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ABSTRACT

End-to-end systems have demonstrated state-of-the-art performance on
many tasks related to automatic speech recognition (ASR) and dialect
identification (DID). In this paper, we propose multi-task learning of
Japanese DID and multi-dialect ASR (MD-ASR) systems with end-to-
end models. Since Japanese dialects have variety in both linguistic and
acoustic aspects of each dialect, Japanese DID requires simultaneously
considering linguistic and acoustic features. One solution realizing
Japanese DID using these features is to use transcriptions from ASR
when performing DID. However, transcribing Japanese multi-dialect
speech into text is regarded as a challenging task in ASR because there
are big gaps in linguistic and acoustic features between a dialect and
standard Japanese. One solution is dialect-aware ASR modeling, which
means DID is performed with ASR. Therefore, the multi-task learning
framework of Japanese DID and ASR is proposed to represent the
dependency of them. We explore three systems as part of the proposed
framework, changing the order in which DID and ASR are performed.
In the experiments, Japanese multi-dialect ASR and DID tests were
conducted on our home-made Japanese multi-dialect database and a
standard Japanese database. The proposed transformer-based systems
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outperformed the conventional single task systems on both DID and
ASR tests.

Keywords: Japanese multi-dialect automatic speech recognition, Japanese di-
alect identification, multi-task learning, transformer-based encoder-
decoder, end-to-end model.

1 Introduction

Recently, deep learning-based end-to-end (E2E) systems have demonstrated
state-of-the-art performance on many tasks in speech processing, such as
automatic speech recognition (ASR) and dialect identification (DID) tasks [2,
9, 4, 21]. Since it is known that the performance of E2E systems depends
on the amount of training data [5, 18], many databases are combined for use
in many tasks [29, 16]. Using combined databases is sometimes necessary to
deal with multi-condition modeling such as recording environments, speaking
styles, and languages. Thus, many methods have been reported to consider
multi-condition scenarios, for example, accented speech recognition [20, 8] and
multi-lingual speech recognition [3, 23].

Combining multi-dialect Japanese and standard Japanese databases is
also one multi-condition task. Since each Japanese dialect has lots of dialect-
specific accents, vocabulary, and phrases, tasks related to Japanese dialects
require considering variety in terms of both linguistic and acoustic aspects.
To treat such a multi-condition task, in this paper, we focus on Japanese
dialect identification and multi-dialect ASR (MD-ASR) tasks. black Japanese
DID and MD-ASR are highly dependent on each other because their linguistic
and acoustic properties are different from those of English and other accents.
The existing studies (e.g., [10, 25]) are regarded the accent as subsidiary
information, and not focus on both tasks as in equal contribution.

DID is the task of automatically identifying a dialect from a text or
speech sequence. The conventional DID methods are categorized into two
groups. One is using acoustic features such as accent and speaker-specific
characteristics as input features [19, 7]. The other is using a text sequence
as a linguistic feature for input features [1, 27]. Since Japanese dialects
have variety in both the linguistic and acoustic aspects of each dialect, it
is desirable to consider both linguistic and acoustic features simultaneously
in Japanese DID. As a similar task to DID, a multi-lingual identification
method has been reported by which ASR is performed on speech to obtain
a text sequence for an identification task [17]. Inspired by this concept, we
consider carrying out Japanese MD-ASR for Japanese DID with a one-model
architecture.
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Japanese MD-ASR involves robustly transcribing both multi-dialect and
standard Japanese speech into text with a one-model architecture. One state-
of-the-art MD-ASR system, E2E MD-ASR, has been actively researched [6,
26]. E2E MD-ASR systems basically use acoustic features as input. It is
known that linguistic features are learned as hidden states in a network [12,
15]. Recognizing multi-dialect Japanese sequences is regarded as a challenging
task for ASR because there are big gaps in terms of linguistic and acoustic
features between a dialect and the standard language [28, 11, 7]. In [10, 25],
a method of combining accent identification with accent speech recognition
was reported to alleviate the big gap for acoustic features. Since the task is
similar to Japanese MD-ASR, Japanese DID is also useful when combined
with Japanese MD-ASR.

To joint model Japanese DID and MD-ASR, we propose E2E models
with multi-task learning with Japanese DID and MD-ASR to utilize dialect
information and text sequences, simultaneously. In this paper, we propose
multi-task learning of Japanese DID and multi-dialect ASR (MD-ASR) sys-
tems with end-to-end models, changing the order in which DID and MD-
ASR is performed. The first system, called “DID2ASR,” performs DID and
MD-ASR in a series to influence an estimated dialect in word sequence es-
timation. It means DID2ASR performs ASR with a dialect-aware condi-
tion. DID2ASR is similar to performing DID then performing MD-ASR
constructed for a dialect. The second system, called “ASR2DID,” involves
reversing the order of MD-ASR and DID from the first system. Since DID
of ASR2DID can consider the text information of MD-ASR more effectively
than the first system, the performance of the DID should be higher than
that of the first system. As a similar concept to ASR2DID, the third system,
called “DID+ASR,” performs DID and MD-ASR simultaneously. DID+ASR
is different in terms of the representation of the dialect label, which is repre-
sented by a probability distribution of registered dialects, while DID2ASR and
ASR2DID select one dialect. Since the three proposed systems perform DID
and MD-ASR in a multi-task manner, the dependency of DID and MD-ASR
is maintained in modeling the network. Therefore, it is possible to improve
the performance on both DID and MD-ASR tasks. In our experiments,
a home-made database consisting of six Japanese dialects and a standard
Japanese database were used for constructing transformer-based multi-task
models. From the results, on the Japanese MD-ASR task, we demonstrate
that DID+ASR outperformed the conventional multi-condition modeling and
achieved an error reduction of 9.9%. On the Japanese DID task, ASR2DID
improved the identification accuracy by 15.3% compared with the conventional
system.

This paper is organized as follows. Section 2 describes the motivation for
using multiple dialects, E2E Japanese DID, and E2E ASR. Section 3 explains
the transformer-based network architecture. Then, the proposed methods
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are presented in Section 4. Experimental conditions and results are shown in
Section 5. Finally, Section 6 concludes our work.

2 Challenges with Multi-dialect Japanese

2.1 Motivation for using Multi-dialect Japanese Data

There are more than 100 different dialects across Japan [13]. Each of them
has many dialect-specific accents, vocabularies, and phrases (see Appendix).
For example, the English word “I” is translated into “wa-ta-shi” in standard
Japanese. In the case of the dialect of Sendai Prefecture, “I” is translated into
“o-ra.” Like this example, there are many cases in which the meaning of a
word is the same in a dialect and standard Japanese, but the pronunciations
are completely different. In other cases, the majority of the sentence is the
same as in standard Japanese, but only the end of the sentence has a unique
feature in the dialect (see comparison of Hiroshima with standard Japanese
in the Appendix). Additionally, some vocabulary and phrases are found only
in certain dialects. It is known that when dialects are mixed with standard
Japanese for identification or recognition tasks, the performance deteriorates
because dialects have different features from standard Japanese. Therefore,
it is important to deal with acoustic and linguistic information adequately
for tasks related to multiple Japanese dialects. Therefore, it is important to
deal with acoustic and linguistic information adequately for tasks related to
multiple Japanese dialects. Since the multi-task learning-based models for
similar tasks such as accented speech recognition treat another task to ASR
like subsidiary information, the importance both of acoustic and linguistic
information is different point from the similar tasks.

2.2 E2E Japanese Dialect Identification

This section describes two conventional models of DID. One model predicts
the probability of generating a dialect label l from a speech sequence X =
{x1, . . . ,xM}, where xm is the m-th acoustic feature in speech. The other
model predicts the probability of generating dialect label l from a text sequence
ϕ(X) = ϕ({x1, . . . ,xM}). Let ϕ(X) be the text obtained by ASR ϕ(). M
is the number of acoustic features in speech. In the case of using dialect
speech as input, DID models using sequence-to-one neural networks define the
identification probability of l as P (l|X;Θdid), where Θdid represents a model
of DID parameter sets. In the case of using text as input, the identification
probability of a dialect label l is defined as P (l|ϕ(X);Θdid). In the Japanese
DID, a whole model parameter set can be optimized from speech-to-label
paired data:

D = {(X1, l1), . . . , (XT , lT )}, (1)
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where T is the number of utterances in a training data set. The objective
function of the model for identification is defined as

Ldid(Θdid) = −
T∑

t=1

logP (lt|Xt;Θdid). (2)

Since Japanese dialects have variety in terms of both the linguistic and acoustic
aspects of each dialect, it is not sufficient to use only linguistic or acoustic
features for Japanese DID.

2.3 E2E Japanese ASR

This section describes a model for E2E Japanese ASR. This model predicts
the generation probability of a text sequence W given a speech sequence X,
where wn is the n-th token in the text. N is the number of tokens in the text.
Auto-regressive generative models define the generation probability of W as

P (W |X;Θasr) =

N∏
n=1

P (wn|W 1:n−1,X;Θasr), (3)

where W 1:n−1 = {w1, . . . , wn−1} and Θasr represents a model of ASR param-
eter sets. In E2E ASR, a model parameter set can be optimized from the
utterance-level labeled data (speech-to-text paired data) as

D = {(X1,W 1), . . . , (XT ,W T )}, (4)

where T is the number of utterances in the training data set. The objective
function of ASR, based on maximum likelihood estimation, is defined as

Lasr(Θasr) = −
T∑

t=1

Nt∑
n=1

logP (wt
n|W

t
1:n−1,X

t; Θasr), (5)

where wt
n is the n-th token for the t-th utterance, and W t

1:n−1 = {wt
1, . . . , w

t
n−1}.

N t is the number of tokens for the t-th utterance.
Recognizing Japanese multi-dialect sequences is regarded as a challenging

task for ASR because there are big gaps in terms of linguistic and acoustic
features between a dialect and standard Japanese. Therefore, it is desirable to
use the acoustic features of dialects obtained by DID for ASR.

3 Transformer-based Network Architecture

This section describes a general transformer-based E2E model [24, 22]. As
shown in Figure 1, the transfromer-based model has an encoder and a decoder
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Figure 1: Network architecture of transformer-based ASR model.

that are composed of several transformer blocks. As shown in Figure 2, the
DID system uses dialect identification instead of a text decoder to calculate
P (l|X;Θ) as a sequence-to-one model, while the ASR system uses a speech
encoder and a text decoder as a sequence-to-sequence model to calculate
P (W |X;Θ). For DID systems, the model of parameter sets Θ is split into a
speech encoder θenc and dialect identification θid. For ASR systems, the model
of parameter sets Θ is split into a speech encoder θenc and a text decoder θdec.

Speech encoder: The speech encoder converts input acoustic features into
hidden representations H(I) using I transformer encoder blocks. The i-th
transformer encoder block composes the i-th hidden representations H(i) from
the lower layer inputs H(i−1) as indicated by

H(i) = TransformerEncoderBlock(H(i−1); θenc), (6)

where TransformerEncoderBlock() is a transformer encoder block that consists
of a scaled dot-product multi-head self-attention layer and a position-wise
feed-forward network. The hidden representation H(0) = {h(0)

1 , . . . ,h
(0)
M ′} is

produced by
h
(0)
m′ = AddPositionalEncoding(hm′), (7)
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Figure 2: Network architecture of transformer-based DID model using speech features as
input.

where AddPositionalEncoding() is a function that adds a continuous vector in
which position information is embedded. H = {h1, . . . ,hM ′} is produced by

H = ConvolutionPooling(x1, . . . ,xM ′ ; θenc), (8)

where ConvolutionPooling() is a function composed of convolution layers and
pooling layers. M ′ is the subsampled sequence length, which depends on the
function. Figure 3 shows part of the network architecture of the transformer-
type DID model with text features as input.

Dialect identification: In dialect identification, a hidden representation H ,
which is the output of the speech encoder, is used as input, and the generation
probability of the dialect label l is calculated by the following equation as

P (l|X; θenc, θid) = Softmax(s; θid), (9)

s = Attention(H(I); θid). (10)

The attention function is a layer of the attention mechanism that tries and
weighs the importance of hidden representations. A softmax function is applied
to the output s of the attention layer to calculate the predicted probability of
a label.
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Figure 3: Part of network architecture of transformer-based DID model using text features
as input, applicable to red dashed-line box of Figure 2.

Text decoder: The text decoder computes the generation probability of a
token from preceding tokens and the hidden representations of speech. The
predicted probabilities of the n-th token wn are calculated as

P (wn|W 1:n−1,X; θenc, θdec) = Softmax(u
(J)
n−1; θdec), (11)

where Softmax() is a softmax layer with a linear transformation. The input
hidden vector u

(J)
n−1 is computed from J transformer decoder blocks. The j-th

transformer decoder block composes the j-th hidden representation u
(j)
n−1 from

the lower inputs U
(j−1)
1:n−1 = {u(j−1)

1 , . . . ,u
(j−1)
n−1 } as

u
(j)
n−1 = TransformerDecoderBlock(U

(j−1)
1:n−1,H

(I); θdec), (12)

where TransformerDecoderBlock() is a transformer decoder block that consists
of a scaled dot-product multi-head self-attention layer, a scaled dot-product
multi-head source-target attention layer, and a position-wise feed-forward
network. The hidden representation U

(0)
1:n−1 = {u(0)

1 , . . . ,u
(0)
n−1} is produced by

u
(0)
n−1 = AddPositionalEncoding(wn−1), (13)

wn−1 = Embedding(wn−1; θdec), (14)

where Embedding() is a linear layer that embeds an input token into a contin-
uous vector.

4 Multi-task Learning of Japanese DID and MD-ASR

4.1 Serial Estimation (DID2ASR)

This section describes the transformer-based system in DID2ASR. This system
focuses on estimating a word sequence by using estimated dialect information.
DID2ASR is defined by adding a dialect label d and a text sequence W to the
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Figure 4: Network architecture of multi-task learning systems performing DID and MD-ASR
in series (DID2ASR).

conventional DID model P (l|X;Θ). The dialect label “d” is regarded as one
token. The generation probability is redefined as

P (W , d|X;Θ) = P (W |X, d;Θ)P (d|X;Θ)

= P (Z|X;Θ), (15)

P (Z|X;Θ) =

N∏
n=0

P (zn|Z1:n−1,X;Θ), (16)

where Z is a concatenated sequence that is defined as Z = {d,w1, . . . , wN}.
Figure 4 shows a network architecture for DID2ASR. The architecture of
the speech encoder is the same as the general transformer-based E2E ASR
described in Section 3. As shown in Figure 4, the text decoder of DID2ASR is
essentially the same as the general transformer-based E2E ASR, although the
softmax function is used to calculate the generation probability of the dialect
label d and text W . The model parameter set can be optimized from a set of
speech, dialect label, and text as

Dmtl = {(X1, d1,W 1), . . . , (XT , dT ,W T )}. (17)
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The objective function used in the proposed method is defined as

LD2A(θenc, θdec) = −
T∑

t=1

logP (W t, dt|Xt; θenc, θdec)

= −
T∑

t=1

|Zt|∑
n=1

logP (ztn|Z
t
1:n−1,X

t; θenc, θdec).

(18)

By optimizing with dialect labels, speech text, and generation probabilities,
dialect-specific characteristics are clearly recognized, and this helps in estimat-
ing models without dialect-specific confusion. Since DID2ASR treats dialect
labels uniquely, the MD-ASR performance of the direct modeling method
depends on the accuracy of the DID.

4.2 Serial Estimation (ASR2DID)

Next, we propose ASR2DID to reverse the order of MD-ASR and DID in
DID2ASR. In ASR2DID, the generation probability is redefined as

P (W , d|X;Θ) = P (W |X;Θ)P (d|X,W ;Θ)

= P (Y |X;Θ),
(19)

where Y is a concatenated sequence that is defined as Y = {w0, . . . , wN−1, d}.
The objective function used in the proposed method is defined as

LA2D(θenc, θdec) = −
T∑

t=1

logP (W t, dt|Xt; θenc, θdec)

= −
T∑

t=1

|Y t|∑
n=1

logP (ytn|Y
t
1:n−1,X

t; θenc, θdec).

(20)

This means that ASR2DID changes only a part of the text decoder of DID2ASR,
applying Figure 5 to the red dashed-line box in Figure 4. The DID of ASR2DID
should perform better than that of DID2ASR because the DID is performed
with an estimated word sequence as a linguistic feature.

4.3 Joint Estimation (DID+ASR)

As the third proposed method, we propose joint estimation of DID and ASR
in one network, called “DID+ASR.” The concept of DID+ASR is similar
to ASR2DID. However, the dialect information of DID+ASR is represented
by a probability distribution of registered dialects, whereas DID2ASR and
ASR2DID use one dialect label. In DID+ASR, a phoneme sequence and
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Figure 5: Part of network architecture of multi-task learning systems performing MD-ASR
and DID in series (ASR2DID), applicable to red dashed-line box of Figure 4.

probability distribution of dialects can be predicted from input speech. The
difference from Sections 4.1 and 4.2 is that the generation probabilities of the
dialect label d and W are independent, and dialect information is represented
in a probability distribution. The generation probability of dialect label d and
W is redefined as

P (W , d|X;Θ) = P (W |X;Θ)P (d|X;Θ). (21)

The architecture of DID+ASR is a combination of the speech encoder, text
decoder, and identification used in Section 2.

We use the same training data described in equation (17) to optimize the
DID+ASR model. The objective function of the model for identification is
defined as

L(θenc, θdid, θdec) = αLmle(θenc, θdec) + βLid(θenc, θid), (22)

where α and β are the loss weights for ASR and DID. Figure 6 shows the
network architecture of DID+ASR. The difference from the general transformer,
E2E MD-ASR, is the added DID part. Since the dialect label is regarded as
a probability distribution, the degree of dialect-specific information can be
recognized, and both multi-dialect data and standard Japanese data can be
utilized effectively.

5 Experiments

5.1 Database

A home-made speech database of Japanese dialects [7] and a database of
standard Japanese were used in all experiments. The dialect database consisted
of six dialects: Aomori, Hiroshima, Kumamoto, Nagoya, Sapporo, and Sendai.
The numbers of training and test utterances were 89,817 and 7450, respectively.
Details on the database are shown in Table 1. The OOV was replaced with
an UNK label. The OOV rate was 0.00011%. Details on the database are
shown in Table 1. The gender ratios of the speakers for each dialect were
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Figure 6: Network architecture of multi-task learning systems with joint DID and ASR
(DID+ASR).

almost the same. Each dialect utterance was recorded by using an iPhone 5
or an Xperia Z1. The length of each dialect utterance was about 7 s, and
the content of the dialect database was daily conversations. For the standard
Japanese database, the Corpus of Spontaneous Japanese (CSJ) [14], consisting
of academic lectures and simulated public speeches, was used. The numbers of
training and test utterances were 162,243 and 3865, respectively. The number
of male speakers was about double that of female speakers. Both databases
were sampled at 16 kHz and quantized to 16 bit. All transcriptions of both
databases were hand-labeled.

5.2 Experiment Conditions

The transformer-based E2E ASR and E2E DID described in Section 3 was used
as a conventional model. Therefore, the main architectures of the proposed
models and the conventional one were the same, and the common parts of the
architectures were set as follows. The transformer network consisted of eight
encoder blocks and six decoder blocks. All functions used in the transformer
networks were implemented in accordance with [24]. Regarding the composition
of the transformer blocks, the dimension of the continuous vector was 256, the
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dimension of the inner outputs in the position-wise feed-forward networks was
2048, and the number of attention heads was set to 4. The parameters for the
speech encoder and the text decoder were the same as in [7]. For the DID of
DID+ASR, a seven-dimensional vector consisting of six dialects and standard
Japanese language was outputted from the softmax layer. As the predict labels,
six dialect labels; ⟨aom⟩, ⟨hir⟩, ⟨kum⟩, ⟨nag⟩, ⟨sap⟩, ⟨sen⟩ and one standard
language label; ⟨jap⟩ were settled. In the prediction part of the dialect label,
one label was selected as a dialect token from the seven labels. The unit of
tokens was represented as a character. In ASR decoding, all characters were
used for the selection of a token. The objective function of multi-task learning
was cross-entropy loss. The loss of the MD-ASR and DID weight, α and β,
were set to 1 and 0.01, respectively. For DID2ASR and ASR2DID, dialect
labels were put in the embedding layer and treated as a 256-dimensional vector.
In the MD-ASR case, as a training set, three types of training data were
prepared: dialect only, standard Japanese only, and joint data of dialect and
standard Japanese. There were three sets of test data: dialect only, standard
Japanese only, and joint data of dialect and standard Japanese. As methods
to be compared, we adopted three types of training data for the conventional
method, and only the joint data was adopted for the proposed methods. For
DID2ASR, since dialect labels were estimated, the performance depended on
the accuracy of the DID. Therefore, as a method for comparison, a case where
all identifications were correct was prepared as an oracle. In the DID case, the
character error rate (CER) was used to evaluate ASR, and accuracy (ACC)
was used to evaluate the DID of the proposed methods.

CER =

(
1− COR− INS

TOTAL

)
× 100 (%), (23)

ACC =
# of correct files

# of total files
× 100 (%), (24)

where COR and INS were the numbers of correct characters and inserted
characters, respectively. TOTAL was the total number of characters. In the
case of ASR+DID, the highest probability in the output of the softmax layer
for dialect identification was selected to calculate ACC.

5.3 Results

Table 2 shows the ACCs of the conventional and proposed methods. There
were two versions of the conventional method, one using speech as an input
feature and one using text, and they both performed insufficiently, 71.2%
and 53.3%, respectively. As described in Sections 2.1 and 2.2, this is because
Japanese dialects have unique information in terms of both acoustic and
linguistic aspects, and using one side as input features did not lead to good
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Table 2: ACCs (%) of conventional and proposed methods for DID.

ACC
Conventional method (speech) 71.2
Conventional method (text) 53.3
DID2ASR 83.1
ASR2DID 86.5
DID+ASR 81.8

Figure 7: Confusion matrices of conventional and proposed methods on DID task.

performance. In comparison, the ACCs of three proposed methods were
improved compared with two conventional methods. Compared ACC of
DID2ASR, 83.1%, with that of ASR2DID, 86.5%, ASR2DID provided higher
performance than DID2ASR. For predicting a dialect label, ASR2DID used the
predicted ASR results effectively. However, in DID2ASR, since a dialect label
was predicted first, its prediction could not utilize the prediction ASR results
fully. These results show that it is useful to use the information of MD-ASR
for DID. For ACC of DID+ASR, 81.8%, the performance was slightly lower
than ACCs of DID2ASR and ASR2DID. We considered the joint estimation
of DID and MD-ASR required to find adequate parameter settings between
DID and MD-ASR carefully. Consequently, these results showed that it was
useful to use the information of MD-ASR for DID.

To give detailed results of the DID tasks, Figure 7 shows the confusion
matrices of each dialect for each method in Figure 2. Comparing conventional
method (speech) with conventional method (text), the trends of the accuracy
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Table 3: CERs (%) of conventional and proposed methods for each combination of databases
for MD-ASR.

Dialect+
Training Dialect Standard Standard
Dialect only 52.9 100↑ 100↑

Conventional method Standard only 52.5 14.3 64.7
Dialect + Standard 8.0 14.9 11.1

DID2ASR Dialect + Standard 8.4 14.2 11.0
DID2ASR (oracle) Dialect + Standard 7.3 14.2 10.4
ASR2DID Dialect + Standard 7.0 14.5 10.4
DID+ASR Dialect + Standard 7.2 13.4 10.0

for each dialect were different. This means that the acoustic and linguistic fea-
tures captured different characteristics of the dialects, respectively. Comparing
the conventional methods with the proposed methods, the performances of the
proposed methods were improved for almost all dialects. In particular, using
ASR2DID, the identification rate of Aomori and Kumamoto exceeded 95%.
This result suggested that phoneme sequences were important information
for identifying Aomori and Kumamoto. On the contrary, the discrimination
performance of Nagoya decreased, indicating that the recognition information
was not effective because the phoneme sequence of Nagoya was similar to other
dialects.

Table 3 shows the CERs of the conventional and proposed methods for the
multi-condition task for ASR. When the conventional methods were trained
with only dialect data or standard Japanese, the CERs were over 50%, except
for the case of the conventional method text speech trained using standard
Japanese only. The reason for obtaining such a poor CER was that mismatches
between dialect-specific characteristics were not considered as described in
Section 2.1. When the conventional method was trained with multi-condition
data (Dialect+Standard), the CER of the conventional method trained with
standard Japanese only on the dialect-only test had quite a large improvement
from 52.5% to 8.0%. However, the CER worsened from 14.3% to 14.9% on
the only-standard-Japanese test. These results indicate that dialect-specific
characteristics caused model estimation confusion. Next, in the case of the
proposed systems, the CER of DID2ASR with that of the conventional method
(Dialect+Standard), in the dialect-only test case, the CER of DID2ASR, 8.4%,
was higher than that of the conventional method, 8.0%. However, in the
standard-Japanese-only test case, the CER of DID2ASR, 14.2% was lower
than that of the conventional method, 14.9%. The reason of the degradation of
DID2ASR in the Dialect test case could be considered some the effects of the
DID errors. To prove the reason of the degradation in the CER, we performed
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Table 4: CERs (%) of proposed methods in case of correct or incorrect DID.

DID2ASR ASR2DID DID+ASR
Correct 5.0 5.2 6.2
Incorrect 14.0 12.8 9.8

DID2ASR with the oracle dialect label. In the oracle case, the CER for the
dialect-only test went down to 7.3%. Additionally, the performance of ASR
of DID2ASR (oracle) in the standard-Japanese-only test, was not affected
by the prediction error because the prediction of the standard language was
easy due to the difference in database and the amount of training data. From
these results for DID2ASR, DID2ASR could be used for robust ASR, but the
performances depended on the accuracy of DID. Next, for ASR2DID on the
dialect-only test, the CER went down to 7.0%. In DID2ASR, the effect of DID
errors is significant because the prediction of text tokens for ASR is performed
considering the result of the dialect label prediction. The influence of DID
errors is shown from the results of DID2ASR and DID2ASR (oracle). On the
other hand, ASR2DID predicts a dialect label considering the result of the
ASR prediction. Therefore, we consider that the CER of ASR2DID has a
smaller effection from DID errors than that of DID2ASR, However, the CER
of ASR2DID in standard-Japanese-only test, 14.5%, case slightly degraded
from that of DID2ASR. It means that DID2ASR caused over adaptation to
dialect. In the DID+ASR case, DID+ASR achieved the lowest CER on the
standard-Japanese test, and the CER of DID+ASR on the dialect-only test was
the second best. This result indicates that using the probabilistic distribution
of dialect labels and controlling the effect of DID improved the reliability of
the model in terms of ASR performance.

To investigate the effect of the identification error on the ASR performances,
Table 4 shows the CERs for the proposed methods for cases in which the DID
results were correct or incorrect. Comparing the correct case with the incorrect
one, the CER was lower in the correct case for all proposed methods. From
these results, the MD-ASR performance of DID2ASR was the most affected
by the DID error because the difference between the correct case and the
incorrect one was nine points. ASR2DID and DID+ASR had lower CERs for
the incorrect case than DID2ASR. This result indicates that the effect of DID
error was mitigated, and ASR2DID and DID+ASR showed robust MD-ASR
performances even though the estimation of DID was not correct. Furthermore,
the difference between the correct and incorrect cases for DID+ASR was the
smallest at 3.6%. The results showed that it was possible to mitigate the
effects of DID error by handling dialect labels in a probability distribution.

Treating dialects as a probability distribution made it possible to repre-
sent unknown dialects by mixing the registered dialects. Table 5 shows the
CERs in the case of recognizing utterances from an unknown dialect. In this
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Table 5: CERs (%) of conventional and proposed methods trained with the joint training
data (Dialect+Standard), except for Kumamoto data. Kumamoto dialect was regarded
as an unknown dialect. The joint test data (Dialect+Standard) excluding Kumamoto was
labeled as “Known” and the test data which include only Kumamoto data was labeled as
“Unknown”.

Known Unknown
Conventional method 10.9 16.9
DID2ASR 11.3 17.6
ASR2DID 11.3 16.8
DID+ASR 10.1 15.2

experiment, the Kumamoto dialect was regarded as an unknown dialect and
eliminated from the joint training data (Dialect+Standard). The joint test
data (Dialect+Standard) separated into two groups; “Known” and “Unknown.”
The “Known” group was the joint test data excluding Kumamoto data, and the
“Unknown” test group was that the test data included only Kumamoto data.
For known dialects, the results are almost the same as in Table 3. Comparing
the conventional method with DID2ASR, the CER of DID2ASR was higher
than the conventional method. The reason was that DID2ASR could not deal
with the unknown dialect, so the effect of the DID error was serious as shown
in Table 4. Since the results showed that ASR2DID estimated dialects after
MD-ASR, it could relax the effect of error on unknown dialects. For DID+ASR,
the CER of DID+ASR was the lowest. Since DID+ASR represented dialect
information as a combination of the registered dialects, it could be considered
that the performance for unknown dialects was more robust than DID2ASR
and ASR2DID.

6 Conclusion

In this paper, we propose multi-task learning of Japanese DID and multi-
dialect ASR (MD-ASR) systems with end-to-end models. For serial estimation
of two tasks in one model, DID2ASR and ASR2DID were described, and
DID+ASR involved the joint estimation of two tasks. The three methods
were able to alleviate the differences between dialects and standard Japanese,
and the accuracy of DID and dialect speech recognition was improved by
using dialect-specific acoustic information and linguistic information. The
experimental results showed that the three proposed methods outperformed the
conventional method. From the prospect of the DID performance, ASR2DID
had the best performance. When estimating dialect labels, it is useful to obtain
linguistic and acoustic information in a series. Therefore, ASR2DID is useful to
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adopt as a pre-processing system for dialect-aware applications, such as spoken
dialogue and entertainment. From the prospect of the MD-ASR performance,
DID+ASR had the best CER. Additionally, in the case that the dialects of
the input utterances were unknown, DID+ASR improved in performance.

As future work, we will experiment with other networks such as CTC/
Attention hybrid system using other dialects. Also, we will experiment with
combinations of the proposed methods.

Appendix

Table A1 illustrates examples of utterances in the dialect database used in our
experiments. All sentences have the same meaning. As described in Section 2.1,
the phoneme sequence of Aomori is different from that of standard Japanese.
In addition, almost all parts of the Nagoya and Hiroshima dialects are similar
to those of standard Japanese. However, in many cases, the accents or other
acoustic features are different from standard Japanese.

Table A1: Examples of Japanese dialect in dialect database with Japanese transcription and
alphabet representation.

Dialect Text (Japanese) Sequence
Aomori 何もはやってね na N mo ha ya q te ne
Hiroshima いいや私はやっとらんよ i i ya wa ta shi ha ya q to ra N yo
Kumamoto いえ私はやっとりません i e wa ta shi ha ya q to ri ma se N
Nagoya いや私はやっとらんよ i ya wa ta shi ha ya q to ra N yo
Sapporo いいえ自分はやってません i e zi bu N ha ya q te na i wa
Sendai いやおらはやってねえ i ya o ra ha ya q te ne e
Standard いいえ私はやってません i i e wa ta shi wa ya q te ma se N
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