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ABSTRACT

Generative adversarial networks (GANs) are often used to synthesize
realistic looking images, which can be a source of dis/misinformation.
To detect GAN-fake images effectively, a robust and lightweight detector
is proposed and named RGGID (Robust and Green GAN-fake Image
Detector) in this work. RGGID is developed under the assumption that
GANs fail to generate high-frequency components of real images in high
fidelity. Based on this assumption, we design a set of filters using a
specific local neighborhood pattern of a pixel, called a PixelHop, and
determine the associated discriminant channels. We obtain multiple
PixelHops by varying the local patterns, use the validation data to
identify discriminant channels, and ensemble their channel responses
to yield state-of-the-art detection performance. RGGID offers a green
solution since its model size is significantly smaller than that of deep
neural networks. Furthermore, we apply common manipulations to
real/fake source images, including JPEG compression, resizing and
Gaussian additive noise, and demonstrate the robustness of RGGID to
these manipulations.
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1 Introduction

We have witnessed the rapid development of image generation techniques based
on convolutional neural networks (CNNs) in general and generative adversarial
networks (GANs) [10] in particular. Various GANs have been developed to
yield high quality image synthesis and translation performance. The quality of
these generated images is so good that it is difficult to distinguish them from
real images. This poses a threat to image authenticity and may contribute to
a source of dis/misinformation in our society. Effective detection of GAN-fake
images has received a lot of attention in recent years.

The challenges of GAN-fake image detection lie in two aspects. First, it is
common to apply manipulations to real/fake images in real-world application
scenarios. They include JPEG compression, resizing, Gaussian additive noise,
etc. The distortions introduced by manipulations may mask small differences
between real and fake images and make it even more difficult to perform fake
image detection. Thus, it is essential to develop a robust GAN-fake image
detector. Second, most state-of-the-art GAN-fake image detectors are built
upon deep neural networks (DNNs). They offer good detection performance
at the expense of large model sizes, a large number of training images, high
training complexity, etc. When dealing with manipulated images, DNN
classifiers adopt deeper networks and augment the training set by including
all kinds of manipulated images, leading to even larger model sizes and higher
training complexity. To address these two problems, we develop a robust and
green GAN-fake image detector, named RGGID, in this work.

Our RGGID detector is designed based on the assumption that GANs
fail to synthesize high-frequency components in local regions, such as edges
and textures, in high fidelity. Following [24] and [20], we show real and fake
horse images in the pixel- and the spectral-domains in Figure 1. As compared
with the real spectral image, the fake spectral image contains artifacts in
diagonal and anti-diagonal directions. This corroborates our assumption that
GANs do not synthesize high-frequency components well. Here, we focus
on complex local regions that have high-frequency components and employ
a set of local filters, called filter banks or PixelHops, to extract features.
We develop an ensemble scheme to ensure robust detection under different
image manipulations. The RGGID solution outperforms DNN-based GAN-fake
image detectors in detection performance. Furthermore, it has three additional
advantages: 1) low computational and memory complexity (i.e., green), 2)
robustness against image manipulations, and 3) mathematical transparency.

Our current work is an extension of our previous work in [25]. The method
proposed in [25] was called A-PixelHop. It was developed and applied only
to raw real/fake image detection. No image manipulations were considered
in [25]. One of the main contributions of our current work lies in the study
of robustness of RGGID against common image manipulations. Image ma-
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Figure 1: Examples of real/fake image pairs (top) and their associated spectral-domain
representation pairs (bottom).

nipulations introduce additional artifacts to real/fake images. They tend to
mask the differences between real/fake images and make the detection problem
even more challenging. It is shown by experimental results that RGGID is
robust against image manipulations. In addition, we conduct analysis on the
experimental results to gain further insights. With respect to our previous
work in [25], the main extensions of this work include the following.

• We explore the robustness of RGGID against three common image
manipulations.

• We analyze the influence of image manipulations on different semantic
categories.

• We propose a new experimental setting called “Leave-None-Out,” which is
more reasonable, and improve detection performance on weak categories.

The rest of this paper is organized as follows. Related work is reviewed
in Section 2. The RGGID method is presented in Section 3. Experimental
results are shown in Section 4. The effect of image manipulations on different
semantic categories is analyzed and a new experimental setting is presented in
Section 5. Concluding remarks are given in Section 6.
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2 Related Work

2.1 GAN-fake Image Detection

Modern image generation models are built upon Generative Adversarial Net-
works (GANs). CycleGAN [11] is a well-known GAN model that can change
the image style, switch semantic objects and translate images from one domain
to a different domain without paired training images. GauGAN [19] can
translate human sketches to photo-realistic images. One common application
of style transfer models is face manipulation. For example, StarGAN [7]
can change the expression of a face, alter hair style, or modify skin color.
StyleGAN [13] generates fully synthetic human faces with specific high-level
attributes such as poses or identities. ProGAN [12] synthesizes high-resolution
high-variation face images by progressively growing both the generator and
discriminator. BigGAN [1] aims at generating high-quality high-resolution
images by leveraging a sequence of best practices on training class-conditional
images and scaling up batch sizes.

GAN artifacts have been carefully studied and exploited in GAN-fake image
detection. One type of artifact results from the convolutional up-sampling
structure of neural networks. Another kind of artifact appears in the form
of color distortion, which was used to capture the dissonant or asymmetric
characteristics of images in Li et al. [17] and Matern et al. [15]. Another
source of artifacts arises from the artificial fingerprint associated with a GAN
architecture. The persistence of these fingerprints across different GAN models,
datasets and resolutions was studied in Yu et al. [21]. A GAN simulator,
called AutoGAN, was introduced in Zhang et al. [24] to simulate artifacts of
popular GAN models. Zhang et al. [24] identified an artifact that manifests
itself as spectral peaks in the frequency domain, and thus proposed feeding
the spectral-domain input to a classifier for GAN-fake image detection.

Several neural networks have been proposed for GAN-fake image detection.
Nataraj et al. [18] used the co-occurrence matrix to derive hand-crafted features
and fed them to a CNN for detection. Inspired by image steganalysis, Cozzolino
et al. [8] proposed a CNN to mimic rich models [9] in feature extraction and
real/fake classification. Recently, Wang et al. [20] trained a CNN classifier
with a large number of ProGAN-generated images and evaluated it on images
synthesized by eleven other GAN models. They showed the effectiveness of
extensive data augmentation in improving the generalization ability of a CNN
classifier.

Most research on GAN-fake image detectors has been developed and tested
on raw real/fake images. However, most real world images do not exist in the
raw image domain. They are compressed for ease of storage and transmission.
They may be rescaled to fit different screen sizes. Furthermore, an attacker
may add Gaussian noise to real/fake images to make their differentiation
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more challenging. There is much less work on the robustness of GAN-fake
image detectors against image manipulations. Marra et al. [16] compared the
performance of multiple neural networks under Twitter’s compression. They
also considered the compression setting mismatch between training and testing
datasets to evaluate the robustness of CNN-based classifiers. Wang et al. [20]
explored data augmentation to enhance the robustness of a detector.

2.2 Green Learning

Green learning aims at an energy efficient way to achieve the goal of data-driven
learning. The models should have lower training/inference computational
complexity, have smaller model sizes, and require fewer training samples while
maintaining similar classification or regression performance as deep-learning
models. It is desired that their computation can be carried out solely on CPU
or small GPU. Thus, green learning solutions are suitable for edge and mobile
computing.

Distinct from the end-to-end optimization of deep learning, green learning
adopts a modularized design by following the traditional pattern recognition
learning paradigm. It consists of “unsupervised feature learning” and “su-
pervised decision learning.” The idea of unsupervised feature learning has
been developed in a sequence of papers [5, 6, 14]. While filter parameters of
CNNs are obtained by back-propagation, filter parameters in green learning
are determined by statistical analysis of the neighborhood of a center pixel.
Specifically, a variant of Principle Component Analysis (PCA), called the Saab
(Subspace approximation via adjusted bias) transform was proposed in [14] to
achieve the task.

Green learning has been successfully applied to various computer vision
tasks such as image classification [5, 6] and 3D point classification [22, 23].
In the area of image forensics, green learning solutions or “green forensics,”
have also been developed, such as deepfake video detection [2] and fake geo-
spatial image detection [3] with specific image contents. The former focuses on
human face videos while the latter examines satellite images. In this work, we
investigate GAN-fake image detection for a wide range of semantic contents,
including object images (e.g., apples, oranges, zebras, and horses), scene
images (e.g., winter, summer, city, and facades), and paintings of different
styles (Ukiyo-e, Van Gogh, Cezanne, and Monet).

3 Proposed RGGID Method

An overview of the proposed RGGID method is given in Figure 2. It consists
of the following four modules:
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Figure 2: An overview of the proposed RGGID method.

1. Spatial block selection. We select blocks that contain a substantial
amount of high frequency components.

2. Feature extraction via parallel PixelHops. We conduct local
spectral analysis by studying frequency responses of multiple sets of local
filters. Each set of local filters is called a filter bank or a PixelHop.

3. Discriminant feature selection and block-level decision making.
We use the validation dataset to identify discriminant channels and use
their channel responses as features for the block-level soft decisions.

4. Image-level decision ensemble. We ensemble the block-level soft
decisions to yield the final image-level binary decision.

Each of them will be detailed below.

3.1 Spatial Block Selection

Since our method is developed based on the assumption that GAN generators
are not able to synthesize high-frequency components in high fidelity, we focus
on spatial blocks that contain fine details. In the implementation, we partition
images into non-overlapping blocks of size 16× 16. Each block will be used
as an independent unit for feature extraction, feature selection, and local
decision making in the second and third modules. To select blocks containing
fine details, the variance of image pixels in a block is computed. That is, we
remove the block mean and sum the squares of pixel residuals. For each image,
the top 40% blocks with the highest block variances are selected since they
contain more energy of high frequency components. Figure 3 shows examples
of selected blocks overlaid with the original images. It is evident that selected
blocks are from high-frequency regions, such as the horse head and legs in the
horse image, trees in the winter image, cars and buildings in the cityscape
image, etc.
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Figure 3: Examples of selected spatial blocks from images, where masked blocks are dropped
in further analysis.

3.2 Feature Extraction via Parallel PixelHops

For a squared region of spatial dimension s× s and spectral dimension c, we
can define a local neighborhood of dimension s× s× c. For example, we can
set s = 2 and c = 3 (due to the R, G, B channels of color images). Then,
the neighbood has a dimension of 12 (i.e., 12 pixel values). We can consider
different weighted sums of these 12 pixel values, which defines a set of filters.
The set of filters is called a filter bank. One specific way to define the filter
weights is described as follows.

• One DC filter, where all filter weights are set to the same value (i.e.,
a constant-value vector), and then the vector length is normalized to
unity. This filter is called the DC filter and its response is called the DC
response.

• Eleven AC filters, where the DC response is subtracted from all pixel
values to yield the AC values, principal component analysis is conducted
on a collection of neighborhoods, and the eigenvectors associated with
non-zero eigenvalues define eleven AC filters.
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A filter bank with its filter coefficients selected by this procedure is called a
PixelHop. As shown in Figure 2, a PixelHop is used as a feature extraction
unit. A PixelHop system is determined by 4 parameters:

1. Neighborhood size s1 × s2, where s1 and s2 denote the width and the
height, respectively. Typically, we choose squared neighborhoods such
that s1 = s2 = s;

2. Number of spectral components of a pixel, denoted by c;

3. The stride number, denoted by d, which indicates the amount of move-
ment of the neighborhood horizontally or vertically.

In our design, we select three squared neighborhoods of sizes 2× 2, 3× 3,
and 4× 4. The spectral component number, c, is equal to 3, and the stride
number, d, is one. We apply the three PixelHops to blocks of size 16 × 16
in parallel without padding. As a result, they have 12, 36 and 48 filter (or
channel) responses at 15 × 15 = 225, 14 × 14 = 196, and 13 × 13 = 169
spatial locations, respectively. These responses are called joint spatial-spectral
responses. We are interested in channel responses. That is, for a given filter,
we collect and order its spatial responses to form a feature vector. For example,
for the 2× 2× 3 PixelHop, we have 12 channel responses and each of them
has a feature vector of dimension 225.

3.3 Discriminant Feature Selection and Block-level Decision Making

Different spectral channels have different discriminant power in real/fake
image detection. As mentioned earlier, we use the responses at different
spatial locations as the feature vector. Furthermore, we adopt a gradient
boosting tree algorithm called XGBoost [4] as the classifier. To evaluate the
discriminant power of a channel, we compare the classifier performance on
training, validation and test datasets with the area-under-the-curve (AUC)
and the accuracy (ACC) metrics. To give an example, we plot the performance
curves of each channel for three semantic categories in the CycleGAN dataset
[24] with two PixelHops in Figure 4. In this example, the images are raw
real/fake images without any image manipulations. It is evident from the
figure that some channels are more discriminant than others. Furthermore, the
training, validation and testing datasets share the same discriminant channels.
We select those channels with higher validation performance as target channels
and train an XGBoost classifier for each channel. In the inference stage, we
apply an XGBoost classifier to the spatial responses of the associated channel
to obtain a soft decision ranging from 0 to 1, which indicates the probability
of the block to be a real or fake image block.
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Figure 4: The detection performance on raw images of three exemplary categories, where
the x-axis indicates the channel index. The x-value ranges from 0 to 11 in (a)–(c), in which
a PixelHop of size 2× 2× 3 is used. The x-value ranges from 0 to 26 in (d)–(f), in which a
PixelHop of size 3× 3× 3 is used. Each subfigure shows four performance curves: training
AUC (red dashed line), training ACC (red line), validation AUC (green dashed line), and
test ACC (blue line).

3.4 Image-level Decision Ensemble

Given block-level soft decisions from a single image in the third module, we
develop an ensemble scheme to yield the final image-level decision in the last
module. We first arrange the block-level soft decisions from smallest to largest
in the unit interval, i.e., [0, 1]. The decision scores at the two ends are more
informative than those in the middle range. Suppose that we plan to sample
p% of blocks to train an ensemble classifier that will yield the image-level
decision. Our sampling strategy is to choose 0.5p% soft decisions from the two
ends of the distribution as shown in Figure 5, where selected representative

Figure 5: Illustration of the block sampling strategy for the image-level decision ensemble.
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soft decisions are denoted by red dots. Hyperparameter p represents the
percentage of samples selected from the two tail regions of the distribution of
soft decision scores. We set p = 10, 20, 30, 40, and choose the one that yields
the best performance on the validation set.

4 Experiments

4.1 CycleGAN Dataset

We evaluated our model on the CycleGAN dataset in [24]. It has 14 semantic
categories: Apple, Orange, Horse, Zebra, Yosemite summer, Yosemite winter,
Facades, CityScape Photo, Satellite Image, Ukiyo-e, Van Gogh, Cezanne,
Monet and Photo. According to the image translation content, the dataset
contains 10 subsets where each subset contains both real and translated images.
For example, the hor2zeb subset includes real horse and zebra images for
training CycleGAN and corresponding fake horse and zebra images generated
from the trained model. In total, there are over 36k images in the CycleGAN
dataset.

We conducted experiments using the Leave-One-Out setting, as was done
in [24] and [20]. Namely, one semantic category will be set aside for testing
and the remaining semantic categories will be used for training and validation.
We use the ratio of 8:2 to split the data from the remaining nine categories into
training and validation sets. In this case, our proposed method is not restricted
to a specific semantic category and can generalize well to all CycleGAN
images. We tested our model under 3 different image manipulation techniques:
JPEG compression, image resizing and additive noise. For each type of
manipulation, both the training and testing images will be processed with the
same manipulation setting to avoid mismatch. First, we discuss the detection
on raw image data as reference. Then, we examine the scenarios in which
the various manipulations are applied. We noticed that there exists a few
categories that are relatively sensitive to manipulations. In Section 5, we
analyze the effect of manipulations on sensitive categories and demonstrate
that, by including a small amount of images from the sensitive categories in
the training stage, our RGGID method is robust to image manipulations for
all semantic categories in the CycleGAN dataset.

4.2 Detection on Raw Images

Table 1 shows the test detection results on the raw CycleGAN dataset with only
10% training data. By 10% training data, we mean 10% of training images
from each category while keeping the validation and test sets unchanged.
The results show that RGGID can perform well even under extremely weak
supervision, which is discussed in more detail in Section 5.3. We compare
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Table 1: Test accuracy on raw images with 10% training data.
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DenseNet 79.1 95.8 67.7 93.8 99.0 78.3 99.5 97.7 99.9 89.8 89.2
XceptionNet 95.9 99.2 76.7 100.0 98.6 76.8 100.0 99.9 100.0 95.1 94.5
InceptionNet 85.0 94.8 58.8 99.4 94.0 70.5 99.8 98.8 99.9 89.9 89.1
Cozzolino2017 99.9 99.9 61.2 99.9 97.3 99.6 100.0 99.9 100.0 99.2 95.1
Auto-Spec 98.3 98.4 93.3 100.0 100.0 78.6 99.9 97.5 99.2 99.7 97.2
Nataraj2019 99.7 99.8 99.8 80.6 92.0 97.5 99.6 100.0 99.6 99.2 96.8

RGGID (6 channels) 99.2 99.8 100.0 94.4 100.0 94.1 100.0 100.0 100.0 99.4 98.7
RGGID (9 channels) 99.2 99.7 100.0 94.4 100.0 95.8 100.0 100.0 100.0 99.2 98.8
RGGID (12 channels) 99.2 99.9 100.0 95.9 100.0 95.8 100.0 100.0 100.0 99.1 99.0

the proposed RGGID method with six state-of-the-art models. The highest
performance we obtained is 99.0% test accuracy acquired from the fusion of 12
channels, in which we select the 4 best channels from each of the three filter
banks (i.e., the 2× 2× 3, 3× 3× 3, and 4× 4× 3 filter banks). The second best
is 98.8% from 9 channel fusion, in which we select the 3 best channels from
each filter bank. The 6 channel fusion result is the same as the one presented
in [25]. This is the case where we achieve equally good performance but with
the smallest model size. This indicates that our PixelHop solution is very
powerful even if only a few channels are selected in the ensemble process.

4.3 JPEG Compression Manipulation

To assess the robustness of RGGID under realistic scenarios, we run experi-
ments in which images are compressed using different quality factors. JPEG
compression creates distortions such as blocking and ringing artifacts that
interfere with the up-sampling artifact originating from generative models. We
verified the assumption that high-frequency responses are more distinguishable
than other frequencies for the raw data. However, when applying JPEG
compression, the high-frequency components of real compressed images are
severely distorted as well. As a result, the difference between real and fake
images is less discernible. Figure 6 shows the soft classification performance for
each spectral channel on compressed images with quality factor 85. We see that
discriminant channels are shifted from high-frequency bands to mid-and-low
frequency bands.

We chose three commonly-used quality factors, i.e., 75, 85, and 95, in the
experiments. Table 2 shows the test accuracy of RGGID for JPEG compressed
images. For each quality factor, we show results for individual filter banks as
well as for ensemble settings. Results for individual filter banks are marked as
2× 2× 3 only, 3× 3× 3 only, and 4× 4× 3 only. Results for ensemble schemes
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Figure 6: Soft classification performance of exemplary categories on JPEG compressed
images (QF= 85): For subfigures (a)–(c), the filter size is 2 × 2 × 3 (i.e., the number of
channels is 12), while for subfigures (d)–(f), the filter size is 3× 3× 3 (i.e., the number of
channels is 27). For each subfigure, we show five performance curves: train set AUC (red
dashed line), train set ACC (red line), validation set AUC (green dashed line), test set AUC
(blue dashed line), and test set ACC (blue line).

are marked as ensemble. For example, ensemble (2&3) means that we use only
discriminant channels from the 2× 2× 3 and 3× 3× 3 filter banks. On the
other hand, ensemble (all) is the case where we use discriminant channels from
all filter banks. For each quality factor, we use bold to mark the setting with
highest average test accuracy, and underline for the setting with the second
highest accuracy. Generally speaking, 2 × 2 × 3 only tends to have better
performance than other settings. This could be attributed to the 8× 8 block
DCT transform used in JPEG. Also, the 2× 2× 3 filter bank is more favorable
than the 4 × 4 × 3 filter bank. This is because we select the same number
of channels from each filter bank. Feature maps of selected channels in the
2× 2× 3 filter bank are more informative. This also explains the reason why
ensemble schemes do not always give the best result. Also, we see that the
accuracies for the ap2or and map2sat categories are significantly lower than
other categories, which will be analyzed in Section 6.

Furthermore, we compare RGGID with other state-of-the-art methods in
Table 3. Here, we present results from 8 other state-of-the-art methods whose
performance scores are taken from [16]. In Table 3, the first 5 models are
relatively shallow networks while the last three (DenseNet, InceptionNet, and
XceptionNet) are deeper neural networks. Their performance scores are based
on Twitter-like compression as explained in [16]. However, their compression
quality factor is not explicitly provided. For fair comparison, we average our
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Table 2: Test accuracy of RGGID on JPEG compressed images.
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QF= 75

2 × 2 × 3 only 67.58 89.21 90.31 93.78 89.50 70.98 90.53 98.83 98.97 81.40 87.11
3 × 3 × 3 only 66.11 88.25 87.32 68.74 93.75 69.98 87.80 89.53 98.87 81.96 83.23
4 × 4 × 3 only 63.43 89.09 86.16 89.06 93.38 60.40 83.53 80.47 97.50 81.03 82.40
ensemble (2&3) 68.05 90.38 90.99 81.24 93.00 60.03 89.17 93.33 99.47 80.93 84.66
ensemble (2&4) 67.08 88.28 90.58 91.29 93.13 59.35 86.83 93.37 97.70 81.36 84.90
ensemble (all) 65.91 89.96 88.90 89.58 92.88 63.91 88.43 94.80 98.03 81.08 85.34

QF= 85

2 × 2 × 3 only 70.66 91.36 90.13 97.19 91.63 50.23 93.07 98.73 99.83 81.22 86.36
3 × 3 × 3 only 62.31 92.17 93.43 97.18 95.75 51.92 94.20 93.83 99.83 82.25 86.29
4 × 4 × 3 only 63.28 92.00 92.80 89.83 93.88 69.66 94.20 91.10 98.70 80.95 86.64
ensemble (2&3) 72.64 91.69 95.10 87.65 95.63 62.68 96.23 98.33 99.80 82.35 88.21
ensemble (2&4) 73.58 92.17 94.92 95.90 94.50 60.58 95.03 96.57 99.50 81.82 88.46
ensemble (all) 72.64 92.46 95.30 95.83 95.75 67.52 96.20 96.53 99.70 82.34 89.43

QF= 95

2 × 2 × 3 only 66.91 92.88 97.65 96.52 95.88 50.00 98.80 99.73 99.97 89.87 88.82
3 × 3 × 3 only 64.90 95.46 97.58 91.92 95.13 50.00 99.20 97.37 99.97 89.27 88.08
4 × 4 × 3 only 63.51 95.81 96.90 88.72 96.38 53.47 98.57 92.70 99.53 85.56 87.16
ensemble (2&3) 67.08 94.29 97.72 92.37 95.88 50.00 99.20 99.17 99.97 91.10 88.68
ensemble (2&4) 68.42 94.25 97.49 93.85 95.63 51.41 98.93 97.67 99.83 88.92 88.64
ensemble (all) 64.42 94.25 97.74 91.06 96.25 51.32 99.23 98.87 99.90 89.42 88.26

best result for each quality factor and present it in the last row of Table 3.
In terms of the average test accuracy across all semantic categories, RGGID
is very close to the two best models, DenseNet and XceptionNet, with only
a 0.06% and 0.58% performance gap, respectively. Although XceptionNet is
able to achieve marginally better performance in this particular experiment,
it is important to point out that XceptionNet is a very deep neural network

Table 3: Test accuracy comparison of different detectors for JPEG compressed images.
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Steganalysis feat. 79.39 90.02 56.66 92.17 73.62 69.39 65.83 95.30 94.73 80.89 81.09
GAN discr. 63.29 91.08 51.90 53.14 88.75 79.35 76.56 80.32 96.41 81.83 73.33
Cozzolino2017 79.57 89.82 53.74 86.81 62.88 89.64 67.67 98.80 99.93 87.33 82.62
Bayar2016 54.64 95.34 50.27 54.00 90.63 52.69 58.90 74.27 99.77 78.60 69.17
Rahmouni2017 84.96 98.35 54.30 57.60 91.88 54.93 96.83 99.63 99.77 89.72 80.97
DenseNet 78.27 93.44 66.94 97.83 98.19 80.45 97.54 98.53 99.57 83.95 88.51
InceptionNet v3 78.60 95.23 64.54 96.09 90.14 63.84 99.53 96.31 100.00 86.21 87.37
XceptionNet 93.52 93.77 67.07 95.11 99.22 67.97 99.66 95.18 99.97 84.02 89.03

RGGID 69.04 91.52 94.42 95.38 93.71 62.83 95.18 98.36 99.55 84.54 88.45
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with more than 22.9M trainable parameters, while RGGID has only 76.2K
trainable parameters.

4.4 Image Resizing Manipulation

Another common image manipulation is resizing. We focus on the scenario
of resizing to lower spatial resolutions, referred to as down-sizing. Since the
down-sizing operation interacts with artifacts arising from up-sampling in
generative models and the differences between real and fake images becomes
obscure, down-sized fake images are more challenging to detect.

There is little work on detecting resized real/fake images. Zhang et al.
[24] chose 4 image sizes and randomly selected one as the target size. They
trained a neural network with CycleGAN and Auto-GAN horse images, and
tested it on other categories. Here, we consider 2 resizing factors (0.5 and
0.75) and conduct experiments under the “Leave-One-Out” setting for all
categories.

Table 4 shows the results for individual filter banks as well as for ensemble
settings. The proposed RGGID method can achieve a maximum accuracy
of 95.45% and 92.84% for resize factors of 0.75 and 0.5, respectively. As
compared with the 99% detection accuracy on raw images in Table 1, the
accuracy degrades by 3.55% and 6.16% for resize factors of 0.75 and 0.5,
respectively. Thus, RGGID is robust with respect to image resizing.

Table 4: Test accuracy of RGGID for resized images.
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0.75

2 × 2 × 3 only 97.89 95.67 99.73 64.83 96.75 99.13 99.87 99.47 99.13 95.92 94.84
3 × 3 × 3 only 95.38 95.84 99.84 79.80 93.13 95.03 99.60 98.97 99.60 97.32 95.45
4 × 4 × 3 only 98.14 98.40 99.47 53.16 99.63 63.77 99.30 97.50 99.83 97.88 90.71
ensemble (2&3) 98.39 96.31 99.91 73.38 94.13 95.62 99.80 99.63 99.56 97.10 95.38
ensemble (all) 98.36 97.06 99.89 73.79 98.88 88.50 99.90 99.33 99.80 97.55 95.31

0.5

2 × 2 × 3 only 95.63 95.48 99.31 50.81 93.25 94.71 99.30 94.60 98.73 87.34 90.92
3 × 3 × 3 only 91.88 96.79 97.99 55.92 95.88 96.35 98.70 94.70 94.00 83.48 90.57
4 × 4 × 3 only 94.51 96.08 97.27 75.39 88.50 90.37 98.50 93.00 97.93 85.65 91.72
ensemble (2&3) 94.69 96.94 99.27 55.98 95.75 98.04 99.17 95.27 98.13 86.64 91.99
ensemble (all) 96.67 96.33 98.84 70.03 92.75 92.61 99.50 95.30 98.47 87.93 92.84

For a resize factor of 0.75, the 3×3×3 filter bank yields the best performance
while the ensemble of the 3× 3× 3 and 2× 2× 3 filter banks yields the second
best performance. For a resize factor of 0.5, individual filter banks are less
effective, and the ensemble of all three filter banks gives the best performance.
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4.5 Additive Gaussian Noise Manipulation

The third image manipulation tested is additive Gaussian noise. Although it
may not be as common as JPEG compression and image resizing in social media,
Gaussian noise could be used to cover up certain weaknesses in synthesized
images. It is essential to demonstrate the robustness of RGGID against
additive Gaussian noise. In our experiments, we normalize the pixel values of
the raw image to [0, 1] and use Gaussian noise with two noise levels (namely,
σ = 0.01 and 0.02) to simulate a realistic scenario in forensics. Because additive
noise introduces additional high-frequency information to the raw image, the
source differences between real and fake images in high-frequency regions are
diminished. This phenomenon is observed in the soft classification performance
shown in Figure 7, where σ = 0.01. Similar to Figure 6, we see that high-
frequency channels are not as discriminant as those in the raw image dataset.
Discriminant channels are shifted from high-frequency to mid-frequency bands.

Figure 7: Soft classification performance of six exemplary semantic categories on noisy
images (σ = 0.01), (a)–(c) uses the 2× 2× 3 filter bank so that the x-axis has 12 channels,
(d)–(f) uses the 3 × 3 × 3 filter bank so that the x-axis has 27 channels. Each subfigure
shows four performance curves: train set AUC (red dashed line), train set ACC (red line),
validation set AUC (green dashed line), and test set ACC (blue line).

Table 5 shows the test accuracy for each semantic category under different
noise levels. When σ = 0.01, RGGID can achieve a maximum average accuracy
of 89.89%, which is approximately a 10% drop as compared to the accuracy
for the raw image dataset. When the noise level is increased to σ = 0.02, noise
in the smooth regions is visible to human eyes, and detection of fake images
becomes more challenging. In this case, the maximum average accuracy of
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Table 5: Test accuracy of RGGID for noisy images.
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σ = 0.01

2 × 2 × 3 only 64.42 91.71 95.96 92.52 95.5 52.24 93.07 99.63 99.83 99.49 88.44
3 × 3 × 3 only 65.27 94.81 99.13 75.29 96.25 52.11 99.27 99.97 99.93 99.88 88.19
4 × 4 × 3 only 59.51 96.13 98.70 53.31 95.62 72.39 98.77 99.90 99.23 98.64 87.22
ensemble (2&3) 64.70 94.69 94.12 93.28 96.38 51.93 97.33 99.63 99.87 99.81 89.17
ensemble (3&4) 64.50 93.73 98.77 92.84 96.38 53.81 99.17 99.83 99.97 99.88 89.89
ensemble (all) 62.39 94.69 94.12 93.28 96.38 53.63 97.73 99.90 99.90 99.81 89.18

σ = 0.02

2 × 2 × 3 only 68.20 90.52 94.80 51.65 90.00 63.96 97.67 98.80 98.90 96.65 85.12
3 × 3 × 3 only 66.08 89.53 96.90 64.84 91.13 65.92 97.53 97.83 98.93 96.58 86.52
4 × 4 × 3 only 69.76 93.17 94.19 51.83 89.13 76.94 95.70 97.83 97.20 97.86 86.36
ensemble (2&3) 67.85 91.84 97.10 53.31 91.13 65.10 97.63 98.07 98.47 96.62 85.71
ensemble (3&4) 65.47 92.50 93.14 64.17 87.50 67.35 96.63 98.87 99.47 98.17 86.32
ensemble (all) 64.23 92.61 94.12 53.34 86.38 63.61 96.20 98.40 99.27 98.17 84.63

RGGID is 86.52% using the 3×3×3 filter bank. Overall, RGGID can maintain
good detection performance against additive Gaussian noise.

5 Analysis

For each of the three aforementioned image manipulations, there are certain
categories for which the performance is significantly lower as compared to the
remaining categories. They are referred to as challenging categories. They
are ap2or and map2sat for JPEG compression, citysc for image resizing, and
ap2or, citysc and map2sat for additive Gaussian noise. We first analyze
the effect of image manipulations in Section 5.1. Next, we propose a new
experimental setting called Leave-None-Out in Section 5.2. We conduct
extensive experiments under the new setting and show that the performance
for the challenging categories can be increased significantly.

5.1 Image Manipulation Analysis

For JPEG compression, the two challenging categories are ap2or and map2sat.
Figure 8 shows examples of original images, the corresponding JPEG com-
pressed images, difference maps between the original and compressed images,
and the spectra for both images. As revealed by the difference maps, we
observe stronger distortion on the ap2or and map2sat images caused by JPEG
compression as compared with hor2zeb and Ukiyoe images, which are con-
sidered easy categories. Furthermore, stronger high-frequency components
of original images in the ap2or and map2sat categories are also revealed by
their spectra (see the fourth column). On one hand, these high-frequency
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Figure 8: Frequency analysis on JPEG compression (QF= 75). We show exemplary images
from hor2zeb, Ukiyoe, ap2or , and map2sat categories (in the 1st column), JPEG compressed
images (in the 2nd column), difference maps between original and JPEG compressed images
(in the 3rd column), spectra of original images (in the 4th column) and spectra of compressed
images (in the 5th column).

components cannot be synthesized well in GAN-fake images. On the other
hand, they are degraded by JPEG compression for both real and fake images
as well. JPEG compression offers a masking effect on the generation artifact
in fake image detection with respect to these two challenging categories.

Similarly, we conduct frequency analysis of image resizing in Figure 9.
Images from the citysc category contain street views from car cameras and
its content contains many vertical edges. As shown in the figure, resizing
introduces stronger vertical distortion on images from the citysc category as
compared to other categories. These vertical edges in raw images offer good
cues for fake image detection. Since these cues are masked by resizing, it
becomes more challenging to differentiate real and fake images.

The same phenomenon is observed for the ap2or, citysc and map2sat
categories under the additive noise manipulation as shown in Figure 10. By
comparing the spectra before and after additive noise, we see that ap2or, citysc
and map2sat images are more affected by additive noise than Cezanne and
win2sum images. It is worthwhile to point out that the difference in spectral
image for the satellite map category is not as obvious as that for the citysc
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Figure 9: Frequency analysis on image resizing (Resize factor= 0.75). We show exemplary
images from citysc, Monet , and facades categories (in the 1st column), resized images (in
the 2nd column), difference maps (in the 3rd column), spectra of original images (in the
4th column) and spectra of resized images (in the 5th column). For ease of comparison, we
resize original images to smaller size and resize them back to original size and compute the
pixel-wise difference between the two to yield the difference map.

category. This is because the satellite map images are much larger in size and
the scales of their spectral images are actually different.

5.2 Leave-None-Out Setting

From analysis in Section 5.1, we see that leaving a specific semantic category
out during training can affect the performance for certain semantic categories
under image manipulation scenarios. For example, if we leave the ap2or
semantic category out in JPEG compression, its performance becomes much
worse as shown in Table 2.

Actually, the Leave-One-Out setting is not practical in real-world forensics.
It is reasonable to assume that we can have access to all semantic category
images when we are confronted with fake image attacks. For this reason,
we propose another experimental setting called Leave-None-Out, where all
semantic categories in the CycleGAN dataset are employed in the training
process. In this setting, we enlarge the training dataset by including 10% of
test category images and use the other 90% of test category images in testing.

Since this setting only includes a small number of test category images in the
training set, we can still examine the detection performance and robustness of
our model with respect to a specific semantic category. We conduct experiments
under the Leave-None-Out setting for each manipulation and show the results
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Figure 10: Frequency analysis on additive Gaussian noise with σ = 0.02. We show exemplary
images from ap2or, map2sat, citysc, Cezanne, and win2sum categories (in the 1st column),
noisy images (in the 2nd column), spectra of original images (in the 3rd column), and spectra
of noisy images (in the 4th column).

in Tables 6, 7, and 8 for JPEG compression, resizing, and additive noise,
respectively. We use ∗ to denote the result under the Leave-None-Out setting.
As compared with the Leave-One-Out setting, we observe a 3–20% test accuracy
increase for the new setting. For example, for image resizing with a resize
factor of 0.5, the test accuracy of RGGID improves from 70.03% to 93.09% for
the citysc category with an ensemble of all three filter banks.

5.3 Model Size, Computational Complexity and Weak Supervision

The proposed RGGID method is a green solution since it has low computational
and memory complexity and it can achieve high performance with weak
supervision as discussed below.
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Table 6: Test accuracy for JPEG-compressed images under the Leave-None-Out setting.

Setting ap2or map2sat ap2or∗ map2sat∗

QF = 75

2× 2× 3 only 67.58 70.98 72.30 79.21
3× 3× 3 only 66.11 69.98 68.74 66.18
4× 4× 3 only 63.43 60.40 66.36 74.85

ensemble (2&3) 68.05 60.03 72.19 69.62
ensemble (2&4) 67.08 59.35 72.27 74.29
ensemble (all) 65.91 63.91 72.16 74.85

QF = 85

2× 2× 3 only 70.66 50.23 77.21 71.55
3× 3× 3 only 62.31 51.92 72.46 73.63
4× 4× 3 only 63.28 69.66 70.25 77.43

ensemble (2&3) 72.64 62.68 76.35 72.16
ensemble (2&4) 73.58 60.58 76.88 70.59
ensemble (all) 72.64 67.52 76.38 70.59

QF = 95

2× 2× 3 only 66.91 50.00 87.09 69.23
3× 3× 3 only 64.90 50.00 84.08 75.11
4× 4× 3 only 63.51 53.47 81.46 66.23

ensemble (2&3) 67.08 50.00 86.78 76.19
ensemble (2&4) 68.42 51.41 86.59 78.26
ensemble (all) 64.42 51.32 86.70 77.01

Table 7: Test accuracy for resized images under the Leave-None-Out setting.

Setting citysc. citysc.∗

Resize factor 0.75

2× 2× 3 only 64.83 97.48
3× 3× 3 only 79.80 99.05
4× 4× 3 only 53.16 98.58

ensemble (2&3) 73.38 99.38
ensemble (all) 73.79 99.85

Resize factor 0.5

2× 2× 3 only 50.81 82.85
3× 3× 3 only 55.92 67.59
4× 4× 3 only 75.39 91.24

ensemble (2&3) 55.98 83.69
ensemble (all) 70.03 93.09
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Table 8: Test accuracy for noisy images under the Leave-None-Out setting.

Setting ap2or citysc. map2sat ap2or∗ citysc.∗ map2sat∗

σ = 0.01

2× 2× 3 only 64.42 92.52 52.24 73.58 81.18 88.63
3× 3× 3 only 65.27 75.29 52.11 78.90 84.67 81.55
4× 4× 3 only 59.51 53.31 72.39 69.37 96.39 90.77

ensemble (2&3) 64.70 93.28 51.93 75.56 81.18 83.71
ensemble (3&4) 64.50 92.84 53.81 76.39 84.67 79.33
ensemble (all) 62.39 93.28 53.63 72.07 81.18 83.71

σ = 0.02

2× 2× 3 only 68.20 51.65 63.96 72.76 85.15 72.47
3× 3× 3 only 66.08 64.84 65.92 77.30 78.47 81.83
4× 4× 3 only 69.76 51.83 76.94 73.84 94.75 86.42

ensemble (2&3) 67.85 53.31 65.10 76.59 73.63 76.01
ensemble (3&4) 65.47 64.17 67.35 77.21 78.47 88.42
ensemble (all) 64.23 53.34 63.61 79.91 73.63 83.14

5.3.1 Model Size Comparison

We compute the model size for each component in Table 9. The model param-
eters of RGGID include PixelHop filter parameters, soft classifier parameters,
and ensemble classifier parameters. The number of soft classifier parameters is
proportional to the number of selected channels. For example, for individual
filter banks, if the filter size is s× s× c and the selected channel number is k,
the number of PixelHop filter parameters is s2 × c× k. For ensemble schemes,
to obtain the total number of PixelHop filter parameters, we sum across the
filter banks in the ensemble. For the soft classifier parameters, we train each

Table 9: Model size breakdown.

Ensemble No. of No. of No. of No. of Total No.
scheme PixelHop selected soft ensemble of

filter channels classifier classifier parameters
parameters parameters parameters

2× 2× 3 only 12× 12 4 76k 40 76.2k
3× 3× 3 only 27× 27 4 76k 40 76.8k
4× 4× 3 only 48× 48 4 76k 40 78.3k
ensemble (2&3) 873 8 152k 40 152.9k
ensemble (3&4) 3033 8 152k 40 155k
ensemble (2&4) 2448 8 152k 40 154.4k
ensemble (all) 3177 12 228k 40 231.2k
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Table 10: Model size comparison.
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Number of parameters 1.0M 22.9M 23.8M 1k 21.8M 730k 76.2k

XGBoost classifier with 100 trees, and each tree has a maximum depth of
6. The total number of soft classifier parameters is equal to the number of
channels multiplied by 19k. The ensemble classifier is a shallow XGBoost
classifier with only 10 trees and each tree has a depth of 1. Thus, the number
of ensemble classifier parameters is 40. For the various settings, we see that
the model size ranges from 76.2k to 231.2k parameters.

The model sizes of other state-of-the-art fake image detection models on the
raw CycleGAN dataset are given in Table 10. DNN models such as DenseNet,
InceptionNet and XceptionNet have millions of parameters. A shallow CNN
that has two convolutional layers and one fully connected layer was introduced
by Cozzolino et al. [8]. Its model has only 1k parameters. Auto-Spec [24] uses
ResNet-34 as a classification network and has 21.8M parameters. Nataraj et
al. [18] used a neural network for feature extraction and classification, and its
model size is 730k. In contrast, RGGID has a minimum of 76.2k parameters
(with the 2× 2× 3 filter bank) and a maximum of 231.2k parameters (with
the ensemble of all three filter banks). Its model size is significantly smaller
than those of DNNs.

5.3.2 Computational Complexity

We measure the training time from scratch on CPU Intel(R) Core(TM) i7-
5930K CPU @ 3.50GHz. The average training time for each category is 1.9
hours, yielding a total training time of 19 hours for all 10 categories. Other
existing models need GPU and they often rely on pre-trained models.

5.3.3 Weak Supervision

As reported in Table 1, RGGID can achieve an accuracy of 99.0% on the raw
image dataset based on 10% of training images from each training category.
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Figure 11: The test accuracy as a function of different percentages of the total training
images.

We also conducted experiments using only 1%, 2%, · · · , 8% and 9% of training
data from each semantic category and show the corresponding test accuracies
in Figure 11 for the 2× 2× 3 filter bank. Its test accuracy reaches 93% even
with 1% of the original training images. It converges to 99% using only 5% of
the original training images. This shows that RGGID can perform well even
under extremely weak supervision.

6 Conclusion and Future Work

A green and robust GAN-fake image detector called RGGID was proposed in
this work. It was developed under the assumption that GANs fail to generate
high-frequency components of real images in high fidelity. Thus, it focuses on
complex local regions that have high-frequency components and employs a set of
local filters, called filter banks or PixelHops, to extract features. Discriminant
channels were identified and their responses were used as features and fed into
the XGBoost classifier for soft decision. Finally, various ensemble schemes
were adopted to make RGGID adaptive to different semantic categories and
robust with respect to compression, resize and additive noise manipulations. It
was shown by experimental results that RGGID can maintain good detection
performance against these manipulations.

The robustness of RGGID was conducted against the CycleGAN dataset
in this work. As future extension, it is interesting to test the robustness of
RGGID against different GANs in a cross-GAN setting. That is, we may train
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the RGGID model solely on real images and ProGAN fake images and then
test it on images generated by other GANs.
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