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ABSTRACT

In this paper, we propose an access control method with a secret
key for semantic segmentation models for the first time so that
unauthorized users without a secret key cannot benefit from the
performance of trained models. The method enables us not only
to provide a high segmentation performance to authorized users,
but also to degrade the performance for unauthorized users. We
first point out that, for the application of semantic segmentation,
conventional access control methods which use encrypted images for
classification tasks are not directly applicable due to performance
degradation. Accordingly, in this paper, selected feature maps
are encrypted with a secret key for training and testing models,
instead of input images. In an experiment, the protected models
allowed authorized users to obtain almost the same performance
as that of non-protected models but also with robustness against
unauthorized access without a key.
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1 Introduction

Deep neural networks (DNNs) and convolutional neural networks (CNNs)
have been deployed in many applications such as biometric authentication,
automated driving, and medical image analysis [17, 18]. However, training
successful CNNs requires three ingredients: a huge amount of data, GPU-
accelerated computing resources, and efficient algorithms, and it is not a trivial
task. In fact, collecting images and labeling them is also costly and will also
consume a massive amount of resources. Moreover, algorithms used in training
a model may be patented or have restricted licenses. Therefore, trained DNNs
and CNNs have great business value. Considering the expenses necessary for
the expertise, money, and time taken to train a model, a model should be
regarded as a kind of intellectual property (IP).

There are two aspects of IP protection for DNN models: ownership verifica-
tion and access control [15]. The former focuses on identifying the ownership of
the models, and the latter addresses protecting the functionality of the models
from unauthorized access. Ownership verification methods were inspired by
digital watermarking [30] and embed watermarks into models so that the
embedded watermarks can be used to verify the ownership of the models in
question [1, 4, 9, 11, 16, 21, 25, 33–35].

Although the above watermarking methods can facilitate in identifying
the ownership of models, in reality, a stolen model can be exploited in many
different ways. For example, an attacker can use a model for their own benefit
without arousing suspicion, or a stolen model can be used for model inversion
attacks [12] and adversarial attacks [13, 22, 31]. Therefore, it is crucial to
investigate mechanisms to protect DNN models from unauthorized access and
misuse. In this paper, we focus on protecting a model from misuse when it
has been stolen (i.e., access control).

A method for protecting models against unauthorized access was inspired
by adversarial examples and proposed to utilize secret perturbation to control
the access of models [6]. In addition, another study introduced a secret key to
protect models [3], and it was shown to outperform the other methods. The
secret key-based protection method uses a key-based transformation that was
originally used by an adversarial defense in AprilPyone and Kiya [2], which was
in turn inspired by perceptual image encryption methods [7, 8, 20, 26–29, 32].
This block-wise model protection method utilizes a secret key in such a way
that a stolen model cannot be used to its full capacity without a correct secret
key. These existing methods provide a good access control performance, but
they all focus on the access control of image classification models. In this paper,
we point out that conventional access control methods with encrypted images
for classification models are not directly applicable to segmentation models.

Therefore, for the first time, in this paper, we propose a model protection
method for semantic segmentation models by applying a key-based transfor-
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mation to feature maps. The method not only achieves a high classification
accuracy (i.e., almost the same accuracy as in the non-protected case), but
also increases the key space substantially. Our contribution in this paper
is to propose an access control method with a secret key for semantic seg-
mentation models for the first time, which enables us not only to maintain
a high segmentation accuracy but also to increase the key space. To evalu-
ate the proposed method, we conduct relevant attacks. In experiments, the
proposed model-protection method is confirmed to outperform previous such
methods.

2 Related Work

There are two approaches to protecting trained models: ownership verification
and access control. The former focuses on identifying the ownership of trained
models. The latter addresses protecting the functionality of trained models.
The former aims for only ownership verification. Therefore, stolen models
can be directly used by unauthorized users, so we focus on access control to
protect trained models from unauthorized access even if the models are stolen.

The first access control method, which was inspired by adversarial examples
[13, 22, 31], was proposed for image classification models in Chen and Wu
[6]. In this method, authorized users add a secret perturbation generated by
an anti-piracy transform module to input images, and the processed input
images are fed to a protected model. Therefore, this method needs additional
resources to train the module. In addition, the method focuses on protecting
image classification models.

The second method is to extend the passport-based ownership verification
method [11] as an access control method. However, the passport in Fan
et al. [11] is a set of extracted features of a secret image/images or equivalent
random patterns from a pre-trained model. In addition, a network has to be
modified with additional passport layers to use passports. Therefore, there are
significant overhead costs in both the training and inference phases. Moreover,
the effectiveness of the passport-based method has never been confirmed under
the use of semantic segmentation models.

The third is a block-wise image transformation method with a secret key
[3], which is inspired by learnable image encryption [2, 20, 26, 27, 29, 32]. In
this method, input images are encrypted with a key, for which three types of
encryption methods: negative/positive transformation (NP), pixel shuffling
(SHF), and format-preserving Feistel-based encryption (FFX), were proposed as
illustrated in Figure 1. Figure 2 shows the framework of the block-wise method.
In the framework, an owner transforms all training images with secret key K,
and a model is trained to protect the model by using the transformed images
and corresponding ground truths. An authorized user with key K transforms
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Figure 1: Images transformed by block-wise transformations.

Figure 2: Access control framework with encrypted input images.

a test image with K and feeds it to the protected model to get a prediction
result with high accuracy. In contrast, an unauthorized user without key K
cannot obtain a prediction result with high accuracy, even if the unauthorized
user knows the framework and the encryption algorithm. In addition, the
method with key K does not need any network modification or incur significant
overhead costs. However, the use of the block-wise transformation is limited
to image classification tasks.

Accordingly, in this paper, we propose a novel access control method
for semantic segmentation tasks for the first time. The proposed method
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does not need any network modification or incur significant overhead costs
as well.

3 Access Control with Encrypted Feature Maps

Access control of semantic segmentation models with encrypted feature maps
is proposed here.

3.1 Overview

Protected models for access control should satisfy the following requirements.
The protected models should provide prediction results with a high accuracy
to authorized users but not provide such high-accuracy results to unauthorized
users. To meet these requirements, encrypted feature maps are used as shown
in Figure 3.

In the framework with encrypted feature maps, an owner trains a model by
using plain training images and corresponding ground truths, where selected
feature maps in the network are encrypted by using a secret key K at each

Figure 3: Access control framework with encrypted feature maps.
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training iteration in accordance with the proposed method. For testing, an
authorized user with key K feeds a test image to the trained model to obtain
a prediction result with high accuracy. In contrast, when an unauthorized
user without key K inputs a test image to the trained model without any key
or with an estimated key K ′, the unauthorized user cannot benefit from the
performance of the trained model.

3.2 Feature Map

In the proposed method, one or more feature maps in a network are selected,
and then the selected feature maps are encrypted with a secret key. We
illustrate semantic segmentation architectures in Figure 4 as an example, in
which there are six feature maps (feature maps 1-6) where two classifiers
correspond to a fully convolutional network (FCN) [19] and a network using
atrous convolution (DeepLabv3) [5], respectively. Both networks consist of one
backbone and one classifier, and ResNet-50 is commonly used as the backbone.
Input images are fed to the backbone, and the classifier gets features from the
backbone. Finally, the classifier outputs a prediction result.

Figure 4: Segmentation models using encrypted feature maps.

3.3 Feature Map Encryption

A feature map is an intermediate output in a convolutional network. Unlike
weights which are learned by using all input images in a model, a feature
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Figure 5: Block-wise pixel shuffling process for input image encryption.

map is decided by using each input image. Therefore, a selected feature map
x ∈ Rc×h×w is transformed with key K at each iteration for training a model,
where c is the number of channels, h is the height, and w is the width of
the feature map. To transform feature maps, we address two methods: pixel
shuffling and channel permutation (CP) as follows.

3.3.1 Block-Wise Pixel Shuffling

A block-wise pixel shuffling method, referred to as pixel shuffling (SHF), was
investigated as a method for encrypting input images in [2, 3]. In this paper,
SHF is extended for the access control of semantic segmentation models.

Below is the encryption procedure of the conventional SHF (see Figure 5),
where x is an input image.

1. Divide x into blocks with a size of M ×M as

{B(1,1), . . . , B(l,m), . . . , B(hb,wb)}, (1)

where hb ×wb denotes the number of blocks, and each block has a shape
of (c,M,M).

2. Flatten each block B(l,m) as a vector

b(l,m) = [b(l,m)(1), . . . , b(l,m)(L)], (2)

where the length of the flattened vector is L = c×M ×M .

3. Shuffle pixels: First, generate secret key KSHF as

KSHF = [α1, . . . , αi, . . . , αi′ , . . . , αL], (3)

where αi ∈ {1, . . . , L}, and αi ̸= αi′ if i ̸= i′. Second, shuffle each vector
b(l,m) with KSHF such that

b′(l,m)(i) = b(l,m)(αi), (4)
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and a shuffled vector is given by

b′(l,m) = [b′(l,m)(1), . . . , b
′
(l,m)(L)]. (5)

All vectors are converted with the same key.

4. Concatenate blocks: The shuffled vectors are integrated to obtain trans-
formed input image x′ with a dimension of (c, h, w).

3.3.2 Channel Permutation

SHF is extended for application to semantic segmentation models in terms of
two points: the use of feature maps and a block size of M = 1. The extended
encryption is called CP. Accordingly, CP is a pixel-wise transformation, where
a feature map is permuted only along the channel dimension.

The following is the procedure of CP.

1. Select a feature map x to be encrypted.

2. Generate secret key KCP with a size of c as

KCP = [β1, . . . , βj , . . . , βj′ , . . . , βc], (6)

where βj ∈ {1, . . . , c}, and βj ̸= βj′ if j ̸= j′.

3. Replace all elements of x, x(j, p, q), p ∈ {1, . . . , h}, and q ∈ {1, . . . , w}
as

x′(j, p, q) = x(kj , p, q), (7)

and permuted feature map x′ ∈ Rc×h×w is obtained.

As shown in Figure 6, CP is a spatially-invariant transformation, so it can
support a pixel-level resolution, which is important for semantic segmentation,
even though SHF supports a block-level one.

Figure 6: Channel permutation process.
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Table 1: Key space of access control methods.

Method Key space Remark

SHF (c×M ×M)! c = 3 (input image)
CP c! c ≫ 3 (feature map)

3.4 Difference between SHF and CP

The differences between SHF and CP are summarized below:

(a) CP is a pixel-wise transformation.

(b) CP is applied to a feature map.

(c) The number of feature map channels is larger than that of input image
channels.

Difference (a) allows us to obtain results with a pixel-level resolution, but
pixel-wise transformations are not robust against various attacks if the trans-
formation is applied to input images as discussed in [3] because the number of
input image channels c is small (i.e., RGB images have c = 3). To improve
on this, we propose encrypting feature maps that have a larger number of
channels such as c = 2048 as shown in Figure 4. In addition, the use of feature
maps enables us to maintain a high accuracy as described later.

3.5 Threat Models

A threat model includes a set of assumptions such as an attacker’s goals,
knowledge, and capabilities. Users without secret key K are assumed to be the
adversary. Attackers may steal a model to achieve different goals for profit. In
this paper, we consider the attacker’s goal is to be able to make use of a stolen
model. This paper considers brute-force, random key, and fine-tuning attacks
as ciphertext-only attacks. Therefore, the following possible attacks done
with the intent of stealing a model are discussed to evaluate the robustness of
the proposed model-protection method. In experiments, the method will be
demonstrated to be robust against attacks.

3.5.1 Brute-Force Attack

A simple attack to decrypt an encrypted input image or feature map is a
brute-force attack. This attack systematically checks all possible passwords
until the correct one is found. Therefore, the encryption method must have
a large enough key space. The key space of each method is summarized in
Table 1.
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The key space is decided by block size M and channel size c. For example,
if SHF with M = 2 is applied to an input image, the key space is (3×2×2)! ≈
4.79× 108 < 229. In contrast, when a feature map with c = 256 is encrypted
by using CP, the key space is 256! ≈ 21684. In general, the channel number of
feature maps is much larger than that of input images, so CP has a large key
space even when M = 1 is selected, compared with SHF. In addition, when
using CP, the attacker has to know or estimate the location of the transformed
feature map, which cannot be known from the model itself.

3.5.2 Random Key Attack

In reality, the random attack is hard to carry out for the proposed model
protection because there are many layers in a conventional CNN architecture,
and the location of the transformed feature map cannot be known from the
model itself. To be practical, the cost of an attack should always be lower than
that of training a new model. We will consider a worst-case scenario in which
an attacker obtains additional information about the transformed feature map
and the transformation process except for the secret key, in an experiment.

3.5.3 Fine-Tuning Attack

Fine-tuning is a process that takes a trained model and then tunes the model
to make it perform some purpose (e.g., to process a similar task). An attacker
may use fine-tuning as an attack to override model protection so that the
attacker can utilize a protected model without a secret key. This attack aims
to disable the key by retraining a protected model with a small subset of a
dataset. We assume an attacker has the model weights and a small dataset D′

for this attack.

4 Experimental Results

To verify the effectiveness of the proposed method, the method was evaluated
in terms of access control and robustness against attacks. All experiments
were conducted with the PyTorch library [23] in Python.

4.1 Setup

4.1.1 Dataset

Semantic segmentation models were trained by using a dataset released for the
segmentation competition of Visual Object Classes Challenge 2012 (VOC2012)
[10]. The dataset consists of a training set with 1464 pairs (i.e., images and
corresponding ground truths) and a development set with 1449 pairs. In
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addition, a test set is also available only on the evaluation server, but it was
not used in the experiment due to some constraints.

The training set was divided into 1318 samples for training models and
146 samples for validating the loss of models during the training, and we
selected the model that provided the lowest loss value after the training. The
performance of the trained models was evaluated by using the development
set with 1449 pairs.

All input images and ground truths were resized to a size of 256 × 256
because block-wise transformation requires images with a fixed size. In addition,
standard data-augmentation methods, i.e., random resized crop and horizontal
flip, were performed in training models.

4.1.2 Networks

We used a FCN [19] and a network with atrous convolution (DeepLabv3) [5]
for semantic segmentation, as shown in Figure 4. In the experiments, a deep
residual network with 50 layers (ResNet-50) [14] was used as a backbone for
both networks, where only the backbone was pre-trained on a dataset used in
ImageNet Large Scale Visual Recognition Challenge 2012 (ILSVRC2012) [24],
and the pre-trained weights were provided on PyTorch. All networks were
trained for 30 epochs by using a stochastic gradient descent (SGD) optimizer,
where an initial learning rate (lr) of 0.02, a weight decay of 0.0001, and a
momentum of 0.9 were selected as the hyperparameters of the optimizer. The
learning rate was decayed in each iteration as

lr = 0.02×
(
1− n

30× 42

)0.9

, (8)

where n is the current iteration number. The batch size was 32, and the
standard pixel-wise cross-entropy loss without weight rebalancing was used.

4.2 Performance Evaluation

In this experiment, the segmentation performance of the protected models
was evaluated with the mean intersection-over-union (mean IoU), which is a
common evaluation metric for semantic segmentation. An IoU value is given
for each class by

IoU =
TP

TP + FP + FN
, (9)

and the mean IoU is then calculated by averaging the IoU values of all
classes. TP , FP , and FN mean true positive, false positive, and false negative
values calculated from predicted segmentation maps and ground truth ones,
respectively. In addition, the metric ranges from zero to one, where a value of
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Table 2: Segmentation accuracy (mean IoU) of proposed method (CP). Best accuracies are
shown in bold.

Network FCN DeepLabv3

Key condition Correct No-enc Correct No-enc

Selected feature map 1 46.35 14.71 54.79 15.82
2 43.86 29.43 51.38 37.82
3 34.18 7.76 38.72 10.06
4 50.79 3.79 55.33 3.93
5 57.19 3.80 64.75 3.57
6 58.52 3.49 65.15 3.49

Baseline 58.89 (non-protected) 65.77 (non-protected)

one means that the predicted segmentation maps are the same as those of the
ground truths, and a value of zero indicates that they have no overlap.

4.2.1 Model Trained with Encrypted Feature Map

In this experiment, a CP was applied to a selected feature map in a network for
semantic segmentation. Table 2 shows the results under two classifiers: FCN
and DeepLabv3, where one feature map was selected to be encrypted from six
feature maps in each network (see Figure 4). In the table, the segmentation
accuracy was calculated by using 1449 pairs under two conditions: Correct and
No-enc, where “Correct” means the use of test images encrypted with correct
key K, and “No-enc” indicates the use of plain test images. An example of the
results with DeepLabv3 is also shown in Figure 7.

From the table, CP was confirmed to achieve almost the same accuracy
as that of the baselines under the use of the correct key when feature map 5
or 6 was selected. In contrast, CP provided a low accuracy to unauthorized
users without the key (No-enc). Note that the segmentation performance
slightly varies in general due to the initial weights of a model and the key. We
carried out the experiment 10 times with different initial weights and keys
under each condition. Average results were presented in Table 2. From the
experiments, we confirmed that the proposed access control method with a
selected feature map encryption can achieve almost the same performance as
the baseline (non-protected) model.

From Figure 7, the prediction results were confirmed to be similar to the
corresponding ground truths under the use of the correct key. In contrast, the
results estimated from plain images had only a background label. Accordingly,
CP with encrypted feature maps was effective in the access control of semantic
segmentation models.
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Figure 7: Example of prediction results for CP (DeepLabv3). Mean IoU values are given
under predictions.

4.2.2 Selection of Feature Maps

As shown in Table 2, the performance of the models trained with encrypted
feature maps depended on the selection of feature maps. In the experiment,
when the encryption was applied to a feature map at positions 2 to 4, the
segmentation accuracy was lower than that of models 5 and 6. The difference
in segmentation accuracy among the selected feature maps was caused by a
residual connection in the ResNet-50 backbone in Figure 4. From Figure 4,
feature maps 2-4 had residual connections on both the front and back of
each feature map. In contrast, in feature maps 1, 5, and 6, the influence of
CP can be easily canceled out by a convolutional layer because there is no
residual connection either in front or behind. Accordingly, feature map 6 is
recommended as an encrypted feature map.

Although the access control performance of the models trained with en-
crypted feature maps depend upon the selection of feature maps, the selection
of feature maps is independent of the type of datasets. Accordingly, we can ex-
perimentally select a feature map to be encrypted under the use of a dataset. In
principle, one or more feature maps can be encrypted in the proposed access con-
trol method. However, when unsuitable feature maps are encrypted, it degrades
the performance of models as shown in Table 2. Our experiments confirmed
that encrypting only one feature map has already provided a good access control
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performance, and encrypting two or more feature maps does not have any signifi-
cant advantage. Therefore, only one feature map was encrypted in experiments.

4.2.3 Model Trained with Encrypted Input Images

Input images were encrypted in accordance with SHF under various block sizes
(i.e., M ∈ {1, 2, 4, 8, 16, 32}) for comparison with the proposed method (CP).
SHF was already demonstrated to achieve a high access control performance
in image classification tasks in [3], but it has never been applied to semantic
segmentation ones.

Table 3 shows the segmentation accuracy of the protected models calculated
from 1449 pairs. From the results, even when correct key K was used, the
segmentation accuracy decreased significantly as block size M increased in
both networks. In contrast, when the block size was small, the protected model
achieved a segmentation accuracy close to the baseline. However, the accuracy
without the encryption (i.e., No-enc) was almost the same as that of “Correct,”
so the access control was weak under the use of a small block size.

Table 3: Segmentation accuracy (mean IoU) of conventional method with encrypted input
images (SHF).

Network FCN DeepLabv3

Key condition Correct No-enc Correct No-enc

Block size M 1 56.55 56.15 64.76 62.88
2 51.54 47.58 59.74 56.67
4 48.37 46.72 50.82 51.96
8 34.25 34.68 37.70 35.95
16 18.05 13.42 20.91 15.83
32 7.68 5.21 11.14 5.58

Baseline 58.89 (non-protected) 65.77 (non-protected)

From Figure 8, we also confirmed that the prediction results for Correct
were similar to those for No-enc when a small block size was used. In addition,
the prediction result for M = 8 was significantly degraded compared with the
ground truth. Therefore, applying SHF to input images is not suitable for the
access control of semantic segmentation models, even though it is suitable for
image classification tasks.

4.3 Robustness against Random Key Attack

In this experiment, CP was evaluated in terms of robustness against the
random key attack described in Section 3.5.2, where models were protected by
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Figure 8: Example of prediction results for SHF (DeepLabv3). Mean IoU values are given
under predictions.

encrypting feature map 6. An evaluation was carried out on robustness with
100 incorrect keys that were randomly generated.

Figure 9 shows the segmentation performance of the protected models under
the use of the incorrect keys on the development set of VOC2012. From the
results of using CP, the mean IoU values were significantly low for both models,
which means that the models were robust enough against this attack. However,
the mean IoU values of using SHF increased as the block size decreased.
Therefore, the proposed method (CP) outperformed the conventional method
(SHF) in terms of robustness against the random key attack.

Figure 9: Mean IoU values of protected models with 100 incorrect keys. Boxes span from
first to third quartile, referred to as Q1 and Q3, and whiskers show maximum and minimum
values in range of [Q1−1.5(Q3−Q1), Q3+1.5(Q3−Q1)]. Band inside box indicates median.
Outliers are indicated as dots.
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4.4 Robustness against Fine-Tuning Attack

We ran an experiment with different sizes for an attacker’s small dataset
(i.e., |D′| ∈ {5%, 10%} of the training data). Models protected by encrypting
feature map 6 were retrained by using D′ to disable the key. Table 4 shows
the results of the fine-tuning attack for both networks.

Although the accuracy of the fine-tuned models was higher when the size
of D′ was larger, it was still lower than the accuracy of the original protected
models (i.e., “Protected” in Table 4). Therefore, the attacker was not able to
use the models to full capacity even when preparing a small dataset.

Table 4: Segmentation accuracy (mean IoU) of fine-tuned models.

Network FCN DeepLabv3

Fine-tuned (test without key) D′ 0% 3.49 3.49
5% 27.02 29.78
10% 41.70 46.19

No fine-tuned (test with key) 59.24 65.43

5 Conclusion and Future Work

In this paper, we proposed an access control method for semantic segmentation
models for the first time. The method is carried out by encrypting selected
feature maps with a secret key called CP, while input images are encrypted
by using a block-wise encryption method in conventional methods. The use
of CP allows us not only to obtain a pixel-level accuracy that is required for
semantic segmentation but also to maintain a wide key space even when a
pixel-wise permutation is used. As a result, the proposed method can maintain
both a high accuracy and robustness against attacks. In experiments, the
conventional method with encrypted input images was not effective in the
access control of semantic segmentation models, and the effectiveness of the
proposed method was demonstrated in terms of segmentation accuracy.

As for future work, we shall generalize the proposed method to other models
such as object detection models and generative models. In addition, if the
key is compromised, the proposed method in its current form needs to repeat
the whole training to update the key in the same way that existing key-based
access control methods such as the use of encrypted input images for image
classification need to repeat the training. To overcome this limitation, we
shall explore possible options in our future work. We shall also identify other
potential threats to the access control of the models.
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