
APSIPA Transactions on Signal and Information Processing, 2022, 11, e14
This is an Open Access article, distributed under the terms of the Creative Commons 
Attribution licence (http:// creativecommons.org/ licenses/ by-nc/ 4.0/ ), which permits un-
restricted re-use, distribution, and reproduction in any medium, for non-commercial use, 
provided the original work is properly cited.

Original Paper

Maximum Credibility Voting (MCV) –
An Integrative Approach for Accurate
Diagnosis of Major Depressive Disorder
from Clinically Readily Available Data
Yu Shimizu1, Junichiro Yoshimoto2, Masahiro Takamura3, Go Okada3, 
Tomoya Matsumoto3, Manabu Fuchikami3, Satoshi Okada3, Shigeru 
Morinobu3, Yasumasa Okamoto3, Shigeto Yamawaki3 and Kenji Doya1∗

1Okinawa Institute of Science and Technology, Japan
2Nara Institute of Science and Technology, Graduate School of Information 
Science, Japan
3Hiroshima University, Japan

ABSTRACT

Diagnosis of Major Depressive Disorder (MDD) is currently a lengthy
procedure due to the low diagnostic accuracy of clinically readily available
biomarkers. We integrate predictions from multiple datasets based on a
credibility parameter defined on the probabilistic distributions of the
respective models. We demonstrate by means of structural and resting-
state functional magnetic resonance imaging and blood markers obtained
from 62 treatment naive MDD patients (age 40.63 ± 9.28, 36 female,
HRSD 20.03± 4.94) and 66 controls without mental disease history (age
35.52± 12.91, 30 female), that our method called Maximum Credibility
Voting (MCV) significantly increases diagnostic accuracy from about 65%
average classification accuracy of individual biomarker models) to 80%
(accuracy after integration of the models). Classification results from
different combinations of the available datasets validate the method’s
stability with respect to redundant or contradictory predictions. By
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definition, MCV is applicable to any desired data and compatible with
missing values, ensuring continued improvement of diagnostic accuracy
and patient comfort as new data acquisition methods and markers
emerge.

Keywords: Biomarkers, major depression, machine learning, multimodal

1 Introduction

Due to a lack of profound knowledge of functional and physiological char-
acteristics, the diagnosis of major depressive disorder (MDD) is currently
based on lengthy and tedious evaluations of behavioral symptoms [9]. The
complexity in expression, as well as progression of these symptoms, further
impede diagnostic procedures. However, reliable diagnosis and connection
of the symptoms to physiology is a prerequisite for effective psychological
and pharmacological interventions. Hence, with the number of MDD patients
surging worldwide, identification of accurate and distinctive fingerprints of the
disease is becoming increasingly urgent [36]. Advances in neuroimaging and
data analysis techniques have triggered an intensive search for MDD-relevant
biomarkers, continuously revealing statistically significant differences between
depression patients and healthy controls [36] and encouraging diagnosis of
MDD through machine learning algorithms [25]. Despite significant progress,
however, accurate clinically translatable biomarkers for MDD are yet to be
defined [13, 34, 36], one pervasive limitation being the heterogeneity inherent
in MDD studies. As a result, individual biomarkers generally exhibit low
specificity and sensitivity and are prone to confounding factors.

Integrative evaluation methods using multiple biomarkers have thus been
suggested to improve prediction. Hahn et al. [15] trained Gaussian process
(GP) classifiers of brain activity during three separate tasks involving emotional
and reward processing and integrated their predictions using a decision tree
algorithm. This method resulted in a classification accuracy of 83% (sensi-
tivity, 80%; specificity, 87%), an improvement in accuracy of 11% compared
with the single best of all GP classifiers, suggesting that several neurological
pathways contribute to a more robust classification. A similar effect was demon-
strated with multiplex protein assays, where over 90% prediction accuracy
was achieved [1, 24] by mathematically integrating nine blood protein markers
as well as physical measures into a single MDD score, again suggesting the
consideration of multiple biological pathways as robust source of tissue-based
MDD biomarkers with trait and state characteristics [36]. Considering the
multiple facets of MDD symptoms and development, this seems a reasonable
if not necessary approach. While both of the aforementioned studies are very
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promising, an obstacle for clinical application is that they are both highly
specific with respect to the acquired biomarkers, as well as data evaluation.

We propose a novel, more flexible method, which allows for integration of
any biomarker acquired by any modality. The idea is to simplify the process of
deciding which of the available biomarkers delivers the most reliable diagnosis
for a certain subject. In the studies described above, this is done by creating
a decision tree and mathematical formula, respectively, both of which are
tailored specifically for the available biomarkers. In a previous study [28] we
reported that probabilistic classification algorithms can provide an estimation
of the prediction reliability based on the overlap of the odds ratio distributions
for target and control group. Here, we make this idea explicit and introduce a
prediction credibility measure C(z), defined on these odds ratio distributions,
which expresses the chance that a certain odds ratio predicts the correct
diagnosis. Essentially, this measure can be seen as local prediction accuracy.
This credibility measure can be estimated for any probabilistic model, enabling
ranking of multiple predictions according to their diagnostic reliability. The
most reliable prediction is considered diagnostically valid. Commonly, it is
believed that the higher the absolute value of the odds ratio, the higher the
chance of correct prediction. However, this is only true if the distributions are
to a certain extent well separated and even then the problem of prediction
reliability for small odds ratios, where the distributions overlap, still remains.
We demonstrate that in contrast to other simple integration methods applied
to the odds ratios (majority of votes, sum, maximum, and mean of odds
ratio), our method called Maximum Credibility Voting (MCV), consistently
improves prediction accuracy. It is further superior to common approaches
such as support vector machine (SVM) and regression tree with respect to its
formulation. It is formulated such that the addition of biomarkers remains
optional and its application to data with missing values (i.e., measurements)
is possible without modification of the algorithm. The only requirement is the
estimation of the credibility measure for the model of the new data.

We demonstrate the aforementioned benefits of MCV for clinical MDD
diagnosis by means of anatomical magnetic resonance imaging (MRI) data,
resting state functional MRI (rsfMRI) data, and the methylation rate at several
CpG islands in the promotor region of the brain derived neurotrophic factor
(BDNF) gene. We further demonstrate how the results of MCV can be used
to stratify subjects based on which data yields the most reliable diagnosis and
which MDD symptoms they exhibit. In contrast to task-based functional MRI
data acquisition, structural MRI and rsfMRI scans can be rapidly acquired
and processed. Instructions are simple and prognostic procedures can be kept
short and uncomplicated, making them suitable for a wide range of subjects
(i.e., subjects with difficulties adhering to task paradigms). Further, identified
discriminative brain regions can be directly related to their physiological cause,
namely, substance loss or increase in brain tissue in the case of structural
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data and loss or increase of spontaneous neural activity in the case of rsfMRI.
The same is true for the methylation rate, which inhibits gene transcription
and in turn inhibits neurogenesis in cortex [35]. Unlike protein identification,
determination of the methylation rate at several sites can be accomplished in
a single measurement.

The only requirement for classification models of the data we wish to
integrate is that they are of probabilistic nature. In this study, we chose
Elastic Net and sparse logistic regression with a least absolute shrinkage
and selection operator (LASSO). These models limit the number of effective
variables by penalizing the sum of the absolute weights or the sum of squared
weights and setting small weights to zero depending on a given threshold. As
a result, they return a model based on features with the most discriminative
relevance only (compare with SVM, which is inherently based on all input
features, so that there is a risk of noise or nothing at all). In addition, we have
previously shown that these algorithms can successfully handle a number of
features that are several times larger than the number of training instances
[28]. For this reason, we opted for whole brain analysis rather than targeted
brain area analysis, with the intent to construct an unbiased classification
model and to reveal new brain areas as MDD indicators. The same holds for
the application of these algorithms to the methylation data.

2 Methods

2.1 Subjects

Sixty-two MDD patients (age 40.63±9.28, 30 female), free of substance-related
disorders other than alcohol and any co-morbidity were recruited by the
Psychiatry Department of Hiroshima University. They were diagnosed by senior
psychiatrists according to DSM-IV [9] criteria, interviews and information
from medical records. Diagnosis was reconfirmed by experienced psychiatrists
and psychologists at the time of participation in the study, using the Japanese
version of the Mini-International Neuropsychiatric Interview (M.I.N.I [27]),
which has been shown to have good to excellent interrater and test-retest
reliability [23]. All patients had been treated less than 14 days at the time
of participation in the study. Beck Depression Inventory (BDI) scores for
this group ranged from 11 to 53 (average 30.52 ± 9.08) and Patient Health
Questionnaire (PHQ9) scores from 6 to 26 (average 17.71 ± 4.5). About half of
the patients had experienced a previous depression period. Age of depression
onset was 38.22± 1.07. The length of the episode at time of the study varied
considerably (160.98± 209.54 days). Depression severity was evaluated using
the Hamilton Rating Scale for Depression (HRSD17 20.03± 4.94). In addition
the scores for following self-reported measures were recorded:
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• Snaith-Hamilton Pleasure Scale (SHAPS): A 14 items questionnaire
assessing four domains of pleasure response and hedonic experience
within the four pleasure domains interest and pastimes, social interaction,
sensory experience, and food and drink. Subjects can answer with:
Strongly disagree, Disagree, Agree or Strongly agree. Either of the
Disagree responses receive a score of 1 and either of the Agree responses
receives a score of 0. The SHAPS is scored as the sum of the 14 items
so that total scores ranged from 0 to 14. A higher total SHAPS score
indicated higher levels of anhedonia. A cut-off score of 2 provides the
best discrimination between “normal” and “abnormal” level of hedonic
tone.

• State Trait Anxiety Inventory (STAI): Also based on a 4-point scale, the
STAI consists of 40 questions on a self-report basis. The STAI measures
two types of anxiety: state anxiety, or anxiety about an event, and trait
anxiety, or anxiety level as a personal characteristic. Higher scores are
positively correlated with higher levels of anxiety.

• Child Abuse Trauma Scale (CATS): 38-item measure designed to assess
subjective memories and perspectives of adolescents and adults with
respect to child abuse and maltreatment. Respondents report on their
experiences with both parents combined when they were a child or
teenager, responding on a 5-point scale from 0 (never) to 4 (always).

• Life Event Scale (LES): a 23-item scale that assesses whether or not a
stressful event happened over the past year and how stressful the event
was (stressful (0) to very stressful (3)).

As a control group, 66 persons (age 35.52 ± 12.91, 36 female) free of
mental or neurological disease history were recruited by advertisements in local
newspapers. All healthy controls (HC) underwent the same self-assessments
and examinations administered to the MDD group (except for MDD-specific
HRSD). BDI scores were between 0 and 24 (average 6.74± 5.88) and PHQ9
ranged from 0 to 18 (average 3.36 ± 3.76). 61 MDD subjects (out of 62)
had values ≥14 (standard cutoff for MDD at Hiroshima University), while
57 controls (out of 66) had scores under 14. For PHQ9 scores with a cutoff
value of 10, 60 patients had scores ≥10 and 61 controls under 10. Subjects of
both groups completed the Japanese version of the National Adult Reading
Test [21] for an estimate of their IQ (108.37± 9.81 for the MDD group and
113.32± 8.03 for controls, Table 1).

Written informed consent was obtained from all participants (approved
by the Research Ethics Committee of the Okinawa Institute of Science and
Technology and the Research Ethics Committee of Hiroshima University).
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Table 1: Demographic and clinical characteristics of all subjects included in the study.

MDD Control p-value

Number of
subjects

62 66 –

Sex (male/female) 32/30 30/36 0.49
Age (years) 40.63 ± 9.28 35.52 ± 12.91 0.04∗a
IQ 108.37 ± 9.81 113.32 ± 8.03 0.6
Alcohol dependent
subjects

5 0 0.02∗

BDI IIb 30.52 ± 9.08 6.74 ± 5.88 2.03e-09∗∗∗
PHQ 9 17.71 ± 4.50 3.36 ± 3.76 9e-14∗∗∗
SHAPS 37.26 ± 5.46 23.62 ± 6.13 2.34e-09∗∗∗
STAI 56.48 ± 7.76 40.5 ± 8.82 1.45e-05∗∗∗
CATS 34.75 ± 23.20 24.89 ± 14.30 0.56
LES −6.57 ± 6.39 −0.71 ± 3.90 0.006∗∗
HRSD 20.03 ± 4.94 – –
Age of depression
onset (years)

38.22 ± 1.07 – –

Number of previous
episodes

0.61 ± 0.94 – –

Length of current
episode (days)

160.98 ± 209.54 – –

Lexapro single
agent

52 – –

Lexapro
combination

2 – –

Other single agent 2 – –
No treatment 6 – –
Note: aAsterisks denote significant differences: ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.
bNomenclature: BDI II = Beck’s Depression Inventory II, PHQ9 = 9 Question Patient Health
Questionnaire, SHAPS = Snaith-Hamilton Pleasure Scale, STAI = State Trait Anxiety Inventory,
CATS = Child Abuse and Trauma Scale, LES = Life Event Stress, HRSD17 = 17 Question
Hamilton Rating Scale of Depression.

2.2 Data

Anatomical and resting state functional MRI data were collected from all
participants. Blood samples could only be obtained for a subgroup.

2.2.1 MRI Data

Anatomical T1 images were acquired on a 3T GE Signa HDx scanner (IRP
FSPGR, TR = 6.32ms, FA = 20, voxel size 1 × 1 × 1mm, matrix size
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256× 256× 180) and processed using VBM8 (Christian Gaser, University of
Jena, Department of Psychiatry), yielding voxel wise white matter (WM) and
gray matter (GM) density maps.

For acquisition of resting state functional MRI (rsfMRI) data, subjects
were asked to close their eyes and relax. Images were obtained over 5 minutes,
resulting in 145 images (2D EP/GR, TR = 2000ms, no gaps, interleaved,
matrix size 64 × 64 × 32, voxel size 4 × 4 × 4mm). Debriefing routinely
conducted after the scans revealed that two subjects had fallen asleep during
the measurement. Their data were thus excluded from analysis. Measurements
during which patients had moved more than 3 mm or 3 degrees translationally
or rotationally, respectively, were also excluded (exclusion of the whole time
series). The difference in motion between MDD and HC subjects of which data
was used to estimate classification models was not significant (p = 0.68, average
framewise displacement for controls 0.08 ± 0.10 mm and 0.07 ± 0.05 mm for
MDD subjects, see appendix).

Images were realigned, normalized and smoothed (FWHM = 8 mm) using
SPM8 (Wellcome Trust Centre for Neuroimaging, UCL, London). Motion was
regressed out using the standard six-head motion parameters. Time series were
band pass filtered (0.009–0.1 Hz) and de-trended using the rsfMRI Data Anal-
ysis Toolkit (REST [31]). Using the band pass filtered rsfMRI measurements,
functional connectivity between regions of interest (ROIs) was evaluated as
correlation coefficients between the average time series of BOLD fMRI signals
of ROIs. The ROIs consist of 90 brain regions across 14 intrinsic connectivity
networks that were derived by means of Independent Component Analysis [29].
These networks comprise (number of ROIs in parentheses): Anterior Salience
(7), Auditory (3), Basal Ganglia (5), Dorsal Default Mode (9), Language
(7), Left Executive Control (6), Precuneus (4), Posterior Salience (12), Right
Executive Control (6), Ventral Default Mode (10), Visuospatial (11), Primary
Visual (2), Higher Visual (2), and Sensorimotor (6) network. Nifti templates of
the ROIs are publicly available [22]. We discarded correlations if the probability
that there is an actual relationship between the time series, was small (p > 0.01)
for all healthy subjects. This ensures that connections passed to the classifica-
tion algorithms are functionally meaningful in terms of synchronization. The
threshold of 0.01 was used in order to retain connections for which there is
substantial evidence against the null hypothesis (i.e., that the found correlation
is coincidence), while leaving a margin for weaker correlations that might be
of importance to establish group differences. This resulted in 108 connections.

While functional connectivity identifies spatial patterns of synchronous
low-frequency oscillations on a network level, it does not reveal information on
localized dysfunctions of specific brain regions, which ultimately contribute to
network abnormalities. Such local brain activity can be assessed by evaluating
low-frequency oscillations themselves. We have done this by calculating the Am-
plitude of Low frequency fluctuation (ALFF), which accounts for the summed
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amplitude in the low frequency range (0.009–0.1 Hz), and Regional Homo-
geneity (ReHo), which accounts for signal homogeneity between neighbouring
voxels. We also assessed fractional ALFF (fALFF), which evaluates the ratio
of a low frequency amplitude (0.009–0.1 Hz) with respect to the amplitude of
the whole frequency spectrum. As a results we have an absolute measure of low
frequency fluctuations (ALFF) and a relative measure (fALFF). While fALFF
is robuster to physiological noise, ALFF shows higher test-retest reliability
in gray matter regions and thus more sensitive for differences between groups
[38]. However, we decided to evaluate both measures due to their different
characteristics. All three local parameters were assessed using REST [31].

2.2.2 Bloodmarkers

Genomic DNA was extracted from the acquired blood samples and the methy-
lation rate at 32 CpG islands at promoters of the BDNF exon1 gene was
assessed using a MassArrayH system (SEQUENOM). The majority of these
sites have previously been shown to be related to depression [12] (see the
appendix for details).

For each acquired diagnostic feature, data were age- and sex-matched with
respect to patient and control group. The number of subjects in each group
was matched in order to avoid sample size bias during model estimation. This
resulted in 60 subjects per group for the anatomical data, 42 subjects for
per group for the resting state data and 33 subjects per group for the BDNF
methylation data (see the appendix for demographic and clinical comparison
of the groups used for each feature).

2.3 Classification

2.3.1 Datawise Classification

The sole requirement for MCV is for the applied models to be probabilistic,
i.e., the models provide odds ratio distributions for control and target (i.e.,
MDD patient) group. As previously mentioned, we chose algorithms that
are effective in handling a large number of features relative to the number of
subjects [28]. In this way, we can make use of all information in the datasets
and achieve classification without bias introduced by prior assumptions.

We applied Elastic net and logistic regression with Least Absolute Shrinkage
and Selection Operator (sLASSO) regularization to the brain area-wise mean
of WM, GM, rsfMRI ALFF, and ReHo maps. We also applied both methods
to FC and BDNF methylation. The whole volume data of WM, GM, ALFF,
and ReHo were also subjected to group LASSO (gLASSO) regression, where
the sum of weights for voxels located in the same brain area (defined in the
anatomical labeling atlas AAL [33]) is constrained, resulting in brain area-
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wise reduction of discriminative voxels [28]. These sparse algorithms return
only features with the greatest diagnostic relevance, clearly identifying MDD
correlates.

Validity of models and their regularization parameters were assessed using
10-fold nested cross-validation, repeated 10 times, each time shuffling training
and test data.

Model evaluation was based on standard parameter accuracy (percentage
of correctly diagnosed subjects), specificity (the percentage of healthy controls,
correctly identified as such) and sensitivity (percentage of patients correctly
identified as such).

2.3.2 Integrated Classification – MCV

Probabilistic classifiers yield negative and positive log odds ratios z = ln(p/(1−
p)), where p is the predictive probability that the subject belongs to the
target group (here, the MDD group). These log odds ratios (usually) assume
different distributions for control and target groups. The overlap of these two
distributions gives information on the reliability of a prediction with a certain
odds ratio. We fit the normalized log odds ratio distributions for HCs and
patients in the training data using the Weibull distribution function (Figure 1):

Wλk(z) =
k

λ
(
z + 1

λ
)k−1e−( z+1

λ )k , (1)

z > 0, where k > 0 allows for a skewed shape of the distribution and λ > 0
determines the width of the distribution. These parameters were fitted using
maximum likelihood estimation. Through these parameters the Weilbull
function can assume the properties of a whole family of distributions including
the normal distribution. While we do not expect the distributions of the
odds ratios to be eg exponentially distributed, they can very well be skewed
normal distributions. The usage of the Weibull distribution thus frees us from
assumptions on the odds ratio distribution. A minor drawback is that its
accuracy is dependent on the availability of enough data. Since the Weibull
function exists strictly only for positive values, log odds ratios were shifted by
1 before fitting and were shifted back thereafter.

We chose the Weibull distribution over the normal distribution, because
it is very flexible. Through its parameters, it can assume the properties of
several other distributions. While we do not expect the distributions of the
odds ratios to be eg exponentially distributed, they can very well be skewed
normal distributions. The usage of the Weibull distribution frees us from
assumptions on the distribution. A drawback is that its accuracy is dependent
on the availability of enough data. We have added a comment in the method
section near the definition of the Weibull function.
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Figure 1: The credibility C(z) (Eq. 2) of each log odds ratio is defined through the ratio of
the Weibull distributions fitted to the log odds ratio distributions of healthy controls (W+)
and MDD patients (W−), respectively (Eq. 1). It reflects the portion of true predictions
among all predictions with certain odds ratio. Here, the low credibility of small negative
odd ratios compared to the high credibility for large positive log odds ratios, is a result of
false negatives toward the end of the spectrum.

In the following, we denote the Weibull distribution fitted for log odds
ratios of HCs and MDD patients as W− and W+, respectively. The values
of W− and W+ at a certain log odds ratio allow estimation of how many
false positive or negatives in comparison to true positives or negatives we can
expect. In other words, they give an estimate on how high the chance is for a
prediction with a specific log odds ratio to be correct. We define the credibility
function C as:

C(z) =

{
W−/(W− +W+) for z < 0

W+/(W− +W+) for z > 0,
(2)

the ratio of true (negative or positive) predictions within all (negative or
positive) predicted outcomes (Figure 1). For the sake of completion, we define
the C(z) = C(1) for z > 1 and C(z) = C(−1) for z < −1 (i.e., predictions
with log odds ratios outside the normalised range are assigned the respective
credibility at the far ends of the distributions).

We use this credibility measure to estimate diagnosis reliability for predic-
tions obtained from each dataset. The prediction with the highest credibility
is chosen as the final diagnosis. We refer to this method as MCV :

MCV (z1, . . . , zN ) = I(zj > 0), (3)

with j = argmaxi=1:N C(zi), zi the normalized log odds ratios obtained from
N models yielded by different data obtained from the same subject and zj the
odds ratio with the highest credibility value (C(zi) the credibility function as
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Figure 2: MCV. Diagnosis is based on the log odds ratios zi of multiple classification models
derived from different types of data (here, WM, ALFF, ReHo, FC, and BDNF related
data) and determined by the prediction (odds ratio) zj with the highest credibility value
Cj(zj) (Eq. 2). The credibility functions Cj are derived from the odds ratio distributions
of the respective classification models. In the depicted case, WM decides with nearly 80%
credibility, that the subject is a healthy control.

defined in Eq. 2). For MCV (z1, . . . , zN ) = 1, the subject’s diagnosis is MDD
and for MCV (z1, . . . , zN ) = 0 healthy. Intuitively, this procedure is straight
forward. Out of several predictions, we pick the one we can trust the most
(Figure 2). We remark that MCV itself does not require training data per se,
but a method that can be applied as is. However, the more training data are
available for each of the underlying classification models, the more accurate
their credibility functions (due to the increased number of data points (i.e.,
odds ratios) outlining the probability distributions, Figure 2, left column). As
a result, MCV is more effective.

We validated MCV using 10-fold cross validation, where prediction cred-
ibility functions for each model were estimated based on the log odds ratio
distributions obtained in each cross validation of the training data. In this way,
test and training data are kept independent throughout the model estimation
procedure, as well as in the following MCV procedure.

We compared MCV to other model integration methods, where the number
of negative or positive predictions (most votes), sum, maximum and mean
of log odds ratio, respectively, determine diagnosis. Further, comparisons to
the performance of SVM and classification tree are made. As opposed to the
arithmetic approaches, SVM and classification tree cannot be applied to data
with missing values.
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3 Results

3.1 Diagnostic Accuracy for Each Diagnostic Feature

For clarity, we only consider one model per data modality and restrict the
MCV results to the models that achieved the highest classification accuracy in
each data modality. Models with accuracy lower than 60% are disregarded.
Further, only features selected in more than 80% of all cross validated models
are presented and considered of diagnostic relevance. A performance summary
for all models and their diagnostic features can be found in the appendix.

3.1.1 Anatomical MRI

For the white matter and gray matter density volumes, only white matter
classification using group LASSO yielded an accuracy over 60% (63 ± 2%
accuracy, 58± 3% specificity, 68± 4% sensitivity). Left and right post central
cortex, left frontal superior cortex and right middle temporal cortex were
assigned negative weights, indicating that these areas are denser in white
matter in healthy controls than in depression patients. Left middle temporal
cortex was assigned positive weight.

3.1.2 Resting State fMRI

Mean brain area ALFF subjected to Elastic Net, showed the best classification
among the resting state data with an accuracy of 68± 1% (specificity 67± 2%,
sensitivity 69± 1%). Left and right posterior cingulate cortex (PCC) and left
thalamus thereby showed negative weights indicating that the amplitude in
these areas is lower in MDD patients than healthy controls.

L1 and Elastic Net applied to the mean ReHo values in brain areas showed
similar performance of 66% accuracy, 65% specificity and 67% sensitivity, but
with slightly smaller variance for the model estimated with Elastic Net. Both
models assigned negative weights to left PCC, medial orbitofrontal cortex
(OFC). Elastic Net also showed negative weight for the left amygdala. Positive
weight was assigned to the left cerebellum pars8 in both models and additionally
to the right cerebellum pars 8 in the Elastic Net.

For the FC data L1 LASSO yielded the best classification with 65 ±
4% accuracy, 65 ± 5% specificity and 66 ± 6% sensitivity. Two connections
with negative weights were selected as diagnostic: the connection between
right parahippocampus and right retrosplenial cortex including a part of the
posterior cingulate (network 13, areas 08 and 05) and the connection between
PCC/Precuneus and medial prefrontal/anterior cingulate/orbitofrontal area
(network 3, areas 04 and 01). While the first connection is part of the ventral
default mode network (DMN), the other is part of the dorsal DMN.
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3.1.3 BDNF exon1 methylation

Elastic Net yielded 78± 3% accuracy (84± 5% specificity, 73± 2% sensitivity)
and assigned negative weights to 12 (out of 32) sites, positive weights to 11
sites. CpG1, CpG18, CpG24, CpG52, CpG61, CpG63, CpG77 with negative
weights were in agreement with the results given in Fuchikami et al. [12]. The
contributing islands, CpG19.20.21, CpG28, CpG32 showed reversed relation to
the results in that study; however, the difference in CpG28, Cpg32 methylation
between the two investigated subject groups was not significant. CpG25.26.27,
CpG29.30.31 methylation, both without significant group differences and
CpG33.34 methylation with significant group difference were not measured in
Fuchikami et al. Indication of a role in MDD diagnosis opposite to the one
found in their study was also true for CpG5, CpG15, CpG36, CpG37, CpG48
and CpG78, which were assigned positive weights in our model, but were more
highly methylated in healthy controls than in MDD subjects in their study. In
our study, methylation differences in these sites exist, but were not significant.
CpG8.9, CpG14 also countered the relation given in their study, but in both
their and our study, group differences were not significant. CpG17, CpG50.51,
CpG74.75, CpG22 agreed with Fuchikami et al., but here again, significant
group differences could not be found.

To summarize, none of the methylation sites that were assigned positive
weights showed significant group differences. All sites with significant methyla-
tion differences between healthy and MDD subjects were negatively weighted
and selected in over 98% of all cross-validated models. Hence, the contribution
of these sites with positive weights, to the diagnostic power lie in the combina-
tion with the other selected methylation sites. Mean methylation rates were
generally lower in our study than in Fuchikami et al., which can be attributed
to the greater number of subjects (HC/MDD = 33/33 to 18/20).

3.2 MCV

For demonstration of MCV, we chose the highest performing model for each
diagnostic data: the group LASSO model for white matter, the Elastic Net
model applied to mean brain areas values of ALFF and ReHo, L1 for FC and
the Elastic Net model for the BDNF methylation data.

To evaluate MCV for different data combinations, appropriate subsets of
the available data were used. Differences between results were considered
significant at p < 0.05. We also give the F-scores in order to account for the
imbalances in cohort sizes in the test data.

All individual models were evaluated repeating ten 10-fold nested cross
validations, each time shuffling the subjects. As a result, we obtain ten odds
ratios for each subject and dataset available for the subject. Equally, we have
ten different odds ratio distributions for controls and MDD subjects, in which
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the test subjects are not included. We use these to construct the credibility
functions and evaluate MCV prediction accuracy.

3.2.1 MCV(All), Application to Dataset with no Missing Data

Within all subjects, structural MRI, resting state MRI and methylation data
were available for 23 healthy controls (age 41.22 ± 11.94, 7 female) and 20
MDD patients (age 35.1± 6.03, 10 female). For these subjects, the average
BDI2 and PHQ9 scores were 8.78 ± 7.00 and 4.30 ± 4.07 for the HC group
and 29.60± 10.7 and 18.70± 4.53 for the MDD group. Detailed demographic
and clinical characteristics are given in Table 2. Figure 3 shows the data sets
acquired for each subject.

The average accuracy when diagnosing this group of subjects based on
each biological data modality alone was 66.22± 6.53%. Application of MCV
significantly improved accuracy to 80± 3% (F-score 77± 4%), with a specificity
of 87 ± 3% and sensitivity of 73 ± 7%. This is an average increase in accuracy
of 14% compared to the accuracies delivered by each individual data model
alone (Table 3, MCV (WM, rsfMRI, BDNFexon1)).

Note that MCV performance relies solely on the accuracy of the credibility
functions, which are constructed based on training data provided for the
different classification models, i.e., the number of subjects to which MCV is
applied does not influence MCV performance. For the same reason, overfitting
can per definition not occur.

Comparing MCV results with those of SVM, Decision Tree, maximum
number of votes, sum, mean and maximum absolute value of the odds ratios,
we find significant superiority of MCV over all other approaches (p < 0.001
for all comparisons, Table 3 and Figure 4). For voting arithmetic methods
(Most Votes, Sum, Mean and Maximum Absolute Value of the odds ratios),
specificity was higher than that of MCV, but could not achieve comparable
accuracy due to low sensitivity.

Adding the predictions from the different models to MCV one by one
(Table 4) shows the stepwise increase in accuracy. Naturally, the accuracy
significantly increases with addition of models that have higher accuracy to
begin with. However, the importance lies in the fact that per construction,
the accuracy should never significantly decrease when adding new predictions.
We can see this in the decrease in accuracy when adding FC, which is not
significant (p = 0.81), but shows the same credibility as in the previous step.
This confirms that MCV is robust to unreliable and redundant predictions, so
that we always end up with a diagnosis about which we can be more confident,
even if the accuracy has not improved. We corroborate this fact by evaluating
the results for different combinations of data, namely MCV (rsfMRI), MCV
(rsfMRI, WM), MCV (WM, BDNF), see the appendix.
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Table 2: Demographic and clinical characteristics of subjects for which all data sets were
available.

MDD Control p-value

Number of
subjects

20 23

Sex (male/female) 10/10 16/7 0.20
Age (years) 35.1 ± 6.03 41.22 ± 11.94 0.04∗a
IQ 109.47 ± 9.45 111.00 ± 9.23 0.59
Alcohol dependent
subjects

0 0 1

BDI IIb 29.6 ± 10.70 8.78 ± 6.99 2.03e-09∗∗∗
PHQ 9 18.7 ± 4.53 4.30 ± 4.07 9.00e-14∗∗∗
SHAPS 36.65 ± 4.16 24.04 ± 6.31 2.34e-09∗∗∗
STAI 55.8 ± 6.04 43.35 ± 9.81 1.45e-05∗∗∗
CATS 35.25 ± 21.33 31.70 ± 18.71 0.56
LES -5.5 ± 7.08 −0.52 ± 3.93 0.006∗∗
HRSD17 19.5 ± 4.49 – –
Age of depression
onset (years)

30.5 ± 7.17 – –

Number of previous
episodes

0.75 ± 0.44 – –

Length of current
episode (days)

118.65 ± 85.74 – –

Lexapro single
agent

16 – –

Lexapro
combination

0 – –

Other single agent 2 – –
No treatment 2 – –
Note: aAsterisks denote significant differences: ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.
bNomenclature: BDI II = Beck’s Depression Inventory II, PHQ9 = 9 Question Patient Health
Questionnaire, SHAPS = Snaith-Hamilton Pleasure Scale, STAI = State Trait Anxiety Inventory,
CATS = Child Abuse and Trauma Scale, LES = Life Event Stress, HRSD17 = 17 Question
Hamilton Rating Scale of Depression.

The number of true negative (TN) and true positive (TP) subjects in this
dataset was 20 ± 1 and 15 ± 1, respectively. In approximately 50% of the
cases, their final diagnosis was determined by BDNF methylation (53± 7%
for TN and 49± 11% for TP subjects). ALFF was the second most frequent
determining factor, comprising 27±4% of true negatives. For the true positives,
this proportion was with 47± 14% nearly as high as the BDNF proportion.
WM was determining for 13± 6% of the true negatives, but only for 2± 3%
for true positives. For neither group was FC the diagnostic factor.
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Figure 3: Available data for each subject: structural MRI data (strMRI), resting state fMRI
data (rsfMRI) and BDNFexon1 methylation data were evaluated for 60, 42 and 33 subjects,
respectively, for each experimental group. For 23 controls and 20 MDD patients strMRI,
rsfMRI and methylation data were available. For all the others, only one or two of the
biomarkers could be acquired.

Figure 4: MCV classification accuracy: MCV significantly outperforms single data models,
but also the more intuitive integration methods SVM, Decision Tree, most votes, sum of
odds, maximum of odds and mean of odds (see also Table 3).

Nineteen subjects were diagnosed as true negative and 15 as true positive
in over half the cross validations. For controls in this group, the most frequent
diagnostic dataset was BDNF methylation (10 subjects), followed by ALFF (5
subjects), WM (3 subjects) and finally ReHo (1 subjects). Depression subjects
in this group were exclusively diagnosed by BDNF methylation (8 subjects)
and ALFF (7 subjects).
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Table 3: MCV over all available diagnostic datasets outperforms single data classifiers as
well as the integration methods SVM, Classification Tree, Most Votes, sum, max and mean
of odds ratio. p-values are given with respect to MCV accuracy.

HC/MDD = 23/20 Specificity Sensitivity Accuracy (F-score) p-value

ALFF 60± 4 73± 2 66± 2 (62± 4) 2.5e-10∗∗∗

Single feature FC 67± 8 61± 4 64± 4 (64± 5) 3.0e-08∗∗∗

Classification WM 53± 6 69± 7 60± 3 (64± 6) 1.1e-10∗∗∗

BDNFexon1 80± 5 68± 4 75± 3 (71± 3) 0.0017∗∗

SVM 79± 6 64± 11 72± 4 (68± 8) 8.5e-06∗∗∗

Classification Tree 65± 9 61± 11 63± 8 (60± 9) 2.1e-04∗∗∗

Integrating Most Votes 64± 4 81± 7 73± 4 (73± 5) 6.5e-04∗∗∗

methods Sum of odds ratio 65± 3 82± 5 74± 3 (74± 3) 2.8e-04∗∗∗

Max of odds ratio 69± 6 75± 6 72± 2 (71± 3) 9.1e-07∗∗∗

Mean of odds ratio 65± 3 82± 5 73± 3 (74± 3) 9.9e-05∗∗∗

MCV 87± 3 73± 7 80± 3 (77± 4) –

3.2.2 Missing Data Compatibility

MCV can also to be applied to data with missing values. The credibility
for missing values is simply set 0; therefore, it does not interfere with the
Voting process. For 47 healthy controls and 53 depression patients, at least
two different, but not all measurements were available. MCV significantly
outperformed all other odds ratio integration methods (here, most votes, sum,
max and mean of odds ratio) with at least 7% higher correct rate (see the
appendix for details). SVM and classification tree are inherently incompatible
with datasets that comprise missing values.

4 Discussion

The results show that MCV allows easy integration of predictions from different
datasets and significantly improves classification accuracy. The diagnostic
accuracy of MCV when integrating over all data given in this study (81.56 ±
2.58%) is on average 15.33± 6.53% more higher than the classification accuracy
yielded by the individual diagnostic datasets and 6.40 ± 3.76% higher than
the other integration methods investigated (SVM, decision tree, maximum
number as votes, sum, maximum and mean odds ratio, Table 3).

In detail, MDD diagnosis is significantly improved through application
of MCV to the three characteristics, ALFF, ReHO and FC obtained from
rsfMRI data (see the appendix). It could be further improved by integrating
white matter density or information on BDNFexon1 methylation at certain
sites. The addition of BDNFexon1 methylation to rsfMRI data significantly
improved the specificity, while no significant improvement could be observed
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Table 4: Stepwise MCV for data without missing values: p-values are given in comparison
to the accuracy in the previous step.

HC/MDD = 23/20 Specificity Sensitivity Accuracy (F-score) p-value Credibility

WM 53± 6 69± 7 60± 3 (62± 4) – 61± 2
MCV (WM, ALFF) 60± 4 73± 4 66± 4 (66± 3) 0.004∗∗∗ 73± 11

MCV (WM, ALFF,
ReHo)

63± 3 74± 3 68± 3 (68± 3) 0.20 75± 10

MCV (WM, ALFF,
ReHo, FC)

62± 3 74± 3 67± 3 (68± 3) 0.85 75± 10

MCV (WM, rsfMRI,
BDNFexon1)

87± 3 73± 7 80± 3 (77± 4) 1.6e-08∗∗∗ 84± 2

for the sensitivity. Looking at the reverse operation, adding rsfMRI to already
obtained diagnosis from methylation data, does not improve specificity, but
significantly improves sensitivity. For the integration of methylation and white
matter density data, only the specificity is significantly improved. However,
the sensitivity did not significantly decrease, either. In general, all examined
cases showed improved or comparable specificity and sensitivity, confirming
that MCV is robust with respect to redundant or little reliable predictions.

With respect to clinical application, the results suggest the following:
MDD diagnosis with reasonable accuracy is provided by sLASSO regression
of BDNF methylation markers (84 ± 5% specificity, 73 ± 2% sensitivity).
Integration of rsfMRI and anatomical data can further increase the accuracy
by approximately 6%, lowering the risk of false negatives by nearly 10% and
the risk of false positives by 2%. If a blood test is not available, acquisition
and MCV integration of rsfMRI data is advisable (The often used PHQ9,
which is fast to acquire and to evaluate, has a specificity as well as sensitivity
of 88% [18], however, as a self-administered questionnaire the differences in
diagnostic accuracy in comparison to the accuracy acquired from biomarkers
is difficult to interpret.). Here, the procedure is based on structural MRI,
rsfMRI, and BDNF methylation rate data, but the extension of MCV to an
arbitrary number of appropriate data is straightforward. Moreover, in contrast
to SVM and decision tree, MCV is not restricted by lack of available data for
a subject. Credibility for missing data is simply set to zero.

MCV differs from the introduced integration methods [24] in that it does not
try to combine all predictions into a new model. It merely decides which of the
predictions is the most reliable. Intuitively, that would be the prediction derived
from the model with the highest accuracy, but this accuracy is based on global
evaluation of the model, ie. the sum of all positive and negative predictions,
regardless of their odds ratio, are weighed against the sum of the actual
positive and negative labels. In contrast, MCV considers the local accuracy of
these models. It quantifies the accuracy of the model for different odds ratios,
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expressing it as credibility function. Despite low general diagnostic power, for
example, the WM model is quite accurate for certain odds-ratios, even more
accurate than the other models, thus helping to boost accuracy when using
MCV. Finding the data with the highest credibility thus equals identifying the
data with the most pronounced MDD or HC characteristics for the subject in
question. If we consider all data as part of a single mechanism, MCV points to
the weakest or strongest link in the mechanism of a specific subject, respectively.
Multiple subjects with the same weakest link suggest an MDD subtype. In
our data, for example, ALFF and BDNFexon1 methylation were the most
pronounced determining factors for true positives. In an experiment with a
bigger cohort, these groups could point to two depression types that might
need different treatment. If the demographic and clinical characteristics of
these groups are the same, these depression types would indicate physiological
subtypes of depression. If the characteristics are different, these depression
types would indicate subtypes whose demographic and clinical characteristics
are linked to different physiological phenomena. In the latter case, further
investigation would be needed to establish if regulation of the physiological
symptoms is possible and if it can be used to remedy MDD symptoms.

We exploit the fact that MCV can be used with any type of probabilis-
tic models, by using sparse classification algorithms, which ensure that the
effective variables (here, brain regions and methylation islands) are explicit,
a crucial aspect for development of effective medication. Knowing details
about the contributing factors allows for insight into their possible relation to
depression as well as into the relation between the different data modalities,
and the underlying mechanism of MDD. The discriminative white matter
brain areas, for example, are responsible for somatosensory information pro-
cessing (post central gyrus), cognitive (frontal superior cortex), and language
related functions (middle temporal lobe); functions, which are hypofunctional
in MDD [8, 19, 32]. ALFF data identified the PCC and left thalamus (left
hemisphere), as MDD discriminative, both of them exhibiting lower activation
in depressed patients. Investigation why the spontaneous activity in these
areas is suppressed becomes necessary. Low ALFF could be, for example, an
indicator of the volumetric changes in PCC seen in first episode MDD subjects
[20], but which were not big enough yet in our study to be captured by the
anatomical data. Such investigations reveal if and maybe also how ALFF can
be altered. If subtypes like indicated above exist, subtype specific treatment
and prevention methods could be developed.

Similar implications can be drawn for subjects for which other data modal-
ities are the predominant decisive factor: Left PCC and amygdala showed
lower ReHO in MDD, i.e., spontaneous activation is locally badly synchronized,
which may affect not the only regional functioning of this brain area, but also
the connectivity with other brain areas. For both PCC, the central node of
the default mode network, and left amygdala, which has significant functional
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connectivity with the ventral striatum, this may have a significant impact on
behaviour. Increased ReHo was found in the cerebellum, which during the
last years has been shown to participate in emotion regulation, inhibition of
impulsive decision making, attention, and working memory [3]. This increase
might be a result of the cerebellar cortical connections known to be disrupted
in depression subjects [26]. However, in line with the above, whether these
ReHO alterations are entirely functional or cause to subtle anatomical changes,
such as mentioned above, remains to be investigated.

For FC, the merit of sparse discriminative feature selection becomes es-
pecially apparent. So far, predictions are mainly based on SVM procedures
[25], yielding models based on more than a hundred relevant connections
[37], despite preselection procedures. Here, two connections were selected as
discriminative, one that is located within the ventral DMN (vDMN) involving
right PCC/RSC and parahippocampus, and one in the dorsal DMN (dDMN),
concerning the PCC/Precuneus and medial prefrontal cortex(mPFC)/anterior
cingulate (ACC)/orbitofrontal cortex (OFC), respectively (Appendix Table
A5). Both connections were weaker in MDD subjects. Both connections involve
part of the PCC, which has been shown in our data to exhibit altered ReHO and
ALFF characteristics in MDD subjects and is thus subject to further investiga-
tion on whether and how these phenomena are related. If strongly correlated,
treatment of one deficiency could be sufficient to correct several of them.

The importance of BDNF in MDD is evidenced not only by its supportive
role in serotonin signaling [5, 16] and in the dopaminergic system [14, 17], but
also by its impact on neurogenesis, neural differentiation and cell survival, and
thus on formation, stabilization and continuity of long-term memory [30]. Its
effects on white matter density are obvious. Indeed, Choi et al. [7] have shown
an inverse association of BDNF DNA methylation and reduced white matter
integrity in the anterior corona radiata in major depression. Here again, these
WM changes might have been too subtle to detect in the MRI images of our
cohort, but might already be reflected in the DNA methylation characteristics,
the major mechanism for neural plasticity [2]. This is supported by the fact
that for controls, WM (which is denser in controls) was more often involved in
the affirmation of the diagnosis than for MDD subjects.

Finally, examining all biomarkers identified in this study (Appendix Table
A6), we can outline their relations to each other. The cerebellum indicated as
distinctive in the ReHO data, targets prefrontal as well as temporal cortices
through the thalamus. This is also reflected in the functional connectivity
of the cerebellum with these regions [4]. While prefrontal and temporal
areas were discriminative in the WM, the thalamus was distinctive in the
ALFF data. Further, the middle OFC, also selective in the ReHO data, has
strong connections with the hippocampus and associated areas of the cingulate
and RSC (identified in the FC data), as well as with the anterior thalamus
(ALFF) [11].
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Considering the above, the aspects found in ALFF, ReHO, FC and WM
density each seem to depict potential deficiencies in MDD within a common
functional and anatomical network that connects the limbic system and cortical
areas. This hypothesis is supported by Chen et al. [6], who found that the
frontal-striatal-thalamic pathways are affected in MDD. A more recent study
found clusters of functional connections in the above mentioned areas to lie
at the core of four anxiety- and anhedonia-related subtypes of depression
[10]. The well known symptom variability in MDD can be assumed to result
from these equally variable network deficiencies. While they cannot always be
picked up by the data modality one might expect (e.g., FC), they might be
reflected in mechanism-related characteristics of other data modalities (here,
ALFF, ReHo, WM or BDNF methylation).

We remark that this study is limited by the number of subjects that
were available for each classification model. The fitted distribution functions
may therefore not reflect the true distribution of positive and negative odds
ratio. The higher the number of subjects, the more accurate the true to all
predictions ratio, and thus credibility of the newly calculated diagnosis. When
more accurate models are used, the biomarker found decisive as for the final
diagnosis for each subject in this study, might therefore be a different one.

Note, that if a posterior probability for the decision could be obtained, tun-
ing of the decision threshold would be possible and therefore a risk assessment
for MDD. Unfortunately, we cannot benefit from this fact due to the use of
the indicator function in MCV. However, per construction of MCV, the risk of
a false MDD prediction, positive and negative, is lower than that of any of the
predictions obtained from the single models.

5 Conclusion

We reiterate that in MCV, identifying the most reliable diagnostic dataset
for a subject equates to finding the dataset with the most pronounced MDD
or HC characteristics for a given subject. In other words, MCV pinpoints
which of the biological factors in the variable network is dysfunctional (in a
typical way). At the same time, it is just that consideration of variability,
i.e., consideration of potential MDD subtypes, that results in higher prediction
accuracy. The derived effective variables are limited by the small number of
subjects and need to be reconfirmed on a lager data sample. However, the
proposed MCV method itself is by construction robust and flexible, so that we
are confident that it will allow simple to use and accurate MDD diagnosis in
clinical settings. Its transparency with respect to the “weakest link” aids the
identification of MDD subtypes and consequently the development of adequate
medical treatment. As cheaper and more accessible neural and physiological
markers become available, this method will naturally become an increasingly
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useful clinical tool. Finally, we wish to underscore the fact that MCV is not
restricted to MDD diagnosis alone, but is widely applicable to situations where
decisions have to be made based on multiple predictions from models with low
accuracy.
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Appendix

CpGs used for classification: CpG1, CpG4, CpG5, CpG7, CpG8.9, CpG14,
CpG15, CpG17, CpG18, CpG19.20.21, CpG22, CpG23, CpG24, CpG25.26.27,
CpG28, CpG29.30.31, CpG32, CpG33.34, CpG36, CpG37, CpG47, CpG48,
CpG50.51, CpG52, CpG59, CpG61, CpG63, CpG72.73, CpG74.75, CpG77,
CpG78, CpG79.

Table A1: Average framewise translational and rotational displacement during rsfMRI scan
in mm and degrees, respectively.

HC MDD p-value

△transx 0.0069± 0.0028 0.0061± 0.0032 0.21
△transy 0.0381± 0.0466 0.0423± 0.0417 0.67
△transz 0.0364± 0.0560 0.0255± 0.0161 0.22

△rotx 3.63e-04± 2.48e-04 3.34e-04± 2.13e-04 0.56
△roty 1.86e-04± 1.47e-04 1.65e-04± 8.29e-05 0.41
△rotz 1.42e-04± 5.45e-05 1.36e-04± 6.05e-05 0.62

Framewise displacement 0.08± 0.10 0.07± 0.05 0.68
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Table A2: Demographic and clinical characteristics of subjects included in WM and GM
model.

MDD Control p-value

Number of subjects 60 60 –
Sex (male/female) 29/31 32/28 0.5738
Age (years) 40.57± 8.99 36.95± 12.6657 0.0738
IQ 108.52± 9.7 1113.34± 7.4 0.0028∗∗a
Alcohol Dependent
Subjects

5 0 0.0224∗

BDI2 30.15± 8.79 6.63± 6.03 1.08e-33∗∗∗
PHQ9 17.65± 4.41 3.13± 3.80 2.38e-38∗∗∗
SHAPS 37.12± 5.48 23.70± 6.21 1.92e-23∗∗∗
STAI 56.33± 7.74 40.6± 8.88 2.97e-18∗∗∗
CATS 34.69± 23.41 24.47± 14.86 0.0060∗∗
LES −6.64± 6.43 0.42± 3.37 2.48e-11∗∗∗
HRSD17 19.95± 4.96 – –
Age of Depression
Onset (years)

38.06± 10.83 – –

Number of Previous
Episodes

0.51± 0.6 – –

Length of Current
Episode (days)

164.68± 212.01 – –

Lexapro single
agent

50 – –

Lexapro
combination

2 – –

Other single agent 2 – –
No Treatment 6 – –
Note: aasterisks denote significant group differences, ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.
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Table A3: Demographic and clinical characteristics of subjects included in ALFF, REHO
and FC model.

MDD Control p-value

Number of subjects 42 42 –
Sex (male/female) 23/19 25/17 0.6592
Age (years) 36.24± 6.04 38.36± 13.22 0.3476
IQ 108.65± 10.84 112.39± 7.40 0.0686
Alcohol Dependent
Subjects

4 0 0.0404∗

BDI 2 30.17± 9.25 7.64± 6.35 1.21e-21∗∗∗
PHQ9 17.88± 4.40 3.83± 4.08 1.60e-25∗∗∗
SHAPS 37.71± 5.21 25.05± 6.11 2.73e-16∗∗∗
STAI 56.02± 7.93 41.26± 8.69 3.84e-12∗∗∗
CATS 37.23± 25.32 27.48± 15.90 0.0390∗
LES −6.275± 6.71 0.02± 3.58 8.44e-07∗∗∗
HRSD17 19.55± 5.076 – –
Age of Depression
Onset (years)

32.83± 8.36 – –

Number of Previous
Episodes

0.56± 0.63 – –

Length of Current
Episode (days)

148.90± 195.61 – –

Lexapro single
agent

35 – –

Lexapro
combination

2 – –

Other single agent 2 – –
No Treatment 3 – –
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Table A4: Demographic and clinical characteristics of subjects included in the methylation
model.

MDD Control p-value

Number of subjects 33 33 –
Sex (male/female) 15/18 21/12 0.1380
Age (years) 40.36± 10.26 36.42± 12.76 0.1716
IQ 108.15± 9.46 111.42± 9.79 0.1721
Alcohol Dependent
Subjects

1 0 0.3136

BDI 30.76± 9.76 8.18± 6.26 1.05e-16∗∗∗
PHQ9 18.30± 4.86 4.18± 3.73 5.28e-20∗∗∗
SHAPS 36.97± 4.44 23.33± 6.22 4.01e-15∗∗∗
STAI 56.54± 6.60 42.61± 9.14 1.22e-09∗∗∗
CATS 34.17± 19.56 29.15± 16.69 0.2767
LES −6.07± 6.50 0.303± 4.61 2.92e-05∗∗∗
HRSD17 20.36± 4.97 –
Age of Depression
Onset (years)

37.29± 11.96 –

Number of Previous
Episodes

0.52± 0.51 –

Length of Current
Episode (days)

162.45± 196.34 –

Lexapro single
agent

27 – –

Lexapro
combination

0 – –

Other single agent 2 – –
No Treatment 4 – –
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Table A5: Classification Accuracy for each individual data modality.

Data HC/MDD Algorithm Specificity Sensitivity Accuracy

gLASSO 58± 2 68± 4 63± 2
WM 66/66 sLASSO <60 <60 <60

Elastic Net <60 <60 <60

gLASSO <60 <60 <60
GM 66/66 sLASSO <60 <60 <60

Elastic Net <60 <60 <60

gLASSO 64± 4 66± 4 65± 2
ALFF 42/42 sLASSO 66± 3 69± 2 68± 2

Elastic Net 67± 2 69± 1 68± 1

gLASSO <60 <60 <60
fALFF 42/42 sLASSO <60 <60 <60

Elastic Net <60 <60 <60

gLASSO <60 <60 <60
ReHo 42/42 sLASSO 65± 4 67± 6 66± 3

Elastic net 65± 2 67± 6 66± 2

FC 42/42 sLASSO 65± 5 66± 6 65± 4
Elastic Net <60 <60 <60

BDNFexon1 33/33 sLASSO 81± 2 74± 4 77± 2
Elastic Net 84± 5 73± 3 78± 3

Note: Each MRI dataset was subjected to group LASSO, L1 LASSO and Elastic Net. All models
were evaluated based on ten times repeated 10-fold cross validation.
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