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ABSTRACT

In this paper, we propose a framework for environmental sound synthesis
from onomatopoeic words. As one way of expressing an environmental
sound, we can use an onomatopoeic word, which is a character sequence
for phonetically imitating a sound. An onomatopoeic word is effective for
describing diverse sound features. Therefore, the use of onomatopoeic
words as input for environmental sound synthesis will enable us to
generate diverse sounds. To generate diverse sounds, we propose a
method based on a sequence-to-sequence framework for synthesizing
environmental sounds from onomatopoeic words. We also propose a
method of environmental sound synthesis using onomatopoeic words
and sound event labels. The use of sound event labels in addition to
onomatopoeic words enables us to capture each sound event’s feature
depending on the input sound event label. Our subjective experiments
show that our proposed methods achieve higher diversity and naturalness
than conventional methods using sound event labels.
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1 Introduction

Environmental sound synthesis is a research field of sound generation and is the
task of generating natural environmental sounds. Many environmental sounds
are used in the production of movies, games, and other content [13]. However,
there is a limit to the amount of environmental sound data that is openly
available. In addition, there are cases where the environmental sound that
exactly matches the required sound does not exist. Therefore, it is possible
to solve these problems by using environmental sound synthesis. Moreover,
environmental sound synthesis has great potential for many applications such as
supporting movie and game production [9, 13, 21, 23], and data augmentation
for sound event detection and scene classification [4, 18].

In recent years, some methods of environmental sound synthesis using deep
learning approaches have been developed [9, 11, 15]. One of the methods of
environmental sound synthesis uses sound event labels as the input [15]. The
method enables the generation of environmental sounds expressing sound events.
In this method, since only sound event labels are input to the system, similar
sounds are generated for the given sound event class; thus, the generated sounds
are not sufficiently varied. Another possibility of environmental sound synthesis
is to use onomatopoeic words, which are character sequences that phonetically
imitate sounds. According to the studies of Lemaitre and Rocchesso [10] and
Sundaram and Narayanan [19], onomatopoeic words are effective for expressing
the features of audio samples. For example, when expressing the sound of a
whistle using onomatopoeic words, we can distinguish the sounds with different
durations and pitches using the length of the phoneme sequence, such as “py
u” (short whistle) and “p i i i” (long whistle). Based on the idea of mapping
onomatopoeic words to environmental sounds, Kawai developed KanaWave
[1], software that generates environmental sounds from onomatopoeic words.
KanaWave generates environmental sounds by simply connecting multiple
sounds corresponding to the input onomatopoeic words, each of which is
associated with a specific sound in a one-to-one correspondence. Therefore, the
sounds generated by KanaWave do not have sufficient naturalness and diversity.
To utilize environmental sounds in media content, such as in animation and
movie production, an environmental sound synthesis method that can generate
synthesized sounds with high naturalness and diversity is required.

In this paper, we propose environmental sound synthesis from onomatopoeic
words using a statistical approach. Statistical methods make it possible
to automatically learn the correspondence between environmental sounds
and onomatopoeic words from large amounts of data with high diversity.
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Even if there is a large dataset, the diversity of generated sounds is limited
because the conventional method generates sounds by combining sounds in
a dataset. On the other hand, a statistical method enables us to generate
more diverse synthesized sounds than conventional methods. In the proposed
method, we utilize the sequence-to-sequence conversion framework (seq2seq
framework) [20] to generate environmental sounds from onomatopoeic words.
The seq2seq framework is often used in some tasks of sequence transformation,
such as those in speech synthesis and neural machine translation, and it has
shown high performance in many studies [3, 6, 22]. The seq2seq framework
uses several layers of recurrent neural network (RNN), which can model
time-series information. Therefore, the seq2seq framework enables us to
generate environmental sounds by considering the phoneme sequence for an
onomatopoeic word. We also propose a method of environmental sound
synthesis using sound event labels, which are used in the conventional method,
and onomatopoeic words. The purpose of using onomatopoeic words and
sound event labels as input is to control diversity and overall acoustic features
concerning the type of sound sources, respectively.

The remainder of this paper is structured as follows. In Section 2, we
describe the proposed methods of environmental sound synthesis from an
onomatopoeic word. In Section 3, we report subjective experiments carried
out to evaluate the performance of environmental sound synthesis from an ono-
matopoeic word. Finally, we summarize and conclude this paper in Section 4.

2 Proposed Method

2.1 Overview of Environmental Sound Synthesis from Onomatopoeic
Words

Figure 1 shows the framework of environmental sound synthesis from ono-
matopoeic words. This approach consists of a model training block and a
sound synthesis block. In the model training block, acoustic feature sequence
o and phoneme sequence l are extracted from environmental sounds and ono-
matopoeic words, respectively. Acoustic model parameter λ is estimated using
extracted features o and l as follows:

λ̂ = arg max
λ

P (o | l,λ). (1)

In this paper, we propose two model training methods as follows.

1. Model training method using only onomatopoeic words as input to
network (Section 2.2.1)

2. Model training method using onomatopoeic words and sound event labels
as input to network (Section 2.2.2)
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Figure 1: Overview of environmental sound synthesis using onomatopoeia.

We will detail the model training methods in Section 2.2. In the sound synthesis
block, phoneme sequence l is converted from an input onomatopoeic word.
Acoustic feature sequence o is estimated from a phoneme sequence l of the
onomatopoeic word and acoustic model λ̂ as follows:

ô = arg max
o

P (o | l, λ̂). (2)

Finally, we reconstruct an environmental sound wave from estimated acoustic
feature sequence ô using the Griffin–Lim algorithm [5].

2.2 Proposed Model Training Methods

2.2.1 Environmental Sound Synthesis Using Onomatopoeic Words

Figure 2 shows an overview of model training using onomatopoeic words. To
synthesize environmental sounds from onomatopoeic words, we employ the
seq2seq framework [20]. The seq2seq framework comprises an encoder and a
decoder. Our method uses one-layered bidirectional long short-term memory
(BiLSTM) as the encoder and two-layered long short-term memory (LSTM) as
the decoder. As shown in Figure 2, a phoneme sequence of the onomatopoeic
word, l = {l1, . . . , lT }, is input to the encoder. The encoder extracts feature
vectors ν = [νf ,νb] from input sequence l. Superscripts f and b indicate
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Figure 2: Environmental sound synthesis from onomatopoeic words.

forward and backward networks, respectively. In unidirectional LSTM, the
beginning features tend to be lost when the sequence is long. Therefore, using
BiLSTM for the encoder, we can expect to extract a feature vector ν that
captures entire onomatopoeic words from past and future directions. The
decoder estimates acoustic feature sequence o = {o1, . . . ,oT ′} from extracted
feature vectors ν in the encoder as follows:

p(o1, . . . ,oT ′ | l1, . . . , lT ) =
T ′∏
t=1

p(ot | ν,o1, . . . ,ot−1). (3)

Using two-layered LSTM for the decoder, we can expect to estimate acoustic
features by considering features in the forward and backward directions of
onomatopoeic words extracted by the encoder. The L1 norm between the
estimated acoustic feature sequence o and the target feature sequence at each
time step is used as the loss function.

2.2.2 Environmental Sound Synthesis Using Onomatopoeic Words and Sound Event
Labels

The method of environmental sound synthesis using only onomatopoeic words
is expected to enable the control of the time-frequency structural features of
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Figure 3: Environmental sound synthesis from onomatopoeic words and sound event labels.

synthesized sounds, such as sound duration. The method of environmental
sound synthesis using only onomatopoeic words will generate diverse sounds.
However, for example, the onomatopoeic word “p a N” could be considered
to fit multiple sound events, such as the sound of shooting guns and balloons
breaking. Therefore, we cannot control the frequency property associated with
the sound categories using only onomatopoeic words. To control the frequency
characteristics of sound events, we utilize sound event labels in addition to
onomatopoeic words.

Figure 3 shows an overview of model training using onomatopoeic words
and sound event labels. The method uses the seq2seq framework comprising
one-layered BiLSTM as the encoder and two-layered LSTM as the decoder.
The seq2seq-based intersequence conversion may involve conditioning on the
decoder to control the decoder’s output features [2, 7, 8, 17]. In the proposed
method, sound event labels c represented as one-hot vectors and extracted
feature vectors ν are concatenated and given as the initial state of the decoder.
The decoder estimates acoustic feature sequence o = {o1, . . . ,oT ′} from
extracted feature vectors ν in the encoder and sound event labels c as follows:

p(o1, . . . ,oT ′ | l1, . . . , lT ) =
T ′∏
t=1

p(ot | ν,o1, . . . ,ot−1, c). (4)

The L1 norm between the estimated acoustic feature sequence o and the target
at each time step is used as the loss function.
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3 Experiments

The synthesized sounds designed for background sounds or sound effects in
movies and games sounds should have high naturalness and diversity. From this
viewpoint, we conducted two types of subjective test. For synthesized sounds,
we evaluated their (i) naturalness and (ii) sound diversity as environmental
sounds. We aim to achieve the same level of quality as natural sound in terms
of both the naturalness and diversity of the generated sound.

3.1 Experimental Conditions

For the evaluation, we used 10 types of sound event (bell ringing, alarm clock,
manual coffee grinder, cup clinking, drum, maracas, electric shaver, tearing
paper, trash box banging, and whistle1) contained in the Real World Computing
Partnership-Sound Scene Database (RWCP-SSD) [14]. We used a total of 1000
samples (100 samples × 10 sound events), in which 95 samples of each sound
event were used for model training and the others were used for the subjective
test. For the onomatopoeic words corresponding to each sound sample, we used
the dataset in RWCP-SSD-Onomatopoeia [16]. There are many onomatopoeic
words that contain some syllables in RWCP-SSD-Onomatopoeia. Each sound
sample has more than 15 onomatopoeic words, and we used 15 onomatopoeic
words per audio sample for model training for a total of 14,250 onomatopoeic
words (15 onomatopoeic words × 950 audio samples). Table 1 shows the
experimental conditions and parameters used for the proposed methods. In
this study, we use the log-amplitude spectrogram as an acoustic feature. The
generated audio samples are available on our web page.2

3.2 Subjective Evaluations

Following the evaluation perspective described at the beginning of Section 3,
we conducted the following two sets of experiments:

3.2.1 Experiment I: Evaluation of Naturalness for Environmental Sounds

The target sound of this paper is a sound that is comfortable as an environ-
mental sound and that expresses the input onomatopoeic word. There are
two perspectives of naturalness that should be satisfied. For this reason, we
designed several experiments to evaluate each perspective. In Experiments I-1
and II-2, we presented environmental sounds and the onomatopoeic word used
for the input, and evaluated how acceptable or expressive the presented sounds

1Whistle refers to the sound of whistles such as these carried by policemen to give
warning as the need arises.

2https://y-okamoto1221.github.io/Onoma_to_wave_Demonstration/

https://y-okamoto1221.github.io/Onoma_to_wave_Demonstration/
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Table 1: Experimental conditions.

Sound length 1–2 s
Sampling rate 16,000 Hz
Waveform encoding 16-bit linear PCM

Acoustic feature log-amplitude spectrogram
Window length for FFT 0.128 s (2048 samples)
Window shift for FFT 0.032 s (512 samples)

Encoder LSTM layers 1
# units in encoder LSTM 512
Decoder LSTM layers 2
# units in decoder LSTM 512, 512
Event label dimensions 10
Teacher forcing rate 0.6
Batch size 5
Optimizer RAdam [12]

were in relation to the onomatopoeic word. In Experiment I-3, only the sound
was presented to evaluate its naturalness as an environmental sound, and the
sound itself was simply evaluated in terms of “quality as an environmental
sound.”

• Experiment I-1: acceptance level of synthesized sounds for
onomatopoeic words
We presented pairs of a sound (natural or synthesized) and an ono-
matopoeic word. The listener graded the acceptance level of the synthe-
sized and natural sounds for onomatopoeic words on a scale of 1 (highly
unacceptable) to 5 (highly acceptable).

• Experiment I-2: expressiveness of synthesized sounds for ono-
matopoeic words
We presented pairs of a sound (natural or synthesized) and an ono-
matopoeic word. The listener graded the expressive level of the synthe-
sized and natural sounds for onomatopoeic words on a scale of 1 (very
unexpressive) to 5 (very expressive).

• Experiment I-3: naturalness of environmental sounds
We presented a natural or synthesized sound. The listener graded the
naturalness of the synthesized and natural sounds on a scale of 1 (very
unnatural as an environmental sound) to 5 (very natural as an environ-
mental sound).
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Table 2: Number of synthesized sounds used for subjective test.

# samples # total
Experiment # labels in each label # listeners samples
Exp. I-1 10 10 30 3000
Exp. I-2 10 10 30 3000
Exp. I-3 10 5 30 1500
Exp. II-1 5 5 30 750
Exp. II-2 10 2–3 50 1300

3.2.2 Experiment II: Evaluation of Sound Diversity for Environmental Sounds

To evaluate diversity for synthesized sounds, we conducted two types of
subjective evaluation as follows:

• Experiment II-1: diversity of synthesized sounds for each sound
event
We presented two sounds synthesized by the same method to listeners.
In the proposed method, sounds are generated using randomly selected
onomatopoeic words from the overall dataset as the input in each sound
event. The listener graded the dissimilarity level between two presented
sounds on a scale of 1 (very similar) to 5 (very dissimilar).

• Experiment II-2: diversity of synthesized sounds for the same
onomatopoeic words
We presented listeners with synthesized sound, and the listeners selected
the sound event label that best represents the sound from ten choices.

Each experiment was conducted using a crowdsourcing platform. Table 2
shows the numbers of audio samples and listeners in each experiment. The
dataset used in these experiments, RWCP-SSD-Onomatopoeia, contains only
onomatopoeic words collected from Japanese speakers. Onomatopoeic words
given to a sound differ depending on the native language. Thus, the sounds
generated were evaluated only by Japanese speakers.

To compare the synthesis methods, we evaluated the sounds synthesized
by the conventional method using WaveNet [15] and KanaWave [1]. In the
conventional environmental sound synthesis method using WaveNet, the sound
event label is used as the input to the system, and the waveform sample in the
next time is predicted by finding x, where the following equation is maximized.

p(x | c) ≈
T∏

t=1

p(xt | xt−R, . . . , xt−1, c), (5)

where x, c, and R indicate the generated waveform, sound event label rep-
resented as one-hot vectors, and receptive field, respectively. The receptive
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Table 3: List of synthesis methods evaluated for each evaluation metric.

Method Exp. I-1 Exp. I-2 Exp. I-3 Exp. II-1 Exp. II-2

Natural sound ✓ ✓ ✓

WaveNet ✓ ✓

KanaWave ✓ ✓ ✓

Seq2seq ✓ ✓ ✓ ✓
(proposed)

Seq2seq ✓ ✓ ✓ ✓ ✓
+ event label
(proposed)

field is a parameter related to the number of samples of waveforms required
to go back to in the past. The method using seq2seq estimates the acoustic
features and restores the waveform on the basis of the estimates, while the
method using WaveNet estimates the waveform directly. The conventional
method using WaveNet [15] does not input onomatopoeic words. Therefore,
we evaluated synthesized sounds by WaveNet in only experiments I-3 and II-1.
KanaWave is the conventional non-statistical method of generating environ-
mental sounds from only onomatopoeic words. KanaWave generates sounds by
simply connecting multiple sounds corresponding to the input onomatopoeic
words, each of which is associated with a specific sound in a one-to-one corre-
spondence. The system generates a waveform when onomatopoeic words in
katakana, which is a Japanese syllabary are used as input. There are several
parameters that can be set to adjust the pitch of the sound. However, it is
low naturalness because it generates sounds by simply connecting multiple
sounds. The list of synthesis methods evaluated in each experiment is shown
in Table 3.

3.3 Experimental Results and Discussion

3.3.1 Experiment I

Experiments I-1 and I-2: the average acceptance and expressiveness scores
of synthesized and natural sounds for onomatopoeic words and their standard
deviations are respectively shown in Figures 4 and 5. The results show that
our proposed methods can generate environmental sounds that are a better
representation of onomatopoeic words than those generated by KanaWave.

Figure 6 shows spectrograms of sounds synthesized by our methods using
only onomatopoeic words. The phoneme representation /q/ in Figure 6 is a
pronunciation called a double consonant. As shown in Figure 6, the proposed
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Figure 4: Acceptance scores of natural and synthesized sounds.

Figure 5: Expressiveness scores of natural and synthesized sounds.

method can generate diverse environmental sounds. Also, the longest sound
(right) is not the sound given by simply stretching the other sounds (left and
center). Thus, onomatopoeic words are useful for generating diverse sounds
with different characteristics, such as sound duration.

Figure 7 shows the spectrograms of sounds synthesized by KanaWave and
the proposed method using both onomatopoeic words and sound event labels.
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Figure 6: Spectrograms of environmental sounds synthesized using only onomatopoeic words.

Figure 7: Spectrograms of environmental sounds synthesized by KanaWave and the proposed
method using onomatopoeic words and sound event labels.

In Figure 7, each synthesized sound is generated from a phoneme sequence
of the onomatopoeic word “b i i i i i i” input to the system. In the proposed
method using both onomatopoeic words and sound event labels, we used sound
event labels of whistle, electric shaver, and tearing paper. KanaWave can only
generate one type of sound from the same onomatopoeic word. Therefore, the
sound synthesized by KanaWave does not have diversity. On the other hand,
the proposed method using onomatopoeic words and sound event labels can
generate various sounds from the same onomatopoeic word by changing the
input sound event labels.

Experiment I-3: the average MOS scores for the naturalness of synthe-
sized and natural sounds, and their standard deviations are shown in Figure 8.
The results indicate that sounds synthesized by the proposed methods achieve
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Figure 8: MOS scores for naturalness of natural and synthesized sounds.

higher naturalness than those synthesized by KanaWave. The experimental
results also show that sounds synthesized by our methods had a similar sound
quality to those synthesized by WaveNet. Thus, the proposed methods achieve
environmental sound synthesis from onomatopoeic words without degrading
the sound quality compared with conventional methods. In addition, natural
sounds still have higher naturalness than sounds synthesized by the proposed
methods. From these results, it is still necessary to develop a method of
environmental sound synthesis that can provide quality equivalent to that of
natural sounds.

3.3.2 Experiment II

Experiment II-1: the average dissimilarity score of the synthesized sound for
each sound event is shown in Figure 9. In this experiment, a high dissimilarity
means that there is a rich diversity of synthesized sounds within the same type
of event. The experimental results indicate that the method using seq2seq
with onomatopoeic words and sound event labels as input can generate more
diverse sounds than the method using seq2seq with only sound event labels
as input. This result shows that onomatopoeic words enable us to generate
diverse sounds. By comparing the conventional method using WaveNet with
only sound event labels as input and the proposed method with onomatopoeic
words and sound event labels as input, we found that the proposed method
can generate more diverse sounds for drum and shaver. On the other hand, the
sounds synthesized for cup and maracas by our proposed method had a similar
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Figure 9: Dissimilarity scores of synthesized sounds.

diversity to those synthesized by WaveNet. The conventional method using
WaveNet tends to include noise in the generated sound. The sound generated
by WaveNet tends to get a high dissimilarity score owing to these noises. On
the other hand, the proposed method can generate diverse and comparatively
clear sounds with low noise. Thus, the proposed method enables us to generate
diverse environmental sounds by using onomatopoeic words.

Experiment II-2: part of the distributions of sound event labels given to
the synthesized sound from each onomatopoeic word are shown in Figure 10.
The sounds synthesized by our method using only onomatopoeic words tend
to be given only one sound event label. On the other hand, the sounds
synthesized by our method using both onomatopoeic words and sound event
labels tend to be given various sound event labels. The entropies of the
distribution of a given acoustic event label are 1.70 bit for the method using
only onomatopoeic words and 1.82 bit for the method using both onomatopoeic
words and sound event labels. In this experiment, the maximum entropy
is 3.02 bit when 10 types of sound event labels equally appear for each
synthesized sound. This result shows that using both onomatopoeic words
and sound event labels can represent multiple sound events for the same
onomatopoeic word.

Figure 11 shows spectrograms of natural and synthesized sounds. In
Figure 11, each synthesized sound is generated from a phoneme sequence
of the onomatopoeic word “b i: i q” input to the system. In the proposed
method using both onomatopoeic words and sound event labels, we used the
sound event labels of whistle, electric shaver, and tearing paper. As shown in
Figure 11, using only onomatopoeic words as an input generates sounds with
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Figure 11: Spectrograms of synthesized environmental sounds, which are generated from a
phoneme sequence of the onomatopoeic word “b i: iq”, and natural sounds.

similar features when the initial values of model parameters in model training
are changed. On the other hand, using both onomatopoeic words and sound
event labels, it is possible to generate sounds that capture each sound event’s
feature depending on the input sound event label. These results also show
that using sound event labels can control sound events of sound synthesized
from onomatopoeic words.

4 Conclusion

In this paper, we proposed environmental sound synthesis from onomatopoeic
words. We found that the proposed methods can generate sounds with high
naturalness and diversity. The experimental result indicates that the use of
sound event labels in addition to onomatopoeic words as input enables us to
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control the sound events of generated sounds and to generate diverse sounds.
In the future, we will generate environmental sounds from onomatopoeic words
using more types of sound event.
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