
APSIPA Transactions on Signal and Information Processing, 2022, 11, e27
This is an Open Access article, distributed under the terms of the Creative Commons 
Attribution licence (http:// creativecommons.org/ licenses/ by-nc/ 4.0/ ), which permits un-
restricted re-use, distribution, and reproduction in any medium, for non-commercial use, 
provided the original work is properly cited.

Original Paper

UHP-SOT++: An Unsupervised
Lightweight Single Object Tracker
Zhiruo Zhou1∗, Hongyu Fu1, Suya You2 and C.-C. Jay Kuo1

1University of Southern California, Los Angeles, CA, USA
2DEVCOM Army Research Laboratory, Adelphi, MD, USA

ABSTRACT

An enhanced version of UHP-SOT called UHP-SOT++ is proposed for
unsupervised, lightweight and high-performance single object tracking in
this work. Both UHP-SOT and UHP-SOT++ exploit the discriminative-
correlation-filters-based (DCF-based) tracker as their baseline and in-
corporate two new ingredients: (1) background motion modeling and
(2) object box trajectory modeling. Their difference lies in the fusion
strategy of proposals from three models (i.e., DCF, background mo-
tion and object box trajectory models). An improved fusion strategy
is adopted by UHP-SOT++ for robust tracking performance against
large-scale tracking datasets. Extensive evaluation of state-of-the-art
supervised/unsupervised deep and unsupervised lightweight trackers
is conducted on four SOT benchmark datasets – OTB2015, TC128,
UAV123 and LaSOT. UHP-SOT++ achieves outstanding tracking per-
formance with a small model size and low computational complexity
(i.e., operating at a rate of 20 FPS on an i5 CPU even without code
optimization). UHP-SOT++ offers an ideal solution in real-time object
tracking on resource-limited platforms. Finally, we compare the pros and
cons of supervised deep trackers and unsupervised lightweight trackers
and provide a new perspective to their performance gap.

Keywords: Object tracking, online tracking, single object tracking, unsu-
pervised tracking.

∗Corresponding author: Zhiruo Zhou, zhiruozh@usc.edu.

Received 9 May 2022; Revised 17 July 2022
ISSN 2048-7703; DOI 10.1561/116.00000008
© 2022 Z. Zhou, H. Fu, S. You and C.-C. J. Kuo

http://creativecommons.org/licenses/by-nc/4.0/


2 Zhou et al.

1 Introduction

Video object tracking is one of the fundamental computer vision problems. It
finds rich applications in video surveillance [49], autonomous navigation [21],
robotics vision [52], etc. Given a bounding box on the target object at the first
frame, a tracker has to predict object box locations and sizes for all remaining
frames in online single object tracking (SOT) [51]. The performance of a
tracker is measured by accuracy (higher success rate), robustness (automatic
recovery from tracking loss), computational complexity and speed (a higher
number of frames per second of FPS).

Online trackers can be categorized into supervised and unsupervised
ones [16]. Supervised/unsupervised trackers based on deep learning, called
deep trackers, dominate the SOT field in recent years. The great majority
of deep trackers are supervised one. Yet, there are modern unsupervised
deep trackers trained by a large amount of data offline developed recently.
Examples include ULAST [36], USOT [53], UDT+ [42], LUDT [43] and
ResPUL [47].

Deep trackers often use a pre-trained network such as AlexNet [22] or VGG
[7] as the feature extractor and do online tracking with extracted deep features
[5, 9, 13, 29, 34, 38, 44]. Others adopt an end-to-end optimized model trained
by video datasets in an offline manner [23, 24] and could be adapted to video
frames in an online fashion [28, 32, 33, 37]. The tracking problem is formulated
as a template matching problem in Siamese trackers [4, 18, 23, 24, 39, 46, 55],
which is popular because of its simplicity and effectiveness. One recent trend
is to apply the Vision Transformer in visual tracking [8, 45].

Although deep trackers offer state-of-the-art tracking accuracy, they do
have some limitations. First, they demand large memory space to store
the parameters of deep networks due to large model sizes. Second, the high
computational power requirement hinders their applications in resource-limited
devices such as drones or mobile phones. Third, deep trackers need to be trained
with video samples of diverse content. Their capability in handling unseen
objects appears to be limited, which will be illustrated in the experimental
section. Last, for supervised deep trackers, a large number of annotated
tracking video clips are needed in the training, which is a laborious and costly
task. In contrast with deep trackers, unsupervised lightweight trackers are
attractive in real-time tracking on resource-limited devices because of lower
power consumption.

Unsupervised lightweight SOT methods often use discriminative correlation
filters (DCFs). They were investigated between 2010 and 2020 [3, 6, 10, 12, 13,
20, 25, 26, 40, 50]. DCF trackers conduct dense sampling around the object
box and solve a regression problem to learn a template for similarity matching.
Under the periodic sample assumption, matching can be conducted very fast in
the Fourier domain. Spatial-temporal regularized correlation filters (STRCF)



UHP-SOT++: An Unsupervised Lightweight Single Object Tracker 3

[25] adds spatial-temporal regularization to template update and performs
favorably against other DCF trackers [9, 11].

An unsupervised lightweight tracker, called UHP-SOT (Unsupervised High-
Performance Single Object Tracker), was recently proposed in [54] to address
the issues. UHP-SOT used STRCF as the baseline and incorporated two
new modules – background motion modeling and trajectory-based object
box prediction. A simple fusion rule was adopted by UHP-SOT to integrate
proposals from three modules into the final one. UHP-SOT has the potential to
recover from tracking loss and offer flexibility in object box adaptation. UHP-
SOT outperforms previous unsupervised single object trackers and narrows
down the gap between unsupervised and supervised trackers. It achieves
comparable performance against deep trackers on small-scale datasets such as
TB-50 and TB-100 (or OTB 2015) [48].

This work is an extension of UHP-SOT with new contributions. First, the
fusion strategies in UHP-SOT and UHP-SOT++ are different. The fusion
strategy in UHP-SOT was simple and ad hoc. UHP-SOT++ adopts a fusion
strategy that is more systematic and well justified. It is applicable to both
small- and large-scale datasets with more robust and accurate performance.
Second, this work conducts more extensive experiments on four object track-
ing benchmarks (i.e., OTB2015, TC128, UAV123 and LaSOT) while only
experimental results on OTB2015 were reported for UHP-SOT in [54]. New ex-
perimental evaluations demonstrate that UHP-SOT++ outperforms previous
unsupervised SOT methods (including UHP-SOT) and achieves comparable
results with deep trackers on large-scale datasets. Since UHP-SOT++ has an
extremely small model size, high tracking performance, and low computational
complexity (operating at a rate of 20 FPS on an i5 CPU even without code
optimization), it is ideal for real-time object tracking on resource-limited plat-
forms. Finally, we compare pros and cons of SiamRPN++ and UHP-SOT++
trackers, which serve as an example of the supervised deep tracker and the
unsupervised lightweight tracker, respectively, and provide a new perspective
to their performance gap.

The rest of this paper is organized as follows. Related work is reviewed in
Section 2. The UHP-SOT++ method is detailed in Section 3. Experimental
results are shown in Section 4. Further discussion is provided in Section 5.
Concluding remarks are given in Section 6.

2 Related Work

2.1 Visual Tracking

One popular class of unsupervised visual trackers conducts template matching
within a search region to generate the response map for object location. The



4 Zhou et al.

matched template in the next frame is centered at the location that has the
highest response. A representative tracker of this class is the DCF tracker.
In DCF, the template size is the same as that of the search region so that
the Fast Fourier Transform (FFT) could be used to speed up the correlation
process. To learn the template, a DCF uses the initial object patch to obtain
a linear template via regression in the Fourier domain:

argmin
f

1

2
∥

D∑
d=1

xd ∗ fd − y∥2, (1)

where f is the template to be determined, x ∈ RNx×Ny×D is the spatial map
of D features extracted from the object patch, ∗ is the feature-wise spatial
convolution, and y ∈ RNx×Ny is a centered Gaussian-shaped map that serves
as the regression label. Templates in DCFs tend to contain some background
information. Furthermore, there exists boundary distortion caused by the
2D Fourier transform. To alleviate these side effects, it is often to weigh
the template with a window function to suppress background and image
discontinuity.

Unsupervised and supervised deep trackers often adopt the Siamese network
as their backbone. The two branches of the Siamese network conduct feature
extraction for the template and the search region, respectively. Usually, the
object patch of the first frame serves as the template for search in all later
frames. Then, the two feature maps are passed to a convolutional layer for
correlation calculation to locate the object. The shape and size of the predicted
object bounding box are determined by the regional proposal network inside
the Siamese network.

2.2 Unsupervised Deep Trackers

There is an increasing interest in learning deep trackers from offline videos
without annotations [41]. For example, UDT+ [42] and LUDT [43] investigated
cycle learning in video, in which networks are trained to track forward and
backward with consistent object proposals. ResPUL [47] mined positive and
negative samples from unlabeled videos and leveraged them for supervised
learning in building spatial and temporal correspondence. These unsupervised
deep trackers reveal a promising direction in exploiting offline videos without
annotations. Yet, they are limited in performance. Furthermore, they need the
pre-training effort. In contrast, no pre-training on offline datasets is needed in
our unsupervised tracker. Recently, an effective data sampling strategy, which
samples moving objects in offline training using optical flow and dynamic
programming, was adopted by USOT in [53]. The motion cue was leveraged by
USOT for object tracking. The difference between USOT and UHP-SOT/UHP-
SOT++ is that USOT uses motion to mine samples offline with dense optical



UHP-SOT++: An Unsupervised Lightweight Single Object Tracker 5

flow while we focus on online object tracking with lightweight motion processing.
The recent state-of-the-art ULAST [36] improves the cycle training process by
further exploiting intermediate training frames and selecting better features
and pseudo labels. Yet, it does not target at lightweight applications and still
needs heavy backbones and pre-training.

2.3 Spatial-Temporal Regularized Correlation Filters

STRCF is a DCF-based tracker. It has an improved regression objective
function using spatial-temporal regularization. The template is initialized at
the first frame. Suppose that the object appearance at frame t is modeled by
a template, denoted by ft, which will be used for similarity matching at frame
(t+ 1). By modifying Equation (1), STRCF updates its template at frame t
by solving the following regression equation:

argmin
f

{1

2
∥

D∑
d=1

xd
t ∗ fd − y∥2 + 1

2

D∑
d=1

∥w · fd∥2 + µ

2
∥f − ft−1∥2

}
, (2)

where w is the spatial weight on the template, ft−1 is the template obtained
from time t − 1, and µ is a constant regularization coefficient. We can
interpret the three terms in Equation (2) as follows. The first term is the
standard regression objective function of a DCF. The second term imposes the
spatial regularization. It gives more weights to features in the center region
of a template in the matching process. The third term imposes temporal
regularization for smooth appearance change.

To search for the box in frame (t+ 1), STRCF correlates template ft with
the search region and determines the new box location by finding the location
that gives the highest response. Although STRCF can model the appearance
change for general sequences, it suffers from overfitting. That is, it is not able
to adapt to largely deformed objects quickly. Furthermore, it cannot recover
from tracking loss. The template model, f , is updated at every frame with a
fixed regularization coefficient, µ, in standard STRCF.

There is a performance gap between supervised/unsupervised deep trackers
and unsupervised DCF trackers. It is attributed to the limitations of DCF
trackers such as failure to recover from tracking loss and inflexibility in object
box adaptation. Our UHP-SOT++ adopts STRCF as a building module.
To address the above-mentioned shortcomings, we have some modification
in our implementation. First, we skip updating f if no obvious motion is
observed. Second, a smaller µ is used when all modules agree with each other
in prediction so that f can adapt to the new appearance of largely deformed
objects faster.



6 Zhou et al.

3 Proposed UHP-SOT++ Method

3.1 System Overview

There are three main challenges in SOT:

1. significant change of object appearance,

2. loss of tracking,

3. rapid variation of object’s location and/or shape.

We propose a new tracker, UHP-SOT++, to address these challenges, As
shown in Figure 1, it consists of three modules:

1. appearance model update,

2. background motion modeling,

3. trajectory-based box prediction.

UHP-SOT++ follows the classic tracking-by-detection paradigm where the
object is detected within a region centered at its last predicted location at each
frame. The histogram of oriented gradients (HOG) features as well as the color
names (CN) [14] features are extracted to yield the feature map. We choose
the STRCF tracker [25] as the baseline because of its efficient and effective
appearance modeling and update. Yet, STRCF cannot handle the second and
the third challenges well because it only focuses on the modeling of object
appearance which could vary a lot across different frames. Generally, the high
variety of object appearance is difficult to capture using a single model. Thus,
we propose the second and the third modules in UHP-SOT++ to enhance
its tracking accuracy. UHP-SOT++ operates in the following fashion. The

Figure 1: The system diagram of the proposed UHP-SOT++ method. It shows one example
where the object was lost at time t− 1 but gets retrieved at time t because the proposal
from background motion modeling is accepted.



UHP-SOT++: An Unsupervised Lightweight Single Object Tracker 7

baseline tracker gets initialized at the first frame. For the following frames,
UHP-SOT++ gets proposals from all three modules and merges them into the
final prediction based on a fusion strategy.

The STRCF tracker was already discussed in Section 2.3. For the rest of
this section, we examine the background motion modeling module and the
trajectory-based box prediction module in UHP-SOT in Sections 3.2 and 3.3,
respectively. Finally, we will elaborate on the fusion strategy in Section 3.4.
Note that the fusion strategies of UHP-SOT and UHP-SOT++ are completely
different.

3.2 Background Motion Modeling

We decompose the pixel displacement between adjacent frames (also called
optical flow) into two types: object motion and background motion. Back-
ground motion is usually simpler, and it may be fit by a parametric model.
Background motion estimation [1, 17] finds applications in video stabilization,
coding and visual tracking. Here, we propose a 6-parameter model in form of

xt+1 = α1xt + α2yt + α0, (3)
yt+1 = β1xt + β2yt + β0, (4)

where (xt+1, yt+1) and (xt, yt) are corresponding background points in frames
(t + 1) and t, respectively, and αi and βi, i = 0, 1, 2 are model parameters.
With more than three pairs of corresponding points, we can determine the
model parameters using the linear least-squares method. Usually, we choose
a few salient points (e.g., corners) to build the correspondence. We apply
the background model to the grayscale image It(x, y) of frame t to find the
estimated Ît+1(x, y) of frame (t + 1). Then, we can compute the difference
map ∆I:

∆I = Ît+1(x, y)− It+1(x, y), (5)
which is expected to have small and large absolute values in the background
and foreground regions, respectively. Thus, we can determine potential object
locations.

While DCF trackers exploit foreground correlation to locate the object,
background modeling uses background correlation to eliminate background
influence in object tracking. They complement each other. DCF trackers
cannot recover from tracking loss easily since it does not have a global view
of the scene. In contrast, our background modeling can find potential object
locations by removing background.

3.3 Trajectory-based Box Prediction

Given the predicted box centers of the object of the last N frames, {(xt−N , yt−N ),
. . . , (xt−1, yt−1)}, we calculateN−1 displacement vectors {(∆xt−N+1,∆yt−N+1),



8 Zhou et al.

. . . , (∆xt−1,∆yt−1)} and apply the principal component analysis (PCA) to
them. To predict the displacement at frame t, we fit the first principal
component using a line and set the second principal component to zero
to remove noise. Then, the center location of the box at frame t can be
written as

(x̂t, ŷt) = (xt−1, yt−1) + (∆̂xt, ∆̂yt). (6)

Similarly, we can estimate the width and the height of the box at frame t,
denoted by (ŵt, ĥt). Typically, the physical motion of an object has an inertia
in motion trajectory and its size, and the box prediction process attempts
to maintain the inertia. It contributes to better tracking performance in two
ways. First, it removes small fluctuation of the box in its location and size.
Second, when there is a rapid deformation of the target object, the appearance
model alone cannot capture the shape change effectively. In contrast, the
combination of background motion modeling and the trajectory-based box
prediction can offer a more satisfactory solution. For example, Figure 2, shows
a frame of the diving sequence in the upper-left subfigure, where the green
and the magenta boxes are the ground truth and the result of UHP-SOT++,
respectively. Although a DCF tracker can detect the size change by comparing
correlation scores at five image resolutions, it cannot estimate the aspect
ratio change properly. In contrast, as shown in the lower-left subfigure, the

Figure 2: Illustration of shape change estimation based on background motion model and
trajectory-based box prediction, where the ground truth and our proposal are annotated in
green and magenta, respectively.



UHP-SOT++: An Unsupervised Lightweight Single Object Tracker 9

residual image after background removal in UHP-SOT++ reveals the object
shape. By summing up absolute pixel values of the residual image horizon-
tally and vertically and using a threshold to determine two ends of the box,
we have

ŵ = xmax − xmin, and ĥ = ymax − ymin. (7)

Note that raw estimates may not be stable across different frames. Estimates
that deviate much from the trajectory of (∆wt,∆ht) are rejected to yield a
robust and deformable box proposal.

3.4 Fusion Strategy

We have three box proposals for the target object at frame t: (1) Bapp from
the baseline STRCF tracker to capture appearance change, (2) Bbgd from the
background motion predictor to eliminate unlikely object regions, and (3) Btrj

from the trajectory predictor to maintain the inertia of the box position and
size. A fusion strategy is needed to yield the final box location and size. We
consider a couple of factors for its design.

3.4.1 Proposal Quality

There are three box proposals. The quality of each box proposal can be
measured by: (1) object appearance similarity, and (2) robustness against the
trajectory. We use a binary flag to indicate whether the quality of a proposal
is good or not. As shown in Table 1, the flag is set to one if a proposal keeps
proper appearance similarity and is robust against trajectory. Otherwise, it is
set to zero.

For the first measure, we store two appearance models: the latest model,
ft−1, and an older model, fi, i ≤ t−1, where i is the last time instance where all
three boxes have the same location. Model fi is less likely to be contaminated
since it needs agreement from all modules. To check the reliability of the three
proposals, we compute correlation scores for the following six pairs: (ft−1,
Bapp), (ft−1, Btrj), (ft−1, Bbgd), (fi, Bapp), (fi, Btrj), and (fi, Bbgd). They
provide appearance similarity measures of the two previous models against the
current three proposals. A proposal has good similarity if one of its correlation
scores is higher than a threshold.

For the second measure, if Bapp and Btrj have a small displacement (say,
30 pixels) from the last prediction, the move is robust. As to Bbgd, it often
jumps around and, thus, is less reliable. However, if the standard deviations
of its historical locations along the x-axis and y-axis are small enough (e.g.,
30 pixels over the past 10 frames), then they are reliable.



10 Zhou et al.

3.4.2 Occlusion Detection

We propose an occlusion detection strategy for color images, which is illustrated
in Figure 3. As occlusion occurs, we often observe a sudden drop in the
similarity score and a rapid change on the averaged RGB color values inside
the box. A drop is sudden if the mean over the past several frames is high while
the current value is significantly lower. If this is detected, we keep the new
prediction the same as the last predicted position since the new prediction is
unreliable. We do not update the model for this frame either to avoid drifting
and/or contamination of the appearance model.

Figure 3: Illustration of occlusion detection, where the green box shows the object location.
The color information and similarity score could change rapidly if occlusion occurs.

3.4.3 Rule-based Fusion

Since each of the three proposals has a binary flag, all tracking scenarios can
be categorized into 8 cases as shown in Figure 4. We propose a fusion scheme
for each case below.

Figure 4: An example of quality assessment of proposals, where the green box is the
ground truth, and yellow, blue and magenta boxes are proposals from Bapp, Btrj and Bbgd,
respectively, and the bright yellow text on the top-left corner denotes the quality of three
proposals (isGoodapp, isGoodtrj , isGoodbgd).



UHP-SOT++: An Unsupervised Lightweight Single Object Tracker 11

• When all three proposals are good, their boxes are merged together as a
minimum covering rectangle if they overlap with each other with IoU
above a threshold. Otherwise, Bapp is adopted.

• When two proposals are good, merge them if they overlap with each other
with IoU above a threshold. Otherwise, the one with better robustness
is adopted.

• When one proposal is good, adopt that one if it is Bapp. Otherwise, that
proposal is compared with Bapp to verify its superiority by observing a
higher similarity score or better robustness.

• When all proposals have poor quality, the occlusion detection process is
conducted. The last prediction is adopted in case of occlusion. Otherwise,
Bapp is adopted.

• When other proposals outperform Bapp, the regularization coefficient, µ,
is adjusted accordingly for stronger update. Because this might reveal
that the appearance model needs to be updated more to capture the
new appearance.

The fusion rule is summarized in Table 1. In most cases, Bapp is reliable and
it will be chosen or merged with other proposals because the change is smooth
between adjacent frames in the great majority of frames in a video clip.

Table 1: All tracking scenarios are classified into 8 cases in terms of the overall quality of
proposals from three modules. The fusion strategy is set up for each scenario. The update
rate is related the regularization coefficient, µ, that controls to which extent the appearance
model should be updated.

isGoodapp isGoodtrj isGoodbgd Proposal to take Update rate

1 1 1 Bapp or union of three Normal
1 1 0 Bapp or Btrj or union

of two
Normal

1 0 1 Bapp or Bbgd or union
of two

Normal

0 1 1 Btrj or Bbgd or union
of two

Normal or stronger

1 0 0 Bapp Normal
0 1 0 Bapp or Btrj Normal or stronger
0 0 1 Bapp or Bbgd Normal or stronger
0 0 0 Bapp or last prediction

in case of occlusion
Normal or weaker



12 Zhou et al.

4 Experiments

4.1 Experimental Set-up

To show the performance of UHP-SOT++, we compare it with several state-
of-the-art unsupervised and supervised trackers on four single object tracking
datasets. They are OTB2015 [48], TC128 [27], UAV123 [31] and LaSOT [15].
OTB2015 (also named OTB in short) and TC128, which contain 100 and 128
color or grayscale video sequences, respectively, are two widely used small-scale
datasets. UAV123 is a larger one, which has 123 video sequences with more
than 110K frames in total. Videos in UAV123 are captured by low-altitude
drones. They are useful in the tracking test of small objects with a rapid
change of viewpoints. LaSOT is the largest single object tracking dataset
that targets at diversified object classes and flexible motion trajectories in
longer sequences. It has one training set with dense annotation for supervised
trackers to learn and another test set for performance evaluation. The test set
contains 280 videos of around 685K frames.

Performance evaluation is conducted using the “One Pass Evaluation (OPE)”
protocol. The metrics include the precision plot (i.e., the distance of the
predicted and actual box centers) and the success plot (i.e., overlapping ratios
at various thresholds). The distance precision (DP) is measured at the 20-pixel
threshold to rank different methods. The overlap precision is measured by
the area-under-curve (AUC) score. We use the same hyperparameters as
those in STRCF except for regularization coefficient, µ. If the appearance
box is not chosen, STRCF sets µ = 15 while UHP-SOT++ selects µ ∈
{15, 10, 5, 0}. The smaller µ is, the stronger the update is. The number of
previous frames for trajectory prediction is N = 20. The cutting threshold
along the horizontal or vertical direction is set 0.1. The threshold for good
similarity score is 0.08, and a threshold of 0.5 for IoU is adopted. UHP-SOT++
runs at 20 frames per second (FPS) on a PC equipped with an Intel(R)
Core(TM) i5-9400F CPU. The speed data of other trackers are either from
their original papers or benchmarks. Since no code optimization is conducted,
all reported speed data should be viewed as lower bounds for the corresponding
trackers.

4.2 Ablation Study

We compare different configurations of UHP-SOT++ on the TC128 dataset
to investigate contributions from each module in Figure 5. As compared with
UHP-SOT, improvements on both DP and AUC in UHP-SOT++ come from
the new fusion strategy. Under this strategy, the background motion modeling
plays an more important role and it has comparable performance even without
the trajectory prediction. Although the trajectory prediction module is simple,



UHP-SOT++: An Unsupervised Lightweight Single Object Tracker 13

it contributes a lot to higher tracking accuracy and robustness as revealed by
the performance improvement over the baseline STRCF.

Figure 5: The precision plot and the success plot of our UHP-SOT++ tracker with different
configurations on the TC128 dataset, where the numbers inside the parentheses are the DP
values and AUC scores, respectively.

More performance comparison between UHP-SOT++, UHP-SOT and
STRCF is presented in Table 2. As compared with STRCF, UHP-SOT++
achieves 1.8%, 6.2%, 6.7%, and 6.8% gains in the success rate on OTB,
TC128, UAV123 and LaSOT, respectively. As to the mean precision, it has
an improvement of 1.2%, 6.9%, 7.2%, and 10.4%, respectively. Except for
OTB, UHP-SOT++ outperforms UHP-SOT in both the success rate and
the precision. This is especially obvious for large-scale datasets. Generally,

Table 2: Comparison of state-of-the-art supervised and unsupervised trackers on four
datasets, where the performance is measured by the distance precision (DP) and the area-
under-curve (AUC) score in percentage. The model size is measured in MB by the memory
required to store needed data such as the model parameters of pre-trained networks. The
best unsupervised performance is highlighted. Also, S, P, G and C indicate Supervised,
Pre-trained, GPU and CPU, respectively.

OTB2015 TC128 UAV123 LaSOT Model

Trackers Year S P DP AUC DP AUC DP AUC DP AUC FPS size

SiamRPN++[23] 2019 ✓ ✓ 91.0 69.2 - - 84.0 64.2 49.3 49.5 35 (G) 206
ECO[9] 2017 ✓ ✓ 90.0 68.6 80.0 59.7 74.1 52.5 30.1 32.4 10 (G) 329
UDT+[42] 2019 × ✓ 83.1 63.2 71.7 54.1 - - - - 55 (G) < 1

LUDT[43] 2020 × ✓ 76.9 60.2 67.1 51.5 - - - 26.2 70 (G) < 1

ResPUL[47] 2021 × ✓ - 58.4 - - - - - - - (G) > 6

USOT[53] 2021 × ✓ 80.6 58.9 - - - - 32.3 33.7 - (G) 113

ULAST[36] 2022 × ✓ 81.1 61.0 - - - - 40.7 43.3 80 (G) -
ECO-HC[9] 2017 × × 85.0 63.8 75.3 55.1 72.5 50.6 27.9 30.4 42 (C) < 1

STRCF[25] 2018 × × 86.6 65.8 73.5 54.8 67.8 47.8 29.8 30.8 24 (C) < 1

UHP-SOT[54] 2021 × × 90.9 68.9 77.4 57.4 71.0 50.1 31.1 32.0 23 (C) < 1

UHP-SOT++ Ours × × 87.6 66.9 78.6 58.2 72.7 51.0 32.9 32.9 20 (C) < 1



14 Zhou et al.

UHP-SOT++ has better tracking capability than UHP-SOT. Its performance
drop in OTB is due to the tracking loss in three sequences; namely, Bird2,
Coupon and Freeman4. They have multiple complicated appearance changes
such as severe rotation, background clutter and heavy occlusion. As shown
in Figure 6, errors at some key frames lead to total loss of the object, and
the lost object cannot be easily recovered from motion. The trivial fusion
strategy based on appearance similarity in UHP-SOT seems to work well on
their key frames while the fusion strategy of UHP-SOT++ does not suppress
wrong proposals properly since background clutters have stable motion and
trajectories as well.

Figure 6: Failure cases of UHP-SOT++ (in green) as compared to UHP-SOT (in red) on
OTB2015.

4.3 Comparison with State-of-the-art Trackers

We compare the performance of UHP-SOT++ and several unsupervised track-
ers for the LaSOT dataset in Figure 7. The list of benchmarking methods
includes: USOT [53], ECO-HC [9], STRCF [25], CSR-DCF [2], SRDCF
[11], Staple [3], KCF [20], DSST [12]. UHP-SOT++ achieves comparable
performance with the state-of-the-art deep unsupervised USOT that has the
ResNet-50 [19] backbone network and large-scale offline training. UHP-SOT++
outperforms DCF-based unsupervised methods by a large margin, which is
larger than 0.02 in the mean scores of the success rate and the precision. Be-
sides, its running speed is 20 FPS, which is comparable with that of the third
runner STRCF (24 FPS) and the fourth runner ECO-HC (42 FPS). With a
small increase in computational and memory resources, UHP-SOT++ gains in
tracking performance by adding object box trajectory and background motion
modeling modules. Object boxes of three leading DCF-based unsupervised
trackers are visualized in Figure 8 for qualitative performance comparison.
More comparison with other unsupervised methods including LADCF [50],



UHP-SOT++: An Unsupervised Lightweight Single Object Tracker 15

Figure 7: The success plot and the precision plot of ten unsupervised tracking methods for
the LaSOT dataset, where the numbers inside the parentheses are the overlap precision and
the distance precision values, respectively.

UDT [42], UDT+ [42] over other benchmark datasets is shown in Figure 9. As
compared with other methods, UHP-SOT++ offers more robust and flexible
box prediction. They follow tightly with the object in both location and shape
even under challenging scenarios such as motion blur and rapid shape change.

We compare the success rates of UHP-SOT++ and several supervised and
unsupervised trackers against all four datasets in Figure 9. Note that there
are more benchmarking methods for OTB but fewer for TC128, UA123 and
LaSOT since OTB is an earlier dataset. The supervised deep trackers under
consideration include SiamRPN++ [23], ECO [9], C-COT [13], DeepSRDCF
[11], HDT [16], SiamFC_3s [4], CFNet [40], and LCT [30]. Other deep trackers
that have leading performance but are not likely to be used on resource-limited
devices due to their extremely high complexity, such as transformer-based
trackers [8, 45], are not included here. Although the performance of a tracker
may vary from one dataset to the other due to different video sequences
collected by each dataset, UHP-SOT++ is among the top runners in all four
datasets. This demonstrates the generalization capability of UHP-SOT++.
Its better performance than ECO on LaSOT indicates a robust and effective
update of the object model. Otherwise, it would degrade quickly with worse
performance because of longer LaSOT sequences. Besides, its tracking speed
of 20 FPS on CPU is faster than many deep trackers such as ECO (10 FPS),
DeepSRDCF (0.2 FPS), C-COT (0.8 FPS) and HDT (2.7 FPS).

In Table 2, we further compare UHP-SOT++ with state-of-the-art unsu-
pervised deep trackers ULAST [36], USOT [53], UDT+ [42], LUDT [43], and
ResPUL [47] in their AUC and DP values, running speeds and model sizes.
Two leading supervised trackers SiamRPN++ and ECO are also included in
Figure 9. We see that UHP-SOT++ has outstanding overall performance



16 Zhou et al.

Figure 8: Qualitative evaluation of three leading unsupervised trackers, where UHP-SOT++
offers a robust and flexible box prediction.

against recent unsupervised deep trackers. UHP-SOT++ achieves comparable
performance with USOT, which has very deep feature extraction network, on
LaSOT and much better accuracy on OTB2015. It also outperforms other
unsupervised deep trackers with shallow feature extraction backbones by a
large margin. ULAST achieves high performance on LaSOT with a deep
region proposal network as well as a carefully designed pre-training strategy.
It demands a large amount of data in the pre-training of the large backbone
model and the region proposal network.

It is worthwhile to emphasize that deep trackers demand pre-training on
offline datasets while UHP-SOT++ does not. In addition, UHP-SOT++



UHP-SOT++: An Unsupervised Lightweight Single Object Tracker 17

Figure 9: The success plot comparison of UHP-SOT++ with several supervised and unsu-
pervised tracking methods on four datasets, where only trackers with raw results published
by authors are listed. For the LaSOT dataset, only supervised trackers are included for
performance benchmarking in the plot since the success plot of unsupervised methods is
already given in Figure 7.

is attractive because of its lower memory requirement and near real-time
running speed on CPUs. Although ECO-HC also provides a lightweight
solution, there is a performance gap between UHP-SOT++ and ECO-HC.
SiamRPN++ has the best tracking performance among all trackers, due to
the merit of end-to-end optimized network with auxiliary modules such as
classification head and the region proposal network. Yet, its large model
size and GPU hardware requirement limit its applicability in resource-limited
devices such as mobile phones or drones. In addition, as an end-to-end opti-
mized deep tracker, SiamRPN++ has the interpretability issue to be discussed
later.



18 Zhou et al.

4.4 Attribute-based Study

To better understand the capability of different trackers, we analyze the
performance variation under various challenging tracking conditions. These
conditions can be classified into the following attributes: aspect ratio change
(ARC), background clutter (BC), camera motion (CM), deformation (DEF),
fast motion (FM), full occlusion (FOC), in-plane rotation (IPR), illumination
variation (IV), low resolution (LR), motion blur (MB), occlusion (OCC), out-
of-plane rotation (OPR), out-of-view (OV), partial occlusion (POC), scale
variation (SV) and viewpoint change (VC). We compare the AUC scores of
supervised trackers (e.g., SiamRPN++ and ECO) and unsupervised trackers
(e.g., UHP-SOT++, ECO-HC, UDT+, and STRCF) under these attributes in
Figure 10.

Figure 10: The area-under-curve (AUC) scores for two datasets, TC128 and LaSOT,
under the attribute-based evaluation, where attributes of concern include the aspect ratio
change (ARC), background clutter (BC), camera motion (CM), deformation (DEF), fast
motion (FM), full occlusion (FOC), in-plane rotation (IPR), illumination variation (IV),
low resolution (LR), motion blur (MB), occlusion (OCC), out-of-plane rotation (OPR),
out-of-view (OV), partial occlusion (POC), scale variation (SV) and viewpoint change (VC),
respectively.

We have the following observations. First, among unsupervised trackers,
UHP-SOT++ has leading performance in all attributes, which reveals improved
robustness from its basic modules and fusion strategy. Second, although ECO
utilizes deep features, it is weak in flexible box regression and, as a result, it
is outperformed by UHP-SOT++ in handling such deformation and shape
changes against LaSOT. In contrast, SiamRPN++ is better than other trackers
especially in DEF (deformation), ROT (rotation)and VC (viewpoint change).
The superior performance of SiamRPN++ demonstrates the power of its
region proposal network (RPN) in generating tight boxes. The RPN inside
SiamRPN++ not only improves IoU score but also has the long-term benefit
by excluding noisy information. Fourth, supervised trackers perform better in
IV (illumination variation) and LR (low resolution) than unsupervised trackers
in general. The gap between ECO and its handcrafted version, ECO-HC, is



UHP-SOT++: An Unsupervised Lightweight Single Object Tracker 19

more obvious under these attributes. This can be explained by the fact that
unsupervised trackers adopt HOG, CN features or other shallow features which
do not work well under these attributes. They focus on local structures of
the appearance and tend to fail to capture the object when the local gradient
or color information is not stable. Finally, even with the feature limitations,
UHP-SOT++ still runs second in many attributes against LaSOT because of
the stability offered by trajectory prediction and its capability to recover from
tracking loss via background motion modeling.

5 Exemplary Sequences and Qualitative Analysis

After providing quantitative results in Section 4, we conduct error analysis
on a couple of representative sequences to gain more insights in this section.
Several exemplary sequences from LaSOT are shown in Figure 11, in which
SiamRPN++ performs either very well or quite poorly. In the first two
sequences, we see the power of accurate box regression contributed by the
RPN. In this type of sequence, good trackers can follow the object well. Yet,
their poor bounding boxes lead to a low success score. Furthermore, the
appearance model would be contaminated by the background information
as shown in the second cat example. The appearance model of DCF-based
methods learns background texture (rather than follows the cat) gradually.
When the box only covers part of the object, it might also miss some object

Figure 11: Qualitative comparison of top runners against the LaSOT dataset, where tracking
boxes of SiamRPN++, UHP-SOT++, ECO and ECO-HC are shown in red, green, blue and
yellow, respectively. The first two rows show sequences in which SiamRPN++ outperforms
others significantly while the last row offers the sequence in which SiamRPN++ performs
poorly.



20 Zhou et al.

features, resulting in a degraded appearance model. In both scenarios, the
long-term performance will drop rapidly. Although UHP-SOT++ allows the
aspect ratio change to some extent as seen in the first flag example, its residual
map obtained by background motion modeling is still not as effective as the
RPN due to lack of semantic meaning. Generally speaking, the performance of
UHP-SOT++ relies on the quality of the appearance model and the residual
map.

On the other hand, SiamRPN++ is not robust enough to handle a wide
range of sequences well. The third example sequence is from video games.
SiamRPN++ somehow includes background objects in its box proposals and
drifts away from its targets in the presented frames. Actually, these background
objects are different from their corresponding target objects in either semantic
meaning or local information such as color or texture. The performance of the
other three trackers is not affected. We see that they follow the ground truth
without any problem. One explanation is that these video game sequences
could be few in the training set and, as a result, SiamRPN++ cannot offer a
reliable tracking result for them.

Finally, several sequences in which UHP-SOT++ has the top performance
are shown in Figure 12. In the first cup sequence, all other benchmarking
methods lose the target while UHP-SOT++ could go back to the object once
the object has obvious motion in the scene. In the second bottle sequence,
UHP-SOT++ successfully detects occlusion without making random guesses
and the object box trajectory avoids the box to drift away. In contrast, other
trackers make ambitious moves without considering the inertia of motion.
The third bus sequence is a complicated one that involves several challenges
such as full occlusion, scale change and aspect ratio change. UHP-SOT++
is the only one that can recover from tracking loss and provide flexible box
predictions. These examples demonstrate the potential of UHP-SOT++ that
exploits object and background motion clues across frames effectively.

6 Conclusion and Future Work

An unsupervised high-performance tracker, UHP-SOT++, was proposed in
this paper. It incorporated two new modules in the STRCF tracker module.
They were the background motion modeling module and the object box
trajectory modeling module. Furthermore, a novel fusion strategy was adopted
to combine proposals from all three modules systematically. It was shown
by extensive experimental results on large-scale datasets that UHP-SOT++
can generate robust and flexible object bounding boxes and offer a real-time
high-performance tracking solution on resource-limited platforms.

The pros and cons of supervised and unsupervised trackers were discussed.
Unsupervised trackers such as UHP-SOT and UHP-SOT++ have the potential



UHP-SOT++: An Unsupervised Lightweight Single Object Tracker 21

Figure 12: Illustration of three sequences in which UHP-SOT++ performs the best. The
tracking boxes of SiamRPN++, UHP-SOT++, ECO and ECO-HC are shown in red, green,
blue and yellow, respectively.

in delivering an explainable lightweight tracking solution while maintaining
good performance in accuracy. Supervised trackers such as SiamRPN++
benefit from offline end-to-end learning and perform well in general. However,
they need to run on GPUs, which is too costly for mobile and edge devices.
They may encounter problems in rare samples. Extensive supervision with
annotated object boxes is costly. Lack of interpretability could be a barrier
for further performance boosting.

Although UHP-SOT++ offers a state-of-the-art unsupervised tracking solu-
tion, there is still a performance gap between UHP-SOT++ and SiamRPN++.
It is worthwhile to find innovative ways to narrow down the performance
gap while keeping its attractive features such as interpretability, unsupervised
real-time tracking capability on small devices, etc. as future extension. One
possible direction is to investigate how to exploit offline unlabeled data and
learn efficiently from few annotated frames [35]. One main challenge in object
tracking is the design of a robust tracker that can generalize well to various
situations. This is an open problem still not solved satisfactorily by current
unsupervised deep or lightweight trackers.

One of our research goals is to provide a “white-box” tracker. To achieve it,
we attempt to understand the underlying tracking mechanisms of traditional
trackers, identify the failure cases, and find solutions to overcome them.
Furthermore, to illustrate the generalizability of our proposed solution, we have
conducted extensive experiments from small-scale datasets in early days to
recent large-scale datasets that cover various object classes and diverse motion
trajectories and seen performance improvement. Hope that this endeavor will
lead to interpretable, robust, and high-performance tracking solutions in the
long run.



22 Zhou et al.

References

[1] A. Aggarwal, S. Biswas, S. Singh, S. Sural, and A. K. Majumdar, “Ob-
ject Tracking Using Background Subtraction and Motion Estimation
in MPEG Videos,” in Asian Conference on Computer Vision, Springer,
2006, 121–30.

[2] L. Alan, T. Vojíř, L. Čehovin, J. Matas, and M. Kristan, “Discrimina-
tive Correlation Filter Tracker with Channel and Spatial Reliability,”
International Journal of Computer Vision, 126(7), 2018, 671–88.

[3] L. Bertinetto, J. Valmadre, S. Golodetz, O. Miksik, and P. H. Torr,
“Staple: Complementary Learners for Real-time Tracking,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2016, 1401–9.

[4] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H. Torr,
“Fully-convolutional Siamese Networks for Object Tracking,” in European
Conference on Computer Vision, Springer, 2016, 850–65.

[5] G. Bhat, J. Johnander, M. Danelljan, F. S. Khan, and M. Felsberg,
“Unveiling the Power of Deep Tracking,” in Proceedings of the European
Conference on Computer Vision (ECCV), 2018, 483–98.

[6] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui, “Visual Object
Tracking Using Adaptive Correlation Filters,” in 2010 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, IEEE,
2010, 2544–50.

[7] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman, “Return of
the Devil in the Details: Delving Deep into Convolutional Nets,” arXiv
preprint arXiv:1405.3531, 2014.

[8] X. Chen, B. Yan, J. Zhu, D. Wang, X. Yang, and H. Lu, “Transformer
Tracking,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2021, 8126–35.

[9] M. Danelljan, G. Bhat, F. Shahbaz Khan, and M. Felsberg, “Eco: Effi-
cient Convolution Operators for Tracking,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017, 6638–46.

[10] M. Danelljan, G. Hager, F. Shahbaz Khan, and M. Felsberg, “Con-
volutional Features for Correlation Filter Based Visual Tracking,” in
Proceedings of the IEEE International Conference on Computer Vision
Workshops, 2015, 58–66.

[11] M. Danelljan, G. Hager, F. Shahbaz Khan, and M. Felsberg, “Learn-
ing Spatially Regularized Correlation Filters for Visual Tracking,” in
Proceedings of the IEEE International Conference on Computer Vision,
2015, 4310–8.

[12] M. Danelljan, G. Häger, F. S. Khan, and M. Felsberg, “Discriminative
Scale Space Tracking,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, 39(8), 2016, 1561–75.



UHP-SOT++: An Unsupervised Lightweight Single Object Tracker 23

[13] M. Danelljan, A. Robinson, F. S. Khan, and M. Felsberg, “Beyond
Correlation Filters: Learning Continuous Convolution Operators for
Visual Tracking,” in European Conference on Computer Vision, Springer,
2016, 472–88.

[14] M. Danelljan, F. Shahbaz Khan, M. Felsberg, and J. Van de Weijer,
“Adaptive Color Attributes for Real-time Visual Tracking,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2014, 1090–7.

[15] H. Fan, L. Lin, F. Yang, P. Chu, G. Deng, S. Yu, H. Bai, Y. Xu, C.
Liao, and H. Ling, “Lasot: A High-quality Benchmark for Large-scale
Single Object Tracking,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2019, 5374–83.

[16] M. Fiaz, A. Mahmood, S. Javed, and S. K. Jung, “Handcrafted and Deep
Trackers: Recent Visual Object Tracking Approaches and Trends,” ACM
Computing Surveys (CSUR), 52(2), 2019, 1–44.

[17] K. Hariharakrishnan and D. Schonfeld, “Fast Object Tracking Using
Adaptive Block Matching,” IEEE Transactions on Multimedia, 7(5),
2005, 853–9.

[18] A. He, C. Luo, X. Tian, and W. Zeng, “A Twofold Siamese Network for
Real-time Object Tracking,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018, 4834–43.

[19] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, 770–8.

[20] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “High-speed
Tracking with Kernelized Correlation Filters,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, 37(3), 2014, 583–96.

[21] J. Janai, F. Güney, A. Behl, A. Geiger, et al., “Computer Vision for
Autonomous Vehicles: Problems, Datasets and State of the Art,” Foun-
dations and Trends® in Computer Graphics and Vision, 12(1–3), 2020,
1–308.

[22] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet Classifica-
tion with Deep Convolutional Neural Networks,” Advances in Neural
Information Processing Systems, 25, 2012, 1097–105.

[23] B. Li, W. Wu, Q. Wang, F. Zhang, J. Xing, and J. Yan, “Siamrpn++:
Evolution of Siamese Visual Tracking with Very Deep Networks,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, 4282–91.

[24] B. Li, J. Yan, W. Wu, Z. Zhu, and X. Hu, “High Performance Visual
Tracking with Siamese Region Proposal Network,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018,
8971–80.



24 Zhou et al.

[25] F. Li, C. Tian, W. Zuo, L. Zhang, and M.-H. Yang, “Learning Spatial-
temporal Regularized Correlation Filters for Visual Tracking,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, 2018, 4904–13.

[26] Y. Li, C. Fu, F. Ding, Z. Huang, and G. Lu, “AutoTrack: Towards
High-performance Visual Tracking for UAV with Automatic Spatio-
temporal regularization,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2020, 11923–32.

[27] P. Liang, E. Blasch, and H. Ling, “Encoding Color Information for Visual
Tracking: Algorithms and Benchmark,” IEEE Transactions on Image
Processing, 24(12), 2015, 5630–44.

[28] X. Lu, C. Ma, B. Ni, X. Yang, I. Reid, and M.-H. Yang, “Deep Regression
Tracking with Shrinkage Loss,” in Proceedings of the European Conference
on Computer Vision (ECCV), 2018, 353–69.

[29] C. Ma, J.-B. Huang, X. Yang, and M.-H. Yang, “Hierarchical Con-
volutional Features for Visual Tracking,” in Proceedings of the IEEE
International Conference on Computer Vision, 2015, 3074–82.

[30] C. Ma, X. Yang, C. Zhang, and M.-H. Yang, “Long-term Correlation
Tracking,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2015, 5388–96.

[31] M. Mueller, N. Smith, and B. Ghanem, “A Benchmark and Simulator for
UAV Tracking,” in European Conference on Computer Vision, Springer,
2016, 445–61.

[32] H. Nam and B. Han, “Learning Multi-domain Convolutional Neural
Networks for Visual Tracking,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2016, 4293–302.

[33] S. Pu, Y. Song, C. Ma, H. Zhang, and M.-H. Yang, “Deep Attentive
Tracking via Reciprocative Learning,” arXiv preprint arXiv:1810.03851,
2018.

[34] Y. Qi, S. Zhang, L. Qin, H. Yao, Q. Huang, J. Lim, and M.-H. Yang,
“Hedged Deep Tracking,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2016, 4303–11.

[35] I. Ruiz, L. Porzi, S. R. Bulo, P. Kontschieder, and J. Serrat, “Weakly
Supervised Multi-object Tracking and Segmentation,” in Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer Vision,
2021, 125–33.

[36] Q. Shen, L. Qiao, J. Guo, P. Li, X. Li, B. Li, W. Feng, W. Gan, W. Wu,
and W. Ouyang, “Unsupervised Learning of Accurate Siamese Tracking,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022, 8101–10.

[37] Y. Song, C. Ma, L. Gong, J. Zhang, R. W. Lau, and M.-H. Yang, “Crest:
Convolutional Residual Learning for Visual Tracking,” in Proceedings of
the IEEE International Conference on Computer Vision, 2017, 2555–64.



UHP-SOT++: An Unsupervised Lightweight Single Object Tracker 25

[38] Y. Sun, C. Sun, D. Wang, Y. He, and H. Lu, “Roi Pooled Correlation
Filters for Visual Tracking,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2019, 5783–91.

[39] R. Tao, E. Gavves, and A. W. Smeulders, “Siamese Instance Search for
Tracking,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, 1420–9.

[40] J. Valmadre, L. Bertinetto, J. Henriques, A. Vedaldi, and P. H. Torr,
“End-to-end Representation Learning for Correlation Filter Based Track-
ing,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2017, 2805–13.

[41] G. Wang, Y. Zhou, C. Luo, W. Xie, W. Zeng, and Z. Xiong, “Unsuper-
vised Visual Representation Learning by Tracking Patches in Video,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021, 2563–72.

[42] N. Wang, Y. Song, C. Ma, W. Zhou, W. Liu, and H. Li, “Unsuper-
vised Deep Tracking,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019, 1308–17.

[43] N. Wang, W. Zhou, Y. Song, C. Ma, W. Liu, and H. Li, “Unsupervised
Deep Representation Learning for Real-time Tracking,” International
Journal of Computer Vision, 129(2), 2021, 400–18.

[44] N. Wang, W. Zhou, Q. Tian, R. Hong, M. Wang, and H. Li, “Multi-cue
Correlation Filters for Robust Visual Tracking,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018,
4844–53.

[45] N. Wang, W. Zhou, J. Wang, and H. Li, “Transformer Meets Tracker:
Exploiting Temporal Context for Robust Visual Tracking,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2021, 1571–80.

[46] Q. Wang, Z. Teng, J. Xing, J. Gao, W. Hu, and S. Maybank, “Learning
Attentions: Residual Attentional Siamese Network for High Performance
Online Visual Tracking,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018, 4854–63.

[47] Q. Wu, J. Wan, and A. B. Chan, “Progressive Unsupervised Learning for
Visual Object Tracking,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2021, 2993–3002.

[48] Y. Wu, J. Lim, and M.-H. Yang, “Object Tracking Benchmark,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 37(9), 2015,
1834–48, doi: 10.1109/TPAMI.2014.2388226.

[49] J. Xing, H. Ai, and S. Lao, “Multiple Human Tracking Based on Multi-
view Upper-body Detection and Discriminative Learning,” in 2010 20th
International Conference on Pattern Recognition, IEEE, 2010, 1698–701.

https://doi.org/10.1109/TPAMI.2014.2388226


26 Zhou et al.

[50] T. Xu, Z.-H. Feng, X.-J. Wu, and J. Kittler, “Learning Adaptive Dis-
criminative Correlation Filters via Temporal Consistency Preserving
Spatial Feature Selection for Robust Visual Object Tracking,” IEEE
Transactions on Image Processing, 28(11), 2019, 5596–609.

[51] A. Yilmaz, O. Javed, and M. Shah, “Object Tracking: A Survey,” Acm
Computing Surveys (CSUR), 38(4), 2006, 13–es.

[52] G. Zhang and P. A. Vela, “Good Features to Track for Visual Slam,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2015, 1373–82.

[53] J. Zheng, C. Ma, H. Peng, and X. Yang, “Learning to Track Objects
from Unlabeled Videos,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2021, 13546–55.

[54] Z. Zhou, H. Fu, S. You, C. C. Borel-Donohue, and C.-C. J. Kuo, “UHP-
SOT: An Unsupervised High-Performance Single Object Tracker,” in
2021 International Conference on Visual Communications and Image
Processing (VCIP), IEEE, 2021, 1–5.

[55] Z. Zhu, Q. Wang, B. Li, W. Wu, J. Yan, and W. Hu, “Distractor-aware
Siamese Networks for Visual Object Tracking,” in Proceedings of the
European Conference on Computer Vision (ECCV), 2018, 101–17.


	Introduction
	Related Work
	Visual Tracking
	Unsupervised Deep Trackers
	Spatial-Temporal Regularized Correlation Filters

	Proposed UHP-SOT++ Method
	System Overview
	Background Motion Modeling
	Trajectory-based Box Prediction
	Fusion Strategy
	Proposal Quality
	Occlusion Detection
	Rule-based Fusion


	Experiments
	Experimental Set-up
	Ablation Study
	Comparison with State-of-the-art Trackers
	Attribute-based Study

	Exemplary Sequences and Qualitative Analysis
	Conclusion and Future Work

