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ABSTRACT

The application of machine learning to image and video data often yields
a high dimensional feature space. Effective feature selection techniques
identify a discriminant feature subspace that lowers computational and
modeling costs with little performance degradation. A novel supervised
feature selection methodology is proposed for machine learning decisions
in this work. The resulting tests are called the discriminant feature test
(DFT) and the relevant feature test (RFT) for the classification and
regression problems, respectively. The DFT and RFT procedures are
described in detail. Furthermore, we compare the effectiveness of DFT
and RFT with several classic feature selection methods. To this end, we
use deep features obtained by LeNet-5 for MNIST and Fashion-MNIST
datasets as illustrative examples. Other datasets with handcrafted and
gene expressions features are also included for performance evaluation.
It is shown by experimental results that DFT and RFT can select a lower
dimensional feature subspace distinctly and robustly while maintaining
high decision performance.
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1 Introduction

Traditional machine learning algorithms are susceptible to the curse of feature
dimensionality [18]. Their computational complexity increases with high
dimensional features. Redundant features may not be helpful in discriminating
classes or reducing regression error, and they should be removed. Sometimes,
redundant features may even produce negative effects as their number grows.
Their detrimental impact should be minimized or controlled. To deal with
these problems, feature selection techniques [29, 37, 39] are commonly applied
as a data pre-processing step or part of the data analysis to simplify the
complexity of the model. Feature selection techniques involve the identification
of a subspace of discriminant features from the input, which describe the input
data efficiently, reduce effects from noise or irrelevant features, and provide
good prediction results [16].

For machine learning with image/video data, the deep learning technology,
which adopts a pre-defined network architecture and optimizes the network
parameters using an end-to-end optimization procedure, is dominating nowa-
days. Yet, an alternative that returns to the traditional pattern recognition
paradigm based on feature extraction and classification two modules in cascade
has also been studied, e.g., [8–10, 23, 24, 27, 28, 33, 41, 42]. The feature
extraction module contains two steps: unsupervised representation learning
and supervised feature selection. Examples of unsupervised representation
learning include multi-stage Saab [24] and Saak transforms [10]. Here, we
focus on the second step; namely, supervised feature selection from a high
dimensional feature space.

Inspired by information theory and the decision tree, a novel supervised
feature selection method is proposed in this work. The resulting tests are
called the discriminant feature test (DFT) and the relevant feature test (RFT),
respectively, for the classification and regression problems. The DFT and
RFT procedures are described in detail. We compare the effectiveness of DFT
and RFT with several classic feature selection methods. Experimental results
show that DFT and RFT can select a significantly lower dimensional feature
subspace distinctly and robustly while maintaining high decision performance.

The rest of this paper is organized as follows. Related previous work is
reviewed in Section 2. DFT and RFT are presented in Section 3. Experimental
results are shown in Section 4. Finally, concluding remarks are given in
Section 5.

2 Review of Previous Work

Feature selection methods can be categorized into unsupervised [5, 30, 32,
36], semi-supervised [35, 43], and supervised [20] three types. Unsupervised
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methods focus on the statistics of input features while ignoring the target class
or value. Straightforward unsupervised methods can be fast, e.g., removing
redundant features using correlation, removing features of low variance. How-
ever, their power is limited and less effective than supervised methods. More
advanced unsupervised methods adopt clustering. Examples include [1, 19,
26]. Their complexity is higher, their behavior is not well understood, and
their performance is not easy to evaluate systematically. Overall, this is an
open research field.

Existing semi-supervised and supervised feature selection methods can
be classified into wrapper, filter and embedded three classes [35]. Wrapper
methods [22] create multiple models with different subsets of input features
and select the model containing the features that yield the best performance.
One example is recursive feature elimination [17]. This process can be com-
putationally expensive. Filter methods involve evaluating the relationship
between input and target variables using statistics and selecting those variables
that have the strongest relation with the target ones. One example is the
analysis of variance (ANOVA) [34]. This approach is computationally efficient
with robust performance. Another example is feature selection based on linear
discriminant analysis (LDA). It finds the most separable projection directions.
The objective function of LDA is used to select discriminant features from the
existing feature dimensions by measuring the ratio between the between-class
scatter matrix and the within-class scatter matrix. It can be generalized from
the 2-class problem to the multi-class problem. Embedded methods perform
feature selection in the process of training and are usually specific to a single
learner. One example is “feature importance” (FI) obtained from the training
process of the XGBoost classifier/regressor [7], which is also known as “feature
selection from model.”

Inspired by information theory and the decision tree, a novel supervised
feature selection methodology is proposed in this work. The resulting tests are
called the DFT and the RFT for classification and regression tasks, respectively.
Our proposed methods belong to the filter methods, which give a score to
each dimension and select features based on feature ranking. The scores are
measured by the weighted entropy and the weighted MSE for DFT and RFT,
which reflect the discriminant power and relevance degree to classification and
regression targets, respectively.

To demonstrate the power of DFT and RFT, we conduct performance
benchmarking between DFT/RFT, ANOVA and FI from XGBoost in the
experimental section. To this end, we use deep features obtained by LeNet-5
for MNIST and Fashion-MNIST datasets as illustrative examples. Other
datasets with handcrafted features and gene expressions features are also used
for performance benchmarking. Comparison with the minimal-redundancy-
maximal-relevance (mRMR) criterion [13, 31], which is a more advanced feature
selection method, is also conducted. It is shown by experimental results that
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DFT and RFT can select a lower dimensional feature subspace distinctly and
robustly while maintaining high decision performance.

3 Proposed Feature Selection Methods

Being motivated by the feature selection process in the decision tree classifier,
we propose two feature selection methods, DFT and RFT, in this section, as
illustrated in Figure 1. They will be detailed in Sections 3.1 and 3.2, respectively.
Finally, robustness of DFT and RFT will be discussed in Section 3.3.

Figure 1: An overview of the proposed feature selection methods: DFT and RFT. For the
i-th feature, DFT measures the class distribution in Si

L and Si
R to compute the weighted

entropy as the DFT loss, while RFT measures the weighted estimated regression MSE in
both sets as the RFT loss.

3.1 Discriminant Feature Test

Consider a classification problem with N data samples, P features and C classes.
Let f i, 1 ≤ i ≤ P , be a feature dimension and its minimum and maximum are
f i
min and f i

max, respectively. DFT is used to measure the discriminant power of
each feature dimension out of a P -dimensional feature space independently. If
feature f i is a discriminant one, we expect data samples projected to it should
be classified more easily. To check it, one idea is to partition [f i

min, f
i
max] into

M nonoverlapping subintervals and adopt the maximum likelihood rule to
assign the class label to samples inside each subinterval. Then, we can compute
the percentage of correct predictions. The higher the prediction accuracy, the
higher the discriminant power. Although prediction accuracy may serve as an
indicator for purity, it does not tell the distribution of the remaining C − 1
classes if C > 2. Thus, it is desired to consider other purity measures.

In our design, we use the weighted entropy of the left and right subsets
as the DFT loss to measure the discriminant power of each dimension. The
reason of choosing the weighted entropy as the cost is that it considers the
probability distribution of all classes instead of the maximum likelihood rule
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in prediction accuracy as stated above. A lower entropy value is obtained from
a more biased distribution of classes, indicating the subinterval is dominated
by fewer classes.

By following the practice of a binary decision tree, we consider the case,
M = 2, as shown in the left subfigure of Figure 1, where f i

t denotes the
threshold position of two sub-intervals. If a sample with its ith dimension,
xi
n < f i

t , it goes to the subset associated with the left subinterval. Otherwise,
it will go to the subset associated with the right subinterval. Formally, the
procedure of DFT consists of three steps for each dimension as detailed below.

3.1.1 Training Sample Partitioning

For the ith feature, f i, we need to search for the optimal threshold, f i
op,

between [f i
min, f

i
max] and partition training samples into two subsets Si

L and
Si
R via

ifxi
n < f i

op, xn ϵ S
i
L; (1)

otherwise, xn ϵ S
i
R, (2)

where xi
n represents the i-th feature of the n-th training sample xn, and f i

op

is selected automatically to optimize a certain purity measure. To limit the
search space of f i

op, we partition the entire feature range, [f i
min, f

i
max], into B

uniform segments and search the optimal threshold among the following B − 1
candidates:

f i
b = f i

min +
b

B
[f i

max − f i
min], b = 1, · · · , B − 1, (3)

where B = 2j , j = 1, 2 · · · , is examined in Section 3.3.

3.1.2 DFT Loss Measured by Entropy

Samples of different classes belong to Si
L or Si

R. Without loss of generality,
the following discussion is based on the assumption that each class has the
same number of samples in the full training set; namely Si

L ∪ Si
R. To measure

the purity of subset Si
L corresponding to the partition point f i

t , we use the
following entropy metric:

Hi
L,t = −

C∑
c=1

piL,clog(p
i
L,c), (4)

where piL,c is the probability of class c in Si
L. Similarly, we can compute

entropy Hi
R,t for subset Si

R. Then, the entropy of the full training set against
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partition f i
t is the weighted average of HL,t and HR,t in form of

Hi
t =

N i
L,tH

i
L,t +N i

R,tH
i
R,t

N
, (5)

where N i
L,t and N i

R,t are the sample numbers in subsets Si
L and Si

R, respectively,
and N = N i

L,t +N i
R,t is the total number of training samples. The optimized

entropy Hi
op for the i-th feature is given by

Hi
op = min

tϵT
Hi

t , (6)

where T indicates the set of partition points.

3.1.3 Feature Selection Based on Optimized Loss

We conduct search for optimized entropy values, Hi
op, of all feature dimensions,

f i, 1 ≤ i ≤ P and order the values of Hi
op from the smallest to the largest

ones. The lower the Hi
op value, the more discriminant the ith-dimensional

feature, f i. Then, we select the top K features with the lowest entropy values
as discriminant features. To choose the value of K with little ambiguity, it is
critical the rank-ordered curve of Hi

op should satisfy one important criterion.
That is, it should have a distinct and narrow elbow region. We will show that
this is indeed the case in Section 4.

3.2 Relevant Feature Test

For regression tasks, the mapping between an input feature and a target scalar
function can be more efficiently built if the feature dimension has the ability
to separate samples into segments with smaller variances. This is because
the regressor can use the mean of each segment as the target value, and its
corresponding variance indicates the prediction mean squared-error (MSE) of
the segment. Motivated by this observation and the binary decision tree, RFT
partitions a feature dimension into left and right two segments and evaluates
the total MSE from them. We use this approximation error as the RFT loss
function. The smaller the RFT loss, the better the feature dimension. Again,
the RFT loss depends on the threshold f i

t . The process of selecting more
powerful feature dimensions for regression is named RFT. Similar to DFT,
RFT has three steps. They are elaborated below. Here, we adopt the same
notations as those in Section 3.1.

3.2.1 Training Sample Partitioning

By following the first step in DFT, we search for the optimal threshold, f i
op,

between [f i
min, f

i
max] and partition training samples into two subsets Si

L and
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Si
R for the ith feature, f i. Again, we partition the feature range, [f i

min, f
i
max],

into B uniform segments and search the optimal threshold among the following
B − 1 candidates as given in Equation (3).

3.2.2 RFT Loss Measured by Estimated Regression MSE

We use y to denote the regression target value. For the ith feature dimension,
f i, we partition the sample space into two disjoint ones Si

L and Si
R. Let yiL

and yiR be the mean of target values in Si
L and Si

R, and we use yiL and yiR as
the estimated regression value of all samples in Si

L and Si
R, respectively. Then,

the RFT loss is defined as the sum of estimated regression MSEs of Si
L and

Si
R. Mathematically, we have

Ri
t =

N i
L,tR

i
L,t +N i

R,tR
i
R,t

N
, (7)

where N = N i
L,t+N i

R,t, N
i
L,t, N

i
R,t, R

i
L,t and Ri

R,t denote the sample numbers
and the estimated regression MSEs in subsets Si

L and Si
R, respectively. Feature

f i is characterized by its optimized estimated regression MSE over the set, T ,
of candidate partition points:

Ri
op = min

tϵT
Ri

t. (8)

3.2.3 Feature Selection Based on Optimized Loss

We order the optimized estimated regression MSE value, Ri
op across all feature

dimensions, f i, 1 ≤ i ≤ P , from the smallest to the largest ones. The lower
the Ri

op value, the more relevant the ith-dimensional feature, f i. Afterwards,
we select the top K features with the lowest estimated regression MSE values
as relevant features.

3.3 Robustness Against Bin Numbers

For smooth DFT/RFT loss curves with a sufficiently large bin number (say,
B ≥ 16), the optimized loss value does not vary much by increasing B
furthermore as shown in Figure 2. Figures 2(a) and (b) show the DFT and
RFT loss functions for an exemplary feature, f i, under two binning schemes;
i.e., B = 16 and B = 64, respectively. We see that the binning B = 16 is
fine enough to locate the optimal partition f i

op. If B = 2j , j = 1, 2, · · · , the
set of partition points in a small B value is a subset of those of a larger B
value. Generally, we have the following observations. The difference of the
DFT/RFT loss between adjacent candidate points changes smoothly. Since
the global minimum has a flat bottom, the loss function is low for a range of
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Figure 2: Comparison of two binning schemes with B = 16 and B = 64: (a) DFT and (b)
RFT.

partition thresholds. The feature will achieve a similar loss level with multiple
binning schemes. For example, Figure 2(a) shows that B = 16 reaches the
global minimum at f i = 5.21 while B = 64 reaches the global minimum at
f i = 5.78. The difference is about 3% of the full dynamic range of f i. Similar
characteristics are observed for all feature dimensions in DFT/RFT, indicating
the robustness of DFT/RFT. For lower computational complexity and avoiding
overfitting, we typically choose B = 16 or B = 32.

4 Experimental Results

4.1 Image Datasets with High Dimensional Feature Space

To demonstrate the power of DFT and RFT, we consider several classical
datasets. They include MNIST [25], Fashion-MNIST [40], the Multiple Fea-
tures (MultiFeat) dataset [4, 21, 38], the Arrhythmia (ARR) dataset [15] from
the UCI machine learning archive [14], and the Colon cancer dataset [2].
The latter three are used to measure DFT in the classification problem
setting.
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Table 1: Classification test accuracy (%) of LeNet-5 on MNIST and Fashion-MNIST.

Clean Noisy

MNIST 99.18 98.85
Fashion-MNIST 90.19 86.95

Dataset-1: MNIST and Fashion-MNIST. Both datasets contain
grayscale images of resolution 28× 28, with 60K training and 10K test images.
MNIST has 10 classes of hand-written digits (from 0 to 9) while Fashion-
MNIST has 10 classes of fashion products. In order to get deep features for
each dataset, we train the LeNet-5 network [25] for the two corresponding
classification problems and adopt the 400-D feature vector before the two FC
layers as raw features to evaluate several feature selection methods. Besides
original clean training images, we add additive zero-mean Gaussian noise
with different standard deviation values to evaluate the robustness of feature
selection methods against noisy data. The LeNet-5 network is re-trained for
these noisy images and the corresponding deep features are extracted. For the
performance benchmarking purpose, we list the test classification accuracy of
the trained LeNet-5 for MNIST and Fashion-MNIST in Table 1 to illustrate
the quality of the deep features.

Dataset-2: MultiFeat. This dataset contains features of hand-written
digits (from 0 to 9) extracted from a collection of Dutch utility maps [14],
including 649 dimensional features for 200 images per class. Different from the
deep features in Dataset-1, the 649 features are extracted from six perspectives
such as Fourier coefficients of character shapes and morphological features.
Since the number of samples is small, we use 10-fold cross-validation and
compute the mean accuracy to evaluate the classification performance.

Dataset-3: Colon. This gene expression dataset contains 62 samples
with 2000 features each. It has a binary classification label; namely, the normal
tissue or the cancerous tissue. There are 22 normal tissue and 40 cancer tissue
samples. Considering its small sample size, we use the leave-one-out validation
to get the classification predictions for each sample.

Dataset-4: ARR. This cardiac arrhythmia dataset has binary labels for
237 normal and 183 abnormal samples. Each sample contains 278 features. The
10-fold cross-validation is adopted to evaluate the classification performance.

4.2 DFT for Classification Problems

We compare the effectiveness of four feature selection methods: (1) F scores
from ANOVA (ANOVA F Scores), (2) absolute correlation coefficient w.r.t
the class labels (Abs. Corr. Coeff.), (3) feature importance (Feat. Imp.) from
a pre-trained XGBoost classifier, and (4) DFT. We adopt four classifiers to



10 Yijing Yang et al.

validate the classification performance. They are the Logistic Regression (LR)
classifier [12], the Support Vector Machine (SVM) classifier [11], the Random
Forest (RF) classifier [3], and the XGBoost classifier [7]. We have the following
two observations.

4.2.1 DFT Offers an Obvious Elbow Point

Figure 3 compares the ranked scores of four feature selection methods on
Fashion-MNIST dataset. The lower DFT loss, the higher importance of a
feature. The other three have a reversed relation, namely, the higher the score,
the higher the importance. Thus, we search for the elbow point for DFT but
the knee point for the other methods. Clearly, the feature importance curve
from the pre-trained XGBoost classifier has a clearer knee point and the DFT
curve has a more obvious elbow point. In contrast, ANOVA and correlation-
coefficient-based methods are not as effective in selecting discriminant features
since their knee points are less obvious.

4.2.2 Features Selected by DFT Achieves Comparable and Stable Classification
Performance

Tables 2, 3, 4, and 5 summarize the classification accuracy using four classifiers
at two reduced dimensions selected by the DFT loss curve based on early
and late elbow points on Dataset-1. The RBF kernel is used for SVM. We

Figure 3: Comparison of distinct feature selection capability among four feature selection
methods for classification task on the Fashion-MNIST dataset.
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Figure 4: Comparison of relevant feature selection capability among four feature selection
methods for regression task on the Fashion-MNIST dataset.

Table 2: Comparison of classification performance (%) on Clean MNIST between different
feature selection methods.

Selected dimension Method LR SVM RF XGBoost

ANOVA 94.21 95.07 95.77 96.58
Early elbow point Corr. 88.73 92.47 94.04 95.11

(30-D) Feat. imp. 92.61 93.55 94.89 95.71
DFT (Ours) 94.49 95.45 96.29 96.92

ANOVA 98.24 98.22 97.98 98.66
Late elbow point Corr. 97.61 97.78 97.35 98.57

(100-D) Feat. imp. 98.24 98.15 98.18 98.78
DFT (Ours) 97.93 97.83 97.81 98.52

Full set (400-D) 98.89 98.77 98.61 99.14

see that DFT can achieve comparable (or even the best) performance among
the four methods at the same selected feature dimension. The accuracy gap
between the late elbow point and the full feature set (400-D) is very small.
They are 0.62% and 0.94% using XGBoost classifier for clean MNIST and
Fashion-MNIST, respectively. The late elbow point only uses 25-35% of the full
feature set. The gaps in classification accuracy on noisy images are 0.58% and
1.6% for MNIST and Fashion-MNIST, respectively, indicating the robustness
of the DFT feature selection method against input perturbation.
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Table 3: Comparison of classification performance (%) on Noisy MNIST between different
feature selection methods.

Selected dimension Method LR SVM RF XGBoost

ANOVA 94.22 94.62 95.60 96.04
Early elbow point Corr. 90.97 93.06 93.64 95.21

(40-D) Feat. imp. 92.59 93.35 94.48 95.34
DFT (Ours) 94.03 95.22 95.78 96.59

ANOVA 96.81 96.87 97.16 97.99
Late elbow point Corr. 96.87 97.13 96.83 97.93

(100-D) Feat. imp. 97.22 97.2 97.36 97.97
DFT (Ours) 97.08 97.36 97.49 98.18

Full set (400-D) 98.04 98.17 98.15 98.76

Table 4: Comparison of classification performance (%) on Clean Fashion-MNIST between
different feature selection methods.

Selected dimension Method LR SVM RF XGBoost

ANOVA 78.85 80.44 83.33 83.11
Early elbow point Corr. 76.57 80.16 82.69 83.04

(30-D) Feat. imp. 78.96 80.49 82.99 82.96
DFT (Ours) 79.59 81.48 84.03 84.09

ANOVA 87.06 86.61 87.69 89.08
Late elbow point Corr. 86.99 86.96 87.36 88.81

(150-D) Feat. imp. 87.47 87.62 88.28 89.33
DFT (Ours) 87.60 87.02 87.71 89.13

Full set (400-D) 89.05 88.18 88.74 90.07

Table 6 summarizes the classification performance for the MultiFeat dataset
on two early elbow points (10-D and 20-D) and one late elbow point (100-D).
The elbow points are selected based on the sorted DFT loss curve. DFT can
achieve comparable or even the best accuracy on early and late elbow points
using different classifiers. The performance gap between 100 selected features
and all 649 features is very small, which are 0.15% and 0.1% for LR and SVM,
respectively. The classification accuracies even improve by 0.1% and 0.05%
using RF and XGBoost, respectively. This shows that the proposed DFT can
eliminate less discriminant features while maintaining or even improving the
classification performance.
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Table 5: Comparison of classification performance (%) on Noisy Fashion-MNIST between
different feature selection methods.

Selected dimension Method LR SVM RF XGBoost

ANOVA 75.35 76.41 77.94 78.62
Early elbow point Corr. 75.55 77.94 79.22 80.50

(40-D) Feat. imp. 75.73 77.1 78.06 78.63
DFT (Ours) 76.35 77.92 79.23 79.69

ANOVA 81.84 81.98 82.42 84.10
Late elbow point Corr. 82.26 82.9 82.59 84.72

(150-D) Feat. imp. 83.19 83.43 83.54 84.91
DFT (Ours) 82.08 82.40 82.61 84.31

Full set (400-D) 84.35 84.24 84.23 85.91

Table 6: Comparison of classification performance (%) on MultiFeat between different feature
selection methods.

Classifier Method 10-D 20-D 100-D All features

LR

ANOVA 93.90 96.00 98.55

98.75Corr. 84.70 91.65 98.50
Feat. Imp. 86.35 97.35 98.90
DFT (Ours) 92.80 96.65 98.60

SVM

ANOVA 93.90 96.20 98.55

98.45Corr. 88.15 93.75 98.70
Feat. Imp. 89.65 97.60 98.80
DFT (Ours) 93.70 96.70 98.35

RF

ANOVA 93.75 96.20 98.90

98.60Corr. 85.35 92.30 98.55
Feat. Imp. 87.50 97.15 99.05
DFT (Ours) 92.70 96.75 98.70

XGBoost

ANOVA 94.00 96.45 98.40

98.45Corr. 86.80 93.00 98.45
Feat. Imp. 88.80 96.95 98.60
DFT (Ours) 93.55 96.40 98.50

We show the classification performance on the Colon dataset using LR and
SVM in Table 7, where the linear kernel is used in SVM. DFT has the minimum
or a comparable number of errors in leave-one-out validation. Furthermore,
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Table 7: Comparison of number of errors on Colon cancer dataset between different feature
selection methods.

Selected dimension Full set

Classifier Method 5 10 20 50 80 100 2000-D

LR

ANOVA 6 9 10 10 7 7

10Corr. 6 9 10 10 7 7
Feat. Imp. 8 6 5 5 9 9
DFT (Ours) 6 7 9 8 7 7

SVM

ANOVA 6 7 7 9 8 9

9Corr. 6 7 7 9 8 9
Feat. Imp. 6 6 5 6 9 8
DFT (Ours) 6 6 8 8 6 6

DFT can always achieve fewer errors as compared to the setting of using all
2000 features.

4.2.3 Comparison between DFT and mRMR

The minimal-redundancy-maximal-relevance (mRMR) [13, 31] aims at finding
a feature set with high relevance to the class while keeping the selected features
with small redundancy, leading to an efficient but effective subset of features.
It combines constraints measured by the mutual information of both relevance
to the class and redundancy between selected features and treats it as an
optimization problem. In this experiment, we compare DFT with mRMR
using its incremental selection scheme.

Figures 5, 6 and 7 compare the performance of mRMR and DFT on
MultiFeat, Colon and ARR datasets with SVM and XGBoost classifiers. For

Figure 5: Error rate comparison on the MultiFeat dataset between mRMR and DFT.
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MultiFeat and Colon, DFT can achieve very competitive performance with
mRMR. Specifically, the most discriminant feature of MultiFeat selected by
DFT is identical to the first feature selected by mRMR. The error rate with
the top 5 features selected by mRMR is smaller than that of DFT. Yet, the
performance gap is substantially narrowed after selecting more than 10 features
out of the total 649 features. Overall, the error rate of DFT and mRMR
converges at similar reduced dimensions, as shown in Figures 5 and 7. On the
other hand, the error rate of DFT on the ARR dataset is much lower than
that of mRMR, with around 2.5% and 5% gap at 100 selected features for
SVM and XGBoost, respectively, as shown in Figure 7.

Figure 6: Comparison of the number of errors on the Colon dataset between mRMR and
DFT.

Figure 7: Error rate comparison on the ARR dataset between mRMR and the DFT.

4.2.4 DFT Requires Less Running Time

We compare time efficiency of DFT, ANOVA, mRMR and feature importance
from the XGBoost model. Table 8 summarizes the running time for MultiFeat,
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Table 8: Running time (sec.) comparison of different feature selection methods.

ANOVA Feat. Imp. mRMR DFT (B= 8) DFT (B= 16)

MultiFeat 0.011 363.39 15.19 2.74 5.78
Colon 0.003 58.99 23.15 1.55 3.19
ARR 0.002 55.34 10.64 0.23 0.46

Colon and ARR datasets. All methods are run on the same CPU. The pre-
trained XGBoost classifier uses the maximum depth of one with 300 trees.
For filter methods such as ANOVA and DFT, the time is evaluated on all
features without parallel computing. For mRMR, we set the maximum to 100
for incremental selection, which is smaller than the full feature set. ANOVA
is the fastest and DFT method ranks the second on all three datasets. The
running time of DFT with B = 16 is about ×2.6, ×7.3 and ×23.1 times faster
than mRMR on MultiFeat, Colon and ARR, respectively. To further reduce
the running time, our proposed DFT can be easily improved by adopting
parallel computing since it processes each feature independently before the
feature ranking.

4.2.5 DFT with Feature Pre-processing

DFT assigns a score to each feature and selects a subset without any pre-
processing. Yet, there might be correlation between features so that a redun-
dant feature subset might be selected based on feature ranking [6]. Instead of
adding redundancy measure to the DFT loss, we study the effect of combining
DFT with feature pre-processing, such as PCA for feature decorrelation. We
choose clean MNIST and Fashion-MNIST datasets as examples and perform
PCA on the 400-D deep features without energy truncation. The DFT loss is
calculated for each of 400 PCA-decorrelated features. After feature selection,
the XGBoost classifier is applied. Figure 8 compares the test accuracy under
different selected dimensions for each setting. We see that PCA pre-processing
improves the classification performance with the same selected dimension.

Furthermore, PCA pre-processing allows a smaller feature dimension for the
same performance. For example, the accuracy on Fashion-MNIST saturates at
around 15-D and 30-D with and without pre-processing, respectively. This can
be explained by the energy compaction capability of PCA. Figure 9 shows the
histogram of energy ranking of the feature subset selected by DFT with and
without PCA preprocessing. The raw features are first sorted by decreasing en-
ergy (variance) prior to feature selection. We see that the selected subset tends
to gather in the first 20 to 50 principal components with PCA pre-preprocessing
while the selected features are more widely distributed without PCA.
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Figure 8: Performance comparison of DFT feature selection with and without PCA feature
pre-processing.

Figure 9: Histogram comparison of feature indices ranked by the energy with 20 and 40
selected feature numbers before and after PCA pre-processing. The smaller the ranking
index in the x-axis, the higher the feature energy.

4.3 RFT for Regression Problems

We convert the discrete class labels arising from the classification problem
to floating numbers so as to formulate a regression problem. We compare
effectiveness of four feature selection methods: (1) variance (Var.), (2) absolute
correlation coefficient w.r.t the regression target (Abs. Corr. Coeff.), (3)
feature importance (Feat. Imp.) from a pre-trained XGBoost regressor (of 50
trees), and (4) RFT. Again, we can draw two conclusions.

4.3.1 RFT Offers a More Obvious Elbow Point

Figure 4 compares the ranked scores for different feature selection methods.
The lower RFT loss, the higher feature importance while the other three have
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a reversed relation. RFT has a more obvious elbow point than the knee points
of Variance and correlation-based methods. The feature importance from
the pre-trained XGBoost regressor saturates very fast (up to 24-D) and the
difference among the remaining features is small. In contrast, RFT has a more
distinct and reasonable elbow point, ensuring the performance after dimension
reduction. A larger XGBoost model with more trees can help increase the
feature number of higher importance. Yet, it is not clear what model size
would be suitable for a particular regression problem.

4.3.2 Features Selected by RFT Achieve Comparable and Stable Performance

Tables 9 and 10 summarize the regression MSE at two reduced dimensions
selected by the RFT loss curves using early and late elbow points. The
proposed RFT can achieve comparable (or even the best) performance among
the four methods at the same selected feature dimension regardless of whether
the input images are clean or noisy. By employing only 25–37.5% of the total
feature dimensions, the regression MSEs obtained by the late elbow point
of RFT are 20–30% and 5–10% higher than those of the full feature set for
MNIST and Fashion MNIST, respectively. This demonstrates the effectiveness
of the RFT feature selection method.

Table 9: Regression MSE comparison for MNIST (clean/noisy) images with features selected
by four methods.

Early elbow point Late elbow point Full set
Method 30-D/50-D 100-D/100-D 400-D

Var. 1.45/1.23 0.90/0.99

0.70/0.83Abs. Corr. Coeff. 1.43/1.37 0.90/1.06
Feat. Imp. 1.55/1.47 1.04/1.23
RFT (Ours) 1.37/1.36 0.91/1.04

Table 10: Regression MSE comparison for Fashion-MNIST (clean/noisy) images with features
selected by four methods.

Early elbow point Late elbow point Full set
Method 30-D/50-D 150-D/150-D 400-D

Var. 2.08/1.98 1.46/1.73

1.35/1.62Abs. Corr. Coeff. 1.95/1.96 1.49/1.75
Feat. Imp. 2.00/2.06 1.62/1.86
RFT (Ours) 1.97/1.96 1.48/1.73
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5 Conclusion and Future Work

Two feature selection methods, DFT and RFT, were proposed for general
classification and regression tasks in this work. As compared with other
existing feature selection methods, DFT and RFT are effective in finding
distinct feature subspaces by offering obvious elbow regions in DFT/RFT
curves. They provide feature subspaces of significantly lower dimensions while
maintaining near optimal classification/regression performance. They are
computationally efficient. They are also robust to noisy input data.

Recently, there is an emerging research direction that targets unsupervised
representation learning [8–10, 27, 28, 41, 42]. Through this process, it is easy
to get high dimensional feature spaces (say, 1000-D or higher). We plan to
apply DFT/RFT to them and find discriminant/relevant feature subspaces for
specific tasks.
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