy uorydriosep 10115 apoD
IOLIG] IOLIG]

's10119 pajodalur oy Jo adAy pue uonyduosa( g 9[qe],



Tablatin and Rodrigo

Apoq ose)) 1Z [eo1so] JUOWOYR)S SUISSTN
poouo
Apoq ose)) e [eo1sog -I9Jo1 SeM O[(RLIRA 1DdIIOOUT
UOI}RIR[IIP S[(RLIBA 11 oTjuRUDg adA£y eyep oferrdorddeur jo osn ard
QINJONLI)S RUOTIPUOD JT OS[H iié XBIUAG J1 9SO JO Pea)sul JIos[o Jo as()
9INJONI)S RUOIITPUOD JT dSTH QT oTjuRUIDg I09erodo UOSLIRdUOD J09II00U]
UOTYRIR[IOP O[(RLICA 11 plulsgciestelyy odAy eyep ojyerrdorddeur jo osn I1d
[[e> uoIjdunj ® ST 91
aunjoniys doof I0q 971 oTjuRUg 1e1[} 93BIIPUI 0} sosoyjuated ON
TUOWOYRY)S
Apoq wreIsoid il o130 qurid Ul JuowWNSIR  3091I00U]
UOI}RIR[OIP S[RLIRA 11 oTjuURWOG odAy eyep ojyerrdorddeur jo asn 0rd
2InjonI)s oym opisut doojy 10y
puodes uo doof 10J [9A9] PU0ISY 0¢ [eo1s8og pojurid sem onfeA 399I1100U]
9INJONLIYS J[IYMm dpisul doof 10} pooud
1s1J uo doO[ I0J [9Ad] PUODDS iié [eo1rso] -10JoI Sem O[(RLIBA 1D0LIOOU]
uor)Ipuod doof I A GT [eorsorg PRIUOUWISINOD J0U d[(RIIBA 60d
amjoniys dooy 104 ST XRIUAQ UO[0DIWILS [RUOTIIPPY
Apoq wreisold el STjueUDg odA£y eyep oferrdorddeur jo osn
UOI}RIR[IIP S[(RLIBA 11 oTjueUDg adA£y eyep oferrdorddeur jo osn 80d
UO0I109S WRISOIJ our| odAy uorydriosep 10119 apon
IOLIG] IOLIG]

"ponuUIIUOY) 7 OIqRT,



Identifying Code Reading Strategies in Debugging using STA 9

3 import java.util.*;

2 import java.lang.*;

3 import java.io.*;

4

5 class p04{

6 public static void main (String[] args) throws |
7 java.lang.Exception{ |

8

9 Scanner input = new Scanner (sxstem.in);
10 int n, 1, 37 |

11

12 n = input.nextInt(); |

13 int s[] = new int[n]; |

14

15 for (i:=0; i<n; i++){ |

16 s[i] = input.nextInt():; ]
17 }

18
19 for(i=0; i<n; i++){ |
| 20 int count=0;

21

22 for(j=0, j<n; j++){

23 if(s[i)ss[j)] == 0){

24 count=count+1;

25 } ]

26 } |

27

28 if (count==1){ |

29 System.out.print(s(i) + * *);
30 }

31 }

32 }

33 }

Figure 2: Areas of interests of QPrime program.

the OGAMA Areas of Interest module [33] to define the Areas of Interests
(AOIs) of the 12 programs to obtain the AOI coordinates. Each line of codes
of the stimuli were marked as the AQOIs, excluding blank lines. Figure 2 shows
the AOIs of one of the program codes used in this study. To account for the
error on fixation identification, a 20 px boundary was added to increase the size
of each AOI rectangle of the stimulus. This process could create overlapping
AQIs. The fixations were mapped to the AOI with the nearest center point out
of the AOIs that contain the fixation point. These procedures were done for
the eye-tracking data of the 64 students who participated in the eye tracking
experiment.

2.5 Data Analysis
2.5.1 Common Scanpath Analysis using STA with a Tolerance

Scanpath Trend Analysis (STA) with a tolerance algorithm [13] was employed
to generate the common scanpaths. This algorithm gives us the ability to



10 Tablatin and Rodrigo

find an appropriate tolerance level for achieving the highest similarity of the
common scanpath to the individual scanpaths by adjusting the tolerance
level parameter in the stage of identifying trending AOI instances. Trending
AOI instances are AOIs shared by all individual scanpaths or a subset of the
individual scanpaths based on the tolerance level specified. The algorithm
consists of three main stages: Preliminary Stage, First Pass Stage, and Second
Pass Stage.

The first stage is the preparation of the individual scanpaths. The fixation
points (z and y coordinates) in the individual scanpaths were mapped to the
identified AOIs of the program code. To map the fixations to the code elements
or AOIs of the program code, a 20 px boundary was added to increase the
size of each AOI rectangle. The fixations were mapped to the AOI with the
nearest center point out of those that contain the fixation point. This was
done to account for the eye tracker’s accuracy during the recording of the
eye gazes of the participants. The individual scanpaths in this stage were
represented as a series of AOIs with fixation durations for dataset one and
proportional fixation for dataset two. For instance, if the student fixates line 6
for 250 ms, then line 9 for 500 ms, and then line 10 for 100 ms, his/her scanpath
is represented as 6[250 ms| 9[500 ms] 10[100 ms|. The line numbers were then
converted to letters of the alphabet F [250 ms| H[500 ms] I[100 ms| to allow
comparison of scanpaths represented as strings using the Levenshtein distance
algorithm.

The second stage identifies the trending AOIs in the scanpaths. The trend-
ing AOIs were identified using their occurrence frequencies (i.e., the number of
fixations on an AOI) and their fixation durations. The same AOI can be fixated
consecutively (F H H I) and/or non-consecutively (F H I H) in a particular
scanpath. Each fixation to a particular AOI is referred to as an AOI instance.
However, consecutive fixations to the same AOI are considered as only one
instance of that AOI For example, an individual scanpath J[200 ms| E[500 ms]
J[250 ms] J[100 ms] M[230 ms| L[375ms] M[190 ms] X[200 ms] M[100ms] in-
cludes two instances of J, three instances of M while E and X have only one
instance each. These AOI instances were differentiated with different numbers
based on the total fixation duration or proportional fixation duration on each
instance. The highest fixation duration or proportional fixation duration in
a particular AOI instance receives the first number. The resulting scanpath
of the example is represented as J2[200 ms] E1[500 ms| J1[250 ms] J1[100 ms]
M1[230 ms] L1[375 ms| M2[190 ms| X1[200 ms| M3[100 ms].

After differentiating the AOI instances, the trending AOI instances were
identified. The STA algorithm with a tolerance, added a tolerance level
parameter to the original STA Algorithm [13] to lessen the effect of the
variances between individual scanpaths in the resulting common scanpath.
By default, the tolerance level parameter is equal to one which means that
the trending AOI instances are identified based on the shared instances of all



Identifying Code Reading Strategies in Debugging using STA 11

individual scanpaths. If we set the parameter to 0.95, this means that the
trending AOI instances are identified based on the instances which are shared
by 95% of individual scanpaths. We can adjust the tolerance level parameter
based on the goals of the study. This study used three different tolerance
level parameters to find the appropriate parameter for achieving the highest
similarity of the trending scanpath to individual scanpaths.

An AOI instance becomes a trending instance if it satisfies the following
conditions:

1. The total number of fixations on the AOI instance should be greater than
or equal to the minimum total number of fixations on the instances which
are shared by a subset (adjusted with the tolerance level parameter) of
the individual scanpaths; and

2. The total fixation durations or proportional fixation duration on the
AOI instance should be greater than or equal to the minimum total
fixation duration on the instances shared by a subset (adjusted with the
tolerance level parameter) of the individual scanpaths.

The AOI instances that did not satisfy the conditions were removed from the in-
dividual scanpaths. The final stage in the algorithm is the identification of the
trending scanpath using the trending AOIs based on their positions in the in-
dividual scanpaths. The individual scanpaths were collapsed by combining the
same AOI instances (J2[200 ms| E1[500 ms| J1[250 ms] J1{100 ms| M1[230 ms]
X1[200 ms] — J2[200 ms] E1[500 ms| J1[250 ms| M1[230 ms] X1[200 ms]), and
then computation of the priority value of each AOI instance in the individual
scanpaths was performed using the following equation (1):

maxr — min

p=1-P—7—— (1)

where:

(1) = Priority value
P = The instance position in the scanpath, starting from 0
L = The length of the user scanpath

maz = Maximum priority value (default value: 1)

min = Minimum priority value (default value: 0.1)

When all the priority values were calculated in each of the scanpaths, the
total priority value (¥) for each AOI instance was calculated with Equation
(2) where n is the number of individual scanpaths. The algorithm then
positions the instances into the common scanpath based on their total priority
values from highest priority to lowest. If multiple instances have the same



12 Tablatin and Rodrigo

total priority value, their total duration, and their total number of fixations
on the instances are compared to determine their position in the common
scanpath. Once the trending visual element instances are positioned in the
common scanpath, their numbers are eliminated (e.g. E1 — E) and then the
consecutive repetitions are removed (e.g., JEJJIMX — JEJMX). Thus, the
common scanpath is represented in terms of the AQOIs.

= Zm (2)

Since the STA algorithm constructs a common scanpath based on individual
scanpaths, the common scanpath should be similar to the individual scanpaths.
Therefore, the similarities between the common scanpath and the individual
scanpaths are strongly related to the similarities between individual scanpaths.
We expect that the median similarity of the common scanpath to the individual
scanpaths is equal or greater than the median similarity of the individual
scanpaths. String-edit algorithm was used to calculate the distance between
the common scanpath and the individual scanpaths of each group of students
to determine how similar the common scanpath to the individual scanpaths.
The String-edit distance is then used to calculate the similarity between the
two scanpaths by using the following equation:

S =100 x (1-(?)), 3)

S = Similarity
D = String-edit distance
L = The length of the longer scanpath

where:

Statistical tests were used to identify which tolerance level parameters would
be selected to generate a common scanpath for each group of students to reveal
their code reading patterns. The effect of the tolerance level parameters on the
similarity scores for each group of students and school was determined using
repeated-measures ANOVA with Greenhouse—Geisser statistics. The result of
the statistical tests served as a guide in choosing a common scanpath for each
group of high and low performing students from the four schools for each of
the 12 program codes. The selected common scanpaths for each school passed
through the second stage of the algorithm to generate the common scanpaths
that would reveal common code reading patterns of high and low performing
students. These patterns can be used to identify the common code reading
strategies employed by high and low performing students.



Identifying Code Reading Strategies in Debugging using STA 13

2.5.2 Common Code Reading Patterns Identification

The study of [8] pointed out the difficulty of coding a one-minute eye movement
record, which takes a coder two hours to analyze. This led to the suggestion of
integrating quantitative and qualitative methods into a combined research de-
sign where a quantitative approach is used before deciding if qualitative analysis
is feasible. This process aims to reduce the data for qualitative analysis. The
quantitative analysis was implemented in this study using the STA algorithm by
identifying the relevant fixations from the individual scanpaths and generating
the common scanpath based on the number of fixations and fixation durations
as described in Section 2.5.1. By reducing the amount of eye movement data,
interpretation of the code reading patterns becomes easier. The descriptions
of the patterns in Table 3 were used to determine the code reading patterns of
high and low performing students. Additional criteria are provided since not all
the code reading patterns in the program comprehension coding scheme could
be used because of the nature of the generation of the trending AOIs using the
algorithm.

Interpreting the eye movement data requires identification of the number
of transitions to be used to describe a code reading pattern. The study of [29]
regard three-way transitions as one unit of program understanding behavior.
Further, the developed coding scheme [3] describes the LinearVertical pattern
as following text line by line for at least three lines regardless of program flow
and without distinction between signature and body. Flicking on the other
hand, is described as gaze transitions that move back and forth between two
related items. Furthermore, the capacity of short-term memory is seven plus
or minus two items [22]|. Tt implies that most adults can store between five
and nine items in their short-term memory while performing a visual task.
Since previous studies characterized the patterns using at least three fixations
and that the lower bound of short-term memory capacity is five, the common
scanpaths of the high and low performing students were divided into sets of
five fixations. A common scanpath with 15 fixations, for example, would have
three code reading patterns.

Three coders characterized the code reading patterns of the high and low
performing students based on the sets of fixations of all programs from both
groups. The fixation sets were coded independently based on the coding
scheme. After individually coding the sequence of eye movements using the
program comprehension coding scheme and the additional criteria indicated
in Table 3, the coders convened to discuss the differences and resolved the
conflicts in pattern coding. Fleiss kappa was used to determine the level of
agreement between the coders in characterizing the sets of fixations. The
scanpath length, code coverage, and eye movement sequence were used to
describe the differences in the code reading patterns of high and low-performing
students.



Tablatin and Rodrigo

14

"UOTYexTj 1993e[ 97} WOJ
9[qeLIBA IOYJ0UR IO 9[CRLIBA SUIES JBl} UTR)U0D Jel} JUSUWIR)S © ST UOIYRX]] XU 1) Jey[}
popraoid pue uorjexy snoiaaid oY) JO UOIJOUNJ o} 03 PIJR[AI SI IR} JUSWIOS 9POD € 0}
UOTIRXY R I0 [g]] oNd SUISSe00r 040 IO(UIDMISI [eNSIA ® SUIAJIUSIS juomosow premdn ue Aq
PPMOT[0] UOTYeXT] 4817 97} UO POYIJUAPI SO[RLILA 91[} UTRIUO0D SUOI)RX] SAIINIAISU0D OM) T

uIo}yed SUDDI[] B Se POIOpISUOd 9q 0)

SUOT}ISURI} 9ZeS ONS JIQIYX0 JSNW SUOTIRXY JO 19S ® UO SUOIYRX] 9ATINOISSTOD 91} }SeI 1Y
‘[z€] orqerrea

® JO UOIJRIB[DOP PUR OSN 91} U0aMID( SUOIISURI} 9ZB3 pUR ‘POsT SI 9[RLIBA 9} 9I9UM
SUOT}RO0] JUSISJIP 97} WoaM)O( SUOT}ISURI) 973 ‘[[ed POYIOU ®© JO S}SI[ Iojourered [enjoe pue
[RULIOJ O1[} SB [ONS ‘SWO)l POJR[OI OM) U0oM)O( [[1I0] PUR Yov( dAOUWL JRY[} SUOIISURI) dZRL)
"Apoq pue 2Injeusrs Usom1a( UOI)OUTISIP

ou ‘mop wrerdold Jo I91)eUI OU ‘SOUI] 991} 1Sed 8 J0J ‘QUI[ AQ 9UI[ )X} SMO[[0] 29a[qng
‘SIOV [e10A9S OJUT POPIAIP 10U puR [y dUO se

POIOPISUOD ST OPOD JO SUI[ ® 9OUIS POYIIUSPI 9 jouted wIojjed SIY ], OWI) PIINLIISTP A[renbo
I9TJRI UI SJUDWAS [[B ‘30 03 WSLI IO JYSLI 0} JJO] WOIJ IOY} SUI[ [0YM & Speal Joa[qng
SOV S® POUIJUapPI j0U 9IoM SOUI[ YUR[] 9OUIS POYIJUSPI 9 j0outed wIojjed

siy ], -es[e aoeld -owos 03 Aem o) uo dojs jsnl A[res[d pue jods Jue[q © UO dIC SUOIJeXI]
“I9PIO UOIINDAXS 0) SUIPIOdOR dul] Jxou 9} 0} sdun( s1oalqng

sunpIg

[eOT}IOA TRUIT

[BIUOZLIOT]TeaUI |

ysnoay J,-3ursseJisn
[oxyuopHdwmn

uorydriosep urvled

SoUIR 9PO))

“(F10g) v 72 ureupag jo swayds Suipod pado[eAdp oY) WOl suIdyed ¢ 9[qr],



15

Identifying Code Reading Strategies in Debugging using STA

"9INJONIS SRS 9} JO 9q ISNU
UoTYRXY )Xo 91} Jel[) peplaoid pue [g]| ono Sulsseodr oo IoquUIewIal [BNSIA B SUIAJIUSIS
JUOWOAOW 949 pIemdn ue Aq poMO[[0] I8 SUOIJRXT JO 39S ® UO SUOIJRXI] SATINOISTIOD OM) I
"SUOI}ISURI) 9Ze3 d1[} U0 JUOPIAD ST SOINIONI)S ONS JO UosLredwod jer) pue

9IMNJOILIYS SUIRS YY) 0} PIJR[I oIR SUOIIRXY JO 198 B UO SUOIJRX] AIJNIOSTIOD 9011} ISRI 1Y
‘Teo3 remorjred e mwIojed 0} SOPOd Paje[al 10 SINIONIYS 9POD dUWES 9 M

sepoo wrerdord Jurer) se yons Surgpiewr wiojjed rensia o[duWIs HIQIYXe SUOTJISURI) 9Zer)
-osuos ou oxewr 0} sreodde jey) oouonbos e ur Ap[m pue A[prder soaouwr 9zes oy J,

ApoqQ I090NI)SU0D /pOTJotl 0JUT SUL{OO] I0Joq ‘)SIY SoINeusIs [k e sYoo[ 10[qng
"SUOT}ISURI) 9Ze3 JOLI( MOYS j0U p[nod syjedurds

UOTITIOD 91} 9I0JOI0Y) ‘UOIIUDIIR JO JUNOUWE JUBRDYIUSIS B 9AIOIDI JOU OP JeY} SUOIYexy
aAaowal jedurds UOUIUIOD S} 9)eIdUdd 0) pasn poyjoul SULId)SN[d dY3 asnesaq SI ST,

‘urei8oxd a1[} Jo [e0S o) UIR}IE 0) SIUSTIIR)S 9POD JURAJ[I Y} Suroelry) Aq SUOIYeX] JO $)9S

Juenbasqns puer ISI o)) WOIJ POZLIDORIRYD 9 A[UO URD 91 ‘APNIs SIY) JO JXSIUOD ST} U]
‘[ge] owmy motadI 8 JO 9, ()¢ ISIY ST} SULINP SINO00 YoIYM ‘urersord sjoym oYy Jo
Surpear Areurwrpid y -ApeLiq wojjoq 03 do} WOoIj 9pod ) JO SaUl] [[e spral )s1g 30alqng

BuroyeN-(uIe11eJ ) IO
Suryseay [,
soInjeusIg

weog

uoryd1Iosop UI93IeJ

Somreu 9apo)

“ponunpuo)) g AR,



16 Tablatin and Rodrigo

2.5.8 Common Code Reading Strategies Identification

Strategies used by high and low-performing students can be inferred from
the code reading patterns derived from the identified common scanpaths.
Top-down comprehension strategy describes an assimilation process where
the programmer generates hypotheses about the program code using their
programming domain knowledge and tries to verify them by mapping his
knowledge to the elements of the source code. Comprehension of the program
is guided by the hypothesis. In contrast, bottom-up comprehension strategy
describes the assimilation process in which programmers start with individual
code statements and chunk or group these source code elements into a higher
level of abstraction [17]. In this study, the identified code reading patterns
were mapped to these comprehension strategies to determine the code reading
strategies of the high and low performing students.

3 Results and Discussion

The primary goal of this study was to identify the common code reading
strategies of high and low performing students in debugging. Twenty-five (25)
students were identified as high performing while thirty-nine (39) students
were considered low performing based on their debugging scores. However,
after data pre-processing, one eye tracking data from the high performing
group was discarded since most of the fixations on the stimuli were recorded
with negative x- and y- gaze coordinates and could not be mapped to the
identified AOIs. Thus, the analysis only used the eye gaze data of 63 students.

Figure 3 shows that the boxplots of the debugging scores of both high
and low performing students are dispersed in most programs. However, the
data of high performing students are mostly negatively skewed with several
outliers, while low performing students have mostly positively skewed with
some symmetric data and no outliers. Further, in all programs except Program
four, the median debugging scores of high performing students show great
differences from the median debugging scores of low performing students. An
independent samples t-test was performed to determine if there is a significant
difference in the debugging scores of the high and low performing students.
The result of the analysis revealed that there is a significant difference in the
debugging scores of the high performing students (M = 1.530, SD = 0.211)
and low performing students (M = 0.923, SD = 0.250), ¢(61) = —10.322,
p =< 0.001. The result suggests that the debugging scores of high performing
students are considerably higher than low performing students across all
programs.

The boxplots in Figure 4 show that several outliers are present in both
groups. The boxplots show extreme values on all programs in low performing



Identifying Code Reading Strategies in Debugging using STA 17
Performance

3.00 | il Hlow
W High
| 369
200 =
362
378 754
> * °
363 421
3 4 g 6 3 8 9 10 11 12

Program

Score

Figure 3: Distribution of debugging scores of high and low performing students.

group while three out of 12 programs had extreme values in high performing
group. Further, the median fixation durations of high performing students in
Programs 6, 9, 10, and 12 show a great difference from the median fixation
durations of low performing students. The boxplots also show that fixation
durations of high performing students are more dispersed in most of the
programs compared to the data of low performing students. Furthermore,
the distribution of data for most of the programs in both groups is positively
skewed. An independent samples t-test was performed to determine if there
is a significant difference in the average fixation durations of the high and
low performing students. The result of the analysis revealed that there is
a significant difference in the total fixation durations of high performing
students (M = 151,063.59, SD = 36,731.93) and low performing students
(M = 125,107.42, SD = 41,689.59), t(61) = —2.508, p = 0.015. The result
suggests that the total fixation durations of the high performing students are
significantly higher than the low performing students across all programs.
The differences in the debugging score and fixation duration of high and
low performing students might have relationships with the pattern similar-
ity presented in Table 6 of Section 3.2. Statistical tests were conducted to
determine if a relationship exists between these variables. A Pearson product-
moment correlation coefficient was computed to assess the relationship between
the difference of the debugging score and pattern similarity of high and low
performing students. Results of the Pearson correlation indicated a slight,
negative correlation between the two variables, r(10) = —0.17, p = 0.597;
however, the relationship was not significant. This finding suggests that the
difference in the debugging score of high and low performing students did not



18 Tablatin and Rodrigo

Performance
464
800000.00 * [
WHigh
449
600000.00
E
S
] 250,180
3 40000000 200
2043
s 130 o6 @ 756
o0
200000.00 o s treo 73
* 185@ 1
* 111 1135
00
Program

Figure 4: Fixation duration of high and low performing students.

appear to be associated with the pattern similarity. The same correlation test
was conducted to assess the relationship between fixation duration and pattern
similarity of high and low performing students. Results of the Pearson corre-
lation indicated a moderate, negative correlation between the two variables,
r(10) = —0.53, p = 0.074; however, the relationship was not significant. The
difference in the fixation duration of high and low performing students did not
appear to be associated with the pattern similarity, although the moderate
correlation is nearly significant.

The grouping was used to determine which individual scanpaths belong to
the high and low performing groups. After that, the STA algorithm used the
fixation count, fixation duration, and position of fixation in the scanpath to
generate the common scanpath of the group. The non-significant results of the
correlation analysis may be related to the fact that the STA algorithm used
several factors to generate the common scanpath of the group to produce the
pattern similarity. Therefore, a significant relationship may not be observed
using the individual factors.

3.1 Common Scanpath Analysis using Scanpath Trend Analysis with a
Tolerance

The three stages of the STA algorithm with a tolerance were employed to
the two datasets to generate three common scanpaths for each group of high
and low performing students from the four universities. The tolerance level
parameter was set first to one which includes all individual scanpaths and then
the parameter was adjusted by decreasing it by 0.05 to identify the tolerance



Identifying Code Reading Strategies in Debugging using STA 19

level parameters for each group. The current tolerance level parameter was
repeatedly decreased by 0.05 if no changes in the identified trending AOI
instances were observed. The first three highest tolerance level parameters
were used in the analysis. The three tolerance level parameters that were
identified for dataset 1 ranges from 1 to 0.65 for high performing students
and from 1 to 0.70 for low performing students. For dataset 2, the identified
tolerance level parameters range from 1 to 0.60 for both groups.

After identifying the three common scanpaths of each group with the chosen
tolerance level parameters, the similarity scores of the common scanpath with
the individual scanpaths and the similarity scores between the individual
scanpaths of the 12 programs were computed. The effect of the datasets on the
similarity scores for each group of students and school was determined using
repeated-measures ANOVA with Greenhouse—Geisser statistics. The statistical
analysis used the group of high and low performing students and schools as
between-subjects factors. The within-subjects factors are the two similarity
scores comparison of the 12 programs on the three tolerance level parameters of
the two datasets. The result of the analysis revealed that the similarity scores
between the two datasets differed significantly, F(1,58) = 32.687, p < 0.001.
In comparison to dataset 1, dataset 2 exhibited higher mean similarity scores
for all tolerance levels on each program and similarity scores comparison. The
higher the similarity scores imply that the generated common scanpath is more
similar to the individual scanpaths of the group of participants. Therefore, the
common scanpaths of the three tolerance levels from the second dataset were
selected to generate the common scanpaths of the high and low-performing
students for the 12 program codes.

A statistical test was also conducted to determine which among the three
common scanpaths of the second dataset would be selected to generate the
code reading patterns of the high and low performing students. The effect
of the tolerance level parameters on the similarity scores for each group of
students and schools was determined using repeated measures ANOVA with
a Greenhouse—Geisser correction. The statistical analysis used the group of
high and low performing students and schools as between-subjects factors.
The within-subjects factors are the two similarity scores comparison of the 12
programs on the three tolerance level parameters of the second dataset. The
result of the statistical test suggests that the selected tolerance level parameters
had a significant effect on the similarity scores, F(1.535,89.002) = 55.574,
p < 0.001. Therefore, it is important to select the appropriate tolerance level
where the common scanpath of the group of students from each school would
come from. The following criteria were used to determine the appropriate
tolerance level:

1. The common scanpath of the first tolerance level would be selected if it
has the highest similarity score among the three tolerance levels.



20 Tablatin and Rodrigo

2. The common scanpath of the second tolerance level would be selected
if the difference of the similarity scores between the second and first
tolerance level is higher than the value of 1 minus the tolerance level
parameter of the second tolerance level multiplied by the similarity score
of the first tolerance level. Otherwise, the first tolerance level would be
selected. For example, the similarity score of the second tolerance level
is 29.85, the tolerance level parameter is 0.95, and the similarity score
of the first tolerance level is 28.36. We will take the difference of 29.85
and 28.36, which is equivalent to 1.49, and compare it to the value of
((1 —0.95) x 28.36), which is 1.418. Since 1.49 is greater than 1.418, the
common scanpath of the second tolerance level would be selected.

3. The common scanpath of the third tolerance level would be selected if the
similarity score is greater than that of the first and second tolerance levels
and the difference of the similarity scores between the third tolerance
level and the second-highest tolerance level is greater than the value
of 1 minus the tolerance level parameter of the third tolerance level
multiplied by the similarity score of the first tolerance level. Otherwise,
the tolerance level with the second-highest similarity score will be selected.
For example, the third tolerance level is 0.9 and the similarity score is
33.50, the similarity score of the second tolerance level is 29.85, and the
similarity score of the first tolerance level is 28.36. The third tolerance
level has the highest similarity score, so we have to check for the other
condition. The second-highest similarity score is 29.85, which is from
the second tolerance level. We then get the difference of 33.50 and 29.85,
which is 3.65, and calculate the value of ((1 — 0.90) x 28.36), which is
2.836. Since 3.65 is greater than 2.836, the common scanpath of the
third tolerance level would be selected.

Table 4 shows a summary of the results of the statistical analysis. The
main effects of the similarity scores comparison, programs, tolerance levels, and
datasets show statistically significant differences. However, the datasets and
tolerance levels have no significant interaction with school and performance.

Table 5 shows the selected tolerance level parameters for each program,
school, and group of students. The selected common scanpaths of the high and
low-performing students were processed using the second pass stage of the STA
with a tolerance to generate the common scanpaths for each program and group.
The findings revealed that individual scanpaths tend to be different from each
other, and the differences may affect the identification of a representative
scanpath of a group which could decrease its similarity to individual scanpaths.
Based on the number of fixation and proportional fixation duration data from
each school and group, lower tolerance levels were selected for high-performing
students on programs where at least one of the members had many fixations
and long proportional fixation durations. On the other hand, lower tolerance



Identifying Code Reading Strategies in Debugging using STA 21

Table 4: Summary of the results of statistical analysis.

Measure df F Sig.

Similarity scores comparison 1, 58 147.023 p < 0.001
Program 7.692, 446.111 119.636 p < 0.001
Dataset 1, 58 32.687 p < 0.001
Dataset x school 3.000, 58 1.150 p = 0.337
Dataset x performance 1, 58 0.068 p=0.795
Tolerance level 1.535, 89.002 55.574 p < 0.001
Tolerance level x school 4.604, 89.002 0.129 p = 0.981
Tolerance level x performance 1.535, 89.002 2.355 p=0.114

Table 5: Tolerance level parameters of the selected common scanpaths.

ADDU ucC UsC USeP
Program HP LP HP LP HP LP HP LP
1 1 1 0.95 1 1 1 1 1
2 1 1 0.90 1 0.95 1 1 1
3 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1
6 1 0.90 1 1 1 0.95 1 1
7 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 0.95
9 1 1 1 1 1 1 1 1
10 0.95 1 1 1 1 1 1 1
11 1 1 0.95 1 1 1 1 1
12 1 1 1 1 1 1 1 0.95

levels were selected for low-performing students on programs where at least
one of the members had a lesser number of fixations and shorter proportional
fixation durations. These findings suggest that decreasing the tolerance level
parameter during the identification of trending AOI instances could generate
common scanpaths that are more similar to individual scanpaths.

3.2 Common Code Reading Patterns of High and Low Performing
Students

The common scanpaths generated using STA with a tolerance were divided
into fixation sets to interpret the code reading patterns. Fleiss’ kappa was run
to determine if there was agreement between the judgement of the three coders



22 Tablatin and Rodrigo

in the characterization of the 164 sets of fixations of high and low performing
students using the code reading patterns described in Table 3. The fixation
sets were coded independently by the three coders that were chosen at random
from a pool of faculty members teaching Java programming. Fleiss’ kappa
showed that there was a moderate agreement between the coders’ judgements,
k =0.586(95% CI,0.497 to 0.674), p < 0.001.

The differences in the code reading patterns of high and low performing
students were characterized using the scanpath length, code coverage, and the
sequence of eye movements. Based on the generated common scanpaths using
STA with a tolerance on all programs, the results revealed that the code reading
patterns vary in terms of the scanpath length, code coverage, and sequence
of eye fixations. The qualitative analysis of the sequence of fixations revealed
six code reading patterns used by the high and low performing students in
debugging. These patterns are Scan (S), Flicking (F), LinearVertical (L),
JumpControl (J), Word(Pattern) Matching (W), and Thrashing (T). Table 6
shows the summary of the common code reading patterns of high and low
performing students. The pattern similarity of the high and low performing
students is 100% in Program 3 but greatly differs from other programs. Notably,
the code reading patterns of programs 10 and 12 had a very low pattern
similarity since the low performing students had very short scanpaths. The
other programs had pattern similarity scores that range from 20% to 67%. This
result suggests that the high and low performing students employed different
code reading patterns in performing the debugging tasks.

The sequence of eye movements of the high performing students revealed
that they start reading the program code by employing a logical Scan pattern
or a Flicking pattern. The logical Scan pattern exhibit scanning of code
elements according to programming plans and is the initial code reading
pattern employed on most of the programs used in this study. Programs
1-4 and 8 were read starting from the main function followed by fixations to
code elements related to the sub-goals of the programs. Figures 5 and 6 show
the common scanpath of the high performing students in Programs 1 and 2,
respectively. Based on the gaze plots, the high performing students focused on
code elements related to the functional goal of the programs first which allows
them to immediately identify the errors injected in the variable declaration
and repetition structure. The logical Scan pattern is immediately followed
by Thrashing patterns after fixation to the error line to verify that they had
correctly identified the injected error.

Program 6 was read starting from the variable declaration followed by
code elements related to the input sub-goal of the program. Program 7 is the
most complex in terms of the number of lines of code and code complexity.
The common code reading patterns employed in finding the defect in this
program is different from all the programs because Thrashing patterns were
employed in between focused fixations. Programs 11 and 12 were read from



23

Identifying Code Reading Strategies in Debugging using STA

A5 GG Pu® gT—L soul] 11 MO

%aT LLLLLIMILLLLLLASS 7T 1deoxa sour| [[e jsow[y g8 USTH ¢l
TMLLITI ¢G9 seul] 9¢ MO

%8¢ LLLLLAAS ¢—T 1deoxa soul] [[e sOW[Y 6¢ UStH 1T
IT 9T-9 seur] L MO

%V LIdAL LA €T 1deoxd soul] [[e JsOW[y Ve USTH 0T
LLLT T¢—G soul'] 1¢ Mo

%08 LLLLLLLLLLLLACA TE-TT seul'y ¢l UStH 6
LLLLIMIAL V&G soul'] 5% MO

%V9 LILLLIMMILAS 8¢9 soul] €4 UStH 8
LLLLLAA 1€-0€ ‘6 ‘61-G oW 6¢ M0

%08 LLLLIMLLALLS €6-0T sour] (4Y) USTH L
LLAT ¢g pue ¢-1 1dooxe soulf [[e jsouwy 0¢ Mo

%cc LLLLLLLLS €T 1deoxa soul] [[e sOW[Y 4% UStH 9
LALLL sour] ¢ 15e[ pue 351y 1dedxo SoUl] [[e }SowW [y ié MO

%6¢ LLLLLLLLLMILAMA sout] oM} 3se 1do0Xa Soul[ [[e JSoW[y 0. UStH g
LLdA LT-G soul] V1 MO

%EV LLLMLAS 6 pue ¢ ‘T 3dooxo souy [[¢ Jsowy  GE UStH 4
MMS L1 pue ¢-T soul] 3dedxo soul] [[e }sowy GT MO

%001 MMS LT ‘g1 sou[ 1dooxa soul| [[e sow[y ¢l UStH €
LIT 2uewege)s ndino oYy uo 3dedxo soUl] [[e }SowW[y il MO

%L9 LIS T aur] 3dedxo sauT] [[e Jsow[y 71 USTH 4
LTLL 61 our] 3deoxs soury [y 0¢ Mo

%S% LLSS sou vy 1¢ UStH I

AyLreqruars oouanbos o8eIoA0D 9po)  YJSuo]  dnoir) wersord

uIe}yed uI}yed redueog

‘sureyjed SuUIpeaI 9POd UOWIUIOD dY[) JO SOISLIORIRYD 9Y) Jo Arewrung :9 a[qe],



24 Tablatin and Rodrigo

o ® 9 6 s W N
v

o
N

el

O W O J oy O W

N NN E ==

=

Figure 5: Common scanpath of high performing students in program 1.

the input and assignment statements followed by fixations to conditional
structures.

The common scanpaths of low performing students mostly start with
LinearVertical patterns while other programs begin with either a Thrashing,
a logical Scan, or a Flicking code reading pattern. Among all the programs,
the code reading patterns of low performing students in Program 3 is the
same as that of the high performing students. The code reading patterns
employed by low performing students in Programs 1 (Figure 7) and 2 (Figure 8)
show late fixations to the error lines compared to the code reading patterns
of high performing students who made early fixation on the error lines by
employing the logical Scan pattern first. The common code reading patterns of
Programs 4 and 5 employed a combination of a Flicking and several Thrashing
patterns. The common scanpath of Program 7 revealed code reading patterns
characterized by a combination of Flicking patterns and Thrashing patterns,
similar to the code reading patterns of Programs 4 and 5. Among all the
programs, the common scanpaths of Programs 6 and 8 revealed more than two
patterns of eye movements. Program 6 was read using a LinearVertical code
reading pattern followed by a Flicking code reading pattern and succeeded by



Identifying Code Reading Strategies in Debugging using STA 25

1 import java.util.*;

2 i:t.-: fava~lang. *;

3 impont ra—3i0. *;

4 By |

5 class p02Y

6 public ~:a:ic"‘ij nain \(String[] args) throws
7 ava *.\\«E:-::‘ep:Atn

ve)
N W
e
w
e |
>
I
,«
P
>
. i.
W
o]
o
a3~
w
o
W
=
o
]
a1
w
L
w
ct
]
3
™
3

LS F
w
w 1,
ct (
21 2
[ o
1 = p
L
F s
(o] \
Lol 5 > |
o L = A
ct ~
= ]
o
o—
] - ¥
o

J

+

+

[N
~

F
[

el
o |

d )

b
O O J o

=

1 Error

Figure 6: Common scanpath of high performing students in program 2.

two Thrashing code reading patterns. The common scanpath of Program 8
revealed a Thrashing code reading pattern followed by Flicking, JumpControl,
and Word(Pattern) Matching patterns. The code reading patterns of Program
9 are more similar to that of Program 6. The similarity might be because
both programs had logical errors injected on the output statements. The low
performing students employed a LinearVertical code reading pattern followed
by a Thrashing pattern in debugging Program 10. The shorter scanpath
length and the different sequences of code reading patterns might be due to
the errors injected in these programs. The common scanpath of Program 11
consists of a combination of LinearVertical, Thrashing, and Word(Pattern)
Matching code reading patterns. Similar code reading patterns with Program
11 is expected for Program 12 since both programs have a similar program
structure. However, the common scanpath of Program 12 did not show a
Thrashing code reading pattern and had a very short common scanpath similar
to Program 10. The difference in the code reading patterns might be because
the sequence of eye movements of the participants was very different from each
other in Program 12 than in Program 11, which affected the identification of
the common scanpath. Thus, the scanpath length in Program 12 is shorter
than that of Program 11.



26 Tablatin and Rodrigo

=W N e

(String[] args) throws

@ ~J o »n

(o]

+y - Xx):
19 System.out.println(z / (x / y)):
20 }
21 } |

Figure 7: Common scanpath of low performing students in program 1.

3.3 Common Code Reading Strategies

Strategies employed in code reading affect a programmer’s success rate of
the comprehension tasks. Top-down and bottom-up models are two of the
most common program comprehension strategies employed by programmers
while performing code comprehension tasks. Table 7 shows the code reading
strategy employed by the high and low performing students in each program.
A top-down strategy is used by high performing students in most programs,
while the low performing students prefer a trial-and-error code reading strategy.
Both high and low performing students used the same top-down code reading
strategy in Programs 3 and 11.

A top-down code reading strategy was employed to find bugs in programs
that had simple or nested conditional structure, simple repetition structure,
sequential output statements, and selection structure. However, a bottom-up
code reading strategy was employed to find errors in more complex programs
that had a repetition structure with multiple conditional structures and nested
repetition structures. The deductive approach to code reading might be
more appropriate for short programs [3]. But for complex programs, an



27

Identifying Code Reading Strategies in Debugging using STA

IOLIY] puR-[RII], MO
umo(T-daf, 9INJONIIS UOI}II[OG QT USTH 41
umo(r-dog, MO
umo([-dof, QINJONI)S [RUOIIIPUOD PAISON GT USTH 11
IOLIY pue-[RLI], 2INONIYS MO
umo(-dof, [euoryIpuod auo Ym (doof 10) amyoniys uorigedoyy 91 St 01
IOLIY] puR-[RII], MO
dn-woyog sdoo[ 10} pojsou OMT, 6¢ USTH 6
dn-wojjog MO
dn-woyjog sdooy 10] paysou omT, 1C USIH ]
IOLIY] pUuR-[RLL], POYJeW SUO puUR SOINYONIIS Mo
IOLIY[-pUR-[RLL], reuoryrpuod ym (doof 103) omyonags uorgigedoyy ¥e UStH )
IOLIY] puR-[RLI], QINONIYS MOTT
umo(-dof, [euorIpuoo auo ym (doof 10) amyoniys uorgedoy] 61 sty 9
.Hoeim Uﬁﬁlﬂﬁﬁrﬁ SOINIONIIS .\SOQ
dn-woyog reuoryipuod yim (dooy 10§) eamjonigs uorigedeyy ¥C USTH G
JOLIY] pUR-[RLL], MO
dn-woyog doo[ 10J paIseN 9z USIH i%
umo(1-daf, MO
umo(-dof, syuewaje)s jndjno reryuenbag o1 USTH ¢
IOLIY] puR-[RLI], MO
umo(-dog, Juawe)e)s JNdino suo YIm 2Injonilg uonmedey ) USTH 2
IOLIY] pUR-[RLL], MO
umo(g-dof, (os[0/31) 2IMyoNIYS [RUOIYIPUO)) L1 UStH 1
A3071e139 Posn seINjonI}s [0I3U0)) Opod JO SouI] dnoix) weIs01J

‘squepn)s Sururiojrod mo[ pue Y31y Jo so13ejel)s Surpeal apood Jo Arewrwung :), 9[qR],



28 Tablatin and Rodrigo

import java.util.*;

(String[] args) throws

W O J o0 b W N =

5 for (a=s¢=x th(): a>0; a--):{
1o System.out.print(str.charAt(a-1)):

1Error

Figure 8: Common scanpath of low performing students in program 2.

inductive approach might be more appropriate to use. Based on the number
of lines of code, the programs used in this study can be considered as short
programs. Thus, using a deductive approach or a top-down strategy to find
the injected errors in these programs might be more effective. As presented
in Table 6, the code reading patterns of the high-performing students usually
start with a logical Scan pattern to find relevant code segments first, which
shows the intention to apply the top-down code reading strategy. However,
high performing students also employed a bottom-up code reading strategy
in four programs. The change in the employed code reading strategy might
be due to the complexity of the programming constructs used besides having
more lines of code. Among all the programs, Program 7 was read differently
by the high performing students. They employ a trial-and-error code reading
strategy instead of a bottom-up strategy. The sequence of eye movements
showed more scanning within the program and less focused fixations on related
code elements. The high-performing students might have been exhausted after
reading six programs and after encountering difficulty in finding the injected
logical errors of Program 6. The random fixations might be because of the
difficulty of identifying the third error injected in the method definition since
only 11 out of 24 students were able to detect this error. Further, Program 7



Identifying Code Reading Strategies in Debugging using STA 29

is the most complex among all the programs used in this study and the only
program that had an additional method. These might be the reasons why high
performing students employed a trial-and-error strategy.

Unlike high performing students, the low performing students used a trial-
and-error code reading strategy for most of the programs. The code reading
patterns reveal that the code elements were fixated randomly to find the
injected errors. We note that the low performing students were able to employ
a top-down code reading strategy in Programs 3 and 11. It might be because
the programming constructs of these programs were familiar to most students.
Both high and low-performing students employed the same sequence of patterns
in Program 3. Programmers mostly use top-down strategy when they are
familiar with the application domain [25, 4]. Therefore, we were able to
observe this code reading strategy from both groups. Although low performing
students employed a bottom-up code reading strategy in Program 8, the
sequence of patterns showed more random scanning than a careful examination
of chunks of related code segments to find the bugs. This finding suggests
that the low performing students did not use evident code reading strategy
in the bug-finding task. In contrast, the code reading patterns of the high
performing students revealed that they could employ top-down and bottom-up
code reading strategies depending on the availability of the information in a
particular situation. For instance, the complexity of the programming construct
and the type of errors injected into the program might dictate the code
reading strategy to be employed. The high performing students demonstrate
the use of flexible code reading strategies when performing the debugging
task.

4 Discussion

STA algorithm with a tolerance gives us the ability to find an appropriate
tolerance level parameter for achieving the highest similarity of the common
scanpath to the individual scanpaths. Results show that by adjusting the
tolerance level parameter, we were able to generate scanpath that describes
the common code reading patterns of high and low performing students while
finding bugs in static source codes. These patterns can be used to determine
the code reading strategies of the high and low performing students.

The common scanpaths of the high and low performing students using
STA with a tolerance on all programs revealed that the code reading patterns
vary in terms of the scanpath length, code coverage, and sequence of eye
fixations. Both high and low-performing students visited almost the same
lines of code in Programs 1, 3, 5, and 6. However, for programs with complex
programming constructs, the common scanpaths of high-performing students
revealed visual attention to almost all lines of code while low-performing



30 Tablatin and Rodrigo

students had limited and sometimes no visual attention on the lower half
of the programs. The sequence of fixations of the high and low performing
students also differs from each other except in Program 3. The high performing
students employed logical scan patterns by tracing the code elements related
to the sub-goals of the program. Non-linear code reading patterns were mostly
employed by the high performing students using Scan, Thrashing, Flicking,
Word(Pattern) Matching, and JumpControl code reading patterns. Most
of the code reading patterns of the high performing students start with a
Scan and end with Thrashing patterns. These random eye movements can be
considered as a process of verification since a series of careful examination of
blocks of related code statements were employed first before the Thrashing
code reading patterns. Low performing students mostly employed non-linear
code reading patterns using Thrashing patterns and logical Scan patterns
that usually start with the main method, variable declaration, or input and
assignment statements. However, the fixations of the low performing students
in the first set of fixations typically had regressions to previously scanned
code elements while high performing students do not make regressions on
the initial set of fixations. The findings in the analysis of code reading
patterns support a previous study finding that program codes are read less
linearly than natural language texts [7]. This finding is evident in the code
reading patterns of both high and low performing students because they
trace the code elements non-linearly. Further, this study suggests that low-
performing students read code without following the program’s logic while high-
performing students read code in a logical manner, which is in line with [21].
Furthermore, it is suggested that repetitive eye movements may be linked with
less expertise [2]. The common scanpaths of the low performing students show
frequent regressions while the high performing students had very few regressions
within the sets of eye movements in each program. This finding confirms
the conclusion that experts could recall more program lines compared to
novices [23].

The code reading patterns of the high and low performing students re-
vealed code reading strategies in debugging that could be explicitly taught
to students. A top-down approach was employed to find bugs in programs
that had simple or nested conditional structure, simple repetition structure,
sequential output statements, and selection structure. However, a bottom-up
code reading strategy was employed to find errors in more complex programs
that had a repetition structure with multiple conditional structures and nested
repetition structures. This implies that the high performing students em-
ploy flexible strategies in debugging programs with different programming
constructs and code complexity. The result of the analysis confirms previous
findings that programmers apply flexible code reading strategies depending on
the programming tasks [5] and that experts tend to organize code elements
into chunks that reflect semantic structures [11, 21]. Low performing students



Identifying Code Reading Strategies in Debugging using STA 31

on the other hand, mostly employ trial-and-error strategy where they tend to
debug code erratically. This is in line with the finding of [21] and [28], wherein
novices spent more time scanning the program than experts and that novices
tinker aimlessly within the program.

5 Threats to Validity

The way in which the common scanpaths are coded might pose a threat to
the internal validity of this research. With the absence of a solid description
of the optimal number of fixations to be considered as a unit of program
understanding behavior when debugging programs, we used 5 fixations to
characterize a code reading pattern. To provide more credible characterization
of code reading patterns, a standard measure must be established in future
studies to increase the reliability of the result. Another threat to the internal
validity is the way the eye tracking data is processed to generate the common
scanpath using STA algorithm with a tolerance. The clustering method used
to generate the common scanpath remove fixations that do not receive a
significant amount of attention. Therefore, the common scanpaths could not
show brief gaze transitions described as a Scan pattern. However, a Scan
pattern can still be characterized if the first and subsequent sets of fixations
traces the relevant code statements to attain the goal of the program. This
means that the set of fixations or sets of fixations exhibit scanning of code
elements according to programming plans. With regard to the external validity
of the research, each program was injected with different number and types of
error. The participants are aware of the number of errors but not as to what
type of errors were injected in the programs. Thus, debugging strategies might
be influenced by the interactions between them. Future experiments might be
designed to include the same number and type of injected errors to determine
how participants read code when finding a specific type of error.

6 Conclusion

Code reading strategies employed by high and low performing students in
debugging were identified using eye-tracking data and STA with a tolerance
algorithm. The common scanpaths revealed differences in the code reading
patterns and strategies of high and low performing students. High performing
students apply top-down and bottom-up code reading strategies depending on
the complexity of the programs and the type of injected errors. This implies
that they use flexible debugging strategies based on the program structure
and the injected errors while no evident code reading strategy can be inferred
from the common scanpaths of the low performing students. The qualitative



32 Tablatin and Rodrigo

analysis of the common scanpaths of the high and low performing students
also confirms previous research findings. High performing students draw more
visual attention to code elements related to the sub-goals of the program and
can recognize code elements related to programming plans when performing a
debugging task. Low performing students, on the other hand, tend to debug
the code aimlessly.

This study contributes to the on-going exploration of expert’s strategies in
code reading by exploring the strategies used by high performing students that
can be taught to low performing students to help improve their debugging skills.
Computing educators could teach more problem-solving skills and debugging
strategies to enhance the student’s ability to plan for the debugging task.
Students could learn how to identify the goal or sub-goals of the program
and map them to the program’s code elements. Further, teaching students to
consciously employ code reading strategies would help them develop their own
effective approach and improve their code reading and debugging skills.

Eye-tracking and computer science education research would also benefit
from this study because it would contribute to the existing literature on the use
of eye tracking technology and the effectiveness of analyzing eye-tracking data
in identifying code reading patterns and strategies. Further, this study validates
the findings of our previous work and brings something new to the literature
since the analysis of the scanpaths used proportional fixation durations to
differentiate trending AOIs instead of the actual fixation duration described
in the original algorithm. However, further studies using the proportional
fixation duration in identifying trending AOIs need to be conducted to acquire
firmer evidence on its effectiveness.

Financial Support

This study was supported in part by the Private Education Assistance Com-
mittee of the Fund for Assistance to Private Education (Analysis of Novice
Programmer Tracing and Debugging Skills using Eye Tracking Data) and
Ateneo de Manila University’s Loyola Schools Scholarly Work Faculty (Build-
ing Higher Education’s Capacity to Conduct Eye-tracking Research using the
Analysis of Novice Programmer Tracing and Debugging Skills as a Proof of
Concept).

Ethical Standards

The authors assert that all procedures contributing to this work comply with
the ethical standards of the relevant national and institutional committees on



Identifying Code Reading Strategies in Debugging using STA 33

human experimentation and with the Helsinki Declaration of 1975, as revised
in 2008.

Biographies

Christine Lourrine S. Tablatin received a degree in Master in Information
Technology from Colegio de Dagupan in 2010 and a Ph.D. in Computer Science
candidate from the Ateneo de Manila University. She is currently the research
coordinator of Pangasinan State University — Urdaneta City Campus. Her
main research interests are learning analytics and educational data mining.

Maria Mercedes T. Rodrigo received her Ph.D. in Computer Technology
in Education from the Nova Southeastern University. She is a professor of the
Ateneo de Manila University and teaching in the Department of Information
Systems and Computer Science. Her areas of specialization are educational
technology, intelligent tutoring systems, and affective computing. She es-
tablished the Ateneo Laboratory for the Learning Sciences through a grant
from the Department of Science and Technology’s Engineering Research and
Development for Technology program in 2011.

References

[1] M. Andrzejewska, A. Stolinska, A. Blasiak, P. Pkeczkowski, B. Rozek,
M. Sajka, and D. Weislo, “Eye-Tracking Verification of the Strategy
Used to Analyse Algorithms Expressed in a Flowchart and Pseudocode,”
Interactive Learning Environments, 24(8), 1981-95.

[2] R. Bednarik, “Expertise-Dependent Visual Attention Strategies Develop
Over Time during Debugging with Multiple Code Representations,”
International Journal of Human-Computer Studies, 70, 143-55.

[3] R. Bednarik, T. Busjahn, and C. Schulte, Eye Movements in Program-
ming Education: Analyzing the Expert’s Gaze, Finland, 2014.

[4] R. Bednarik, N. Myller, E. Sutinen, and M. Tukiainen, Program Visu-
alization: Comparing Eye-Tracking Patterns with Comprehension and
Summaries Performance, 2006.

[5] R. Bednarik and M. Tukiainen, Temporal Eye-Tracking Data: Evolution
of Debugging Strategies with Multiple Representations, USA, 2008.

[6] R. Bednarik and M. Tukianen, Visual Attention and Representation
Switching in Java Program Debugging: A Study using Eye Movement
Tracking, Ireland, 2004.



34

7]

18]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]
[18]

[19]

[20]

[21]

22]

Tablatin and Rodrigo

T. Busjahn, R. Bednarik, A. Begel, M. Crosby, J. H. Paterson, C. Schulte,
B. Sharif, and S. Tamm, Fye Movements in Code Reading: Relazing the
Linear Order, Ttaly, 2015.

T. Busjahn, C. Schulte, and E. Kropp, Developing Coding Schemes for
Program Comprehension using Eye Movements, United Kingdom, 2014.
K. R. Chandrika and J. Amudha, “An Eye Tracking Study to Understand
the Visual Perception Behavior while Source Code Comprehension,”
International Journal of Control Theory and Applications, 10(19), 169—
75.

M. E. Crosby and J. Stelovsky, “How Do We Read Algorithms? A Case
Study,” Computer, 23(1), 25-35.

F. Detinne, “Expert Programming Knowledge: A Schema Based Ap-
proach,” in, Psychology of Programming, ed. J. M. Hoc, T. R. G. Green,
R. Samurcay, and D. J. Gillmore, London: Academic Press, 1990, 205-22.
R. Dilts, Roots of Neuro-Linguistic Programming, Capitola, CA: Meta
Publications, 1983.

S. Eraslan, Y. Yesilada, and S. Harper, Engineering Web-Based Interac-
tive Systems: Trend Analysis in Fye Tracking Scanpaths with a Tolerance,
Lisbon Portugal, 2017.

S. Eraslan, Y. Yesilada, and S. Harper, “Identifying Patterns in Eye-
tracking Scanpaths in Terms of Visual Elements of Web Pages,” in, Web
Engineering, ICWE 2014. LNCS, 8541, ed. S. Casteleyn, G. Rossi, and
M. Winckler, Springer International Publishing, 2014, 163-80.
Gazepoint, Gazepoint Control User Manual Rev 2.0, Retrieved June
22 2021, 2014, http://apps.usd.edu /coglab /schieber / eyetracking /
Gazepoint /pdf/GazepointControlManual.pdf.

J. H. Goldberg and J. I. Helfman, Scanpath Clustering and Aggregation,
New York, USA, 2010.

E. Harth and P. Dugerdil, Program Understanding Models: An Historical
Overview and Classification, 2017.

P. Hejmady and N. Hari Narayanan, Visual Attention Patterns during
Program Debugging with an IDE, Santa Barbara California, 2012.

A. Jbara and D. G. Feitelson, “How Programmers Read Regular Code:
A Controlled Experiment using Eye-Tracking,” Empirical Software Engi-
neering, 22(3), 1440-77.

T. C. A. Kubler, “Algorithms for the Comparison of Visual Scan Pat-
terns,” Dissertation. Eberhard Karls University Tiibingen.

Y. Lin, C. Wu, T. Hou, Y. Lin, F. Yang, and C. Chang, “Tracking Stu-
dents Cognitive Processes during Program Debugging: An Eye-Movement
Approach,” IEEE Transactions on Education, 59(3), 175-86.

G. A. Miller, “The Magical Number Seven, Plus or Minus Two: Some Lim-
its on Our Capacity for Processing Information,” Psychological Review,
63(2), 81-97.


http://apps.usd.edu/coglab/schieber/eyetracking/Gazepoint/pdf/GazepointControlManual.pdf
http://apps.usd.edu/coglab/schieber/eyetracking/Gazepoint/pdf/GazepointControlManual.pdf

Identifying Code Reading Strategies in Debugging using STA 35

23]

[24]

[25]

[26]

[27]

28]
[29]

[30]

[31]

[32]

[33]

M. Nivala, F. Hauser, J. Mottok, and H. Gruber, Developing Visual
Expertise in Software Engineering: An Eye Tracking Study, Abu Dhabi,
2016.

P. Romero, R. Cox, B. Du Buolay, and R. Lutz, Visual Attention and
Representation Switching during Java Program Debugging: A Study using
the Restricted Focus Viewer, Georgia USA, 2002.

T. Shaft and I. Vessey, “The Relevance of Application Domain Knowledge:
The Case of Computer Program Comprehension,” Information Systems
Research, 6(3), 286-99.

Z. Sharafi, Z. Soh, Y. Guéhéneuc, and G. Antoniol, Women and Men—
Different but Equal: On the Impact of Identifier Style on Source Code
Reading, Germany, 2012.

Z. Sharafi, Z. Soh, and Y.-G. Guéhéneuc, “A Systematic Literature Re-
view on the Usage of Eye-Tracking in Software Engineering,” Information
and Software Technology, 67, 79-107.

B. Sharif, M. Falcone, and J. I. Maletic, An Eye-Tracking Study on the
Role of Scan Time in Finding Source Code Defects, California, 2012.
K. Sharma, P. Jermann, M. Nussli, and P. Dillenbourg, Gaze Evidence
for Different Activities in Program Understanding, London UK, 2012.
C. S. Tablatin and M. M. T. Rodrigo, Identifying Common Code Reading
Patterns using Scanpath Trend Analysis with a Tolerance, Metro Manila,
Philippines, 2018.

J. Tvarozek, M. Konopka, P. Navrat, and M. Bielikova, Studying Vari-
ous Source Code Comprehension Strategies in Programming Education,
Finland, 2016.

H. Uwano, M. Nakamura, A. Monden, and K. Matsumoto, Analyzing
Individual Performance of Source Code Review using Reviewers’ Eye
Movement, California USA, New York, NY, USA, 2006.

A. Vosskiihler, OGAMA Description (for Version 2.5), Berlin, Germany:
Freie Universitéat Berlin, Fachbereich Physik., 2009.



	Introduction
	Methodology
	Participants
	Dataset
	Experimental Procedure and Setup
	Hardware/Software Setup
	Task Stimuli and Injected Defects

	Data Pre-Processing
	Data Analysis
	Common Scanpath Analysis using STA with a Tolerance
	Common Code Reading Patterns Identification
	Common Code Reading Strategies Identification


	Results and Discussion
	Common Scanpath Analysis using Scanpath Trend Analysis with a Tolerance
	Common Code Reading Patterns of High and Low PerformingStudents
	Common Code Reading Strategies

	Discussion
	Threats to Validity
	Conclusion

