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ABSTRACT

Deep learning has become the method of choice to tackle real-world
problems in different domains, partly because of its ability to learn
from data and achieve impressive performance on a wide range of
applications. However, its success usually relies on two assumptions:
(i) vast troves of labeled datasets are required for accurate model
fitting, and (ii) training and testing data are independent and iden-
tically distributed. Its performance on unseen target domains, thus,
is not guaranteed, especially when encountering out-of-distribution
data at the adaptation stage. The performance drop on data in a tar-
get domain is a critical problem in deploying deep neural networks
that are successfully trained on data in a source domain. Unsuper-
vised domain adaptation (UDA) is proposed to counter this, by
leveraging both labeled source domain data and unlabeled target
domain data to carry out various tasks in the target domain. UDA
has yielded promising results on natural image processing, video
analysis, natural language processing, time-series data analysis,
medical image analysis, etc. In this review, as a rapidly evolving
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topic, we provide a systematic comparison of its methods and
applications. In addition, the connection of UDA with its closely
related tasks, e.g., domain generalization and out-of-distribution
detection, has also been discussed. Furthermore, deficiencies in
current methods and possible promising directions are highlighted.

Keywords: Deep learning, unsupervised domain adaptation, transfer learning,
adversarial training, self training.

1 Introduction

Deep learning is a subfield of machine learning, which aims at discovering
multiple levels of distributed representations of input data via hierarchical
architectures [73]. For the past several years, there has been an explosion
of deep learning-based approaches, where deep learning has substantially
improved state-of-the-art approaches to diverse machine learning problems and
applications [123]. In particular, deep learning has transformed conventional
signal processing approaches into simultaneously learning both features and
a prediction model in an end-to-end fashion [7]. Although supervised deep
learning is the most prevalent and successful approach for a variety of tasks, its
success hinges on (i) vast troves of labeled training data and (ii) the assumption
of independent and identically distributed (i.i.d.) training and testing datasets
[99]. Because reliable labeling of massive datasets for various application
domains is often expensive and prohibitive, for a task without sufficient labeled
datasets in a target domain, there is strong demand to apply trained models,
by leveraging rich labeled data from a source domain [286]. This learning
strategy, however, suffers from shifts in data distributions, i.e., domain shift,
between source and target domains [302]. As a result, the performance of a
trained model can be severely degraded, when encountering out-of-distribution
(OOD) data, i.e., a source distribution differs from a target distribution [25].
For example, the performance of a disease diagnostic system, applied to a
population in a target domain that is different from a population in a source
domain, cannot be guaranteed.

To counter this, unsupervised domain adaptation (UDA) is proposed as a
viable solution to migrate knowledge learned from a labeled source domain
to unseen, heterogeneous, and unlabeled target domains [155, 167], as shown
in Figure 1. UDA is aimed at mitigating domain shifts between source and
target domains [118]. The solution to UDA is primarily classified into statistic
moment matching (e.g., maximum mean discrepancy (MMD) [174]), domain
style transfer [234], self-training [148, 165, 321], and feature-level adversarial
learning [66, 81, 82, 171].
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Figure 1: A taxonomy of transfer learning approaches based on the availability of labeled
data in a source or target domain.

Figure 2: Illustration of the UDA classification and segmentation with the examples on the
VisDA17 challenge database. The target domain data are unlabeled, as indicated by the
orange triangle.

There are several previous review papers focusing on domain adaptation
[6, 8, 13, 49, 118, 119, 215, 249, 270, 275, 315, 316], and the broader problem
of transfer learning [45, 122, 204, 237, 251, 306]. As shown in Figure 2,
domain adaptation can be seen as a special case of transfer learning, with the
assumption that labeled data are available only in a source domain [204]. In
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Table 1: Comparison with the previous UDA survey papers.

Deep Generative Self- Self- Low
Surveys UDA mapping Normalization Ensemble training supervision density

Beijbom [6] × × × × × × ×
Sun et al.
[249]

× × × × × × ×

Csurka [49]
√

× × × × × ×
Wang and
Deng [270]

√ √
× × × × ×

Zhao et al.
[316]

√ √
× × × × ×

Kouw and
Loog [119]

√ √
× ×

√
* (no deep) × ×

Wilson and
Cook [275]

√ √ √ √
× ×

√

Ramponi and
Plank [215]

√ √
× ×

√
× ×

Zhang [309]
√ √ √

×
√

×
√

Guan and
Liu [75]

√ √
× × × × ×

Ours
√ √ √ √ √ √ √

this review paper, we aim to provide a wide coverage of models and algorithms
for UDA from a theoretical and practical point of view. This review also
touches on emerging approaches, especially those developed recently, providing
a thorough comparison of different techniques as well as a discussion of the
connection of unique components and methods with unsupervised deep domain
adaptation. The coverage of UDA, especially deep learning-based UDA, has
been limited in the general transfer learning reviews. Many prior reviews of
domain adaption do not incorporate deep learning approaches; however, deep
learning-based approaches have been the mainstream of UDA. In addition, some
reviews do not touch deeply on domain mapping [49, 118, 119], normalization
statistic-based [49, 119, 315, 316], ensemble-based [49, 119, 270, 316], or
self-training-based methods [275]. Moreover, some of them only focus on
limited application areas, such as visual data analytics [49, 202, 270] or natural
language processing (NLP) [215]. In this review, we provide a holistic view of
this promising technique for a wide range of application areas, including natural
image processing, video analysis, NLP, time-series data analysis, medical image
analysis, and climate and geosciences. The topics with which other review
papers dealt are summarized in Table 1.

The rest of the paper is organized as follows. We first analyze possible
domain shifts in UDA in Section 2. Then, various recent UDA methods are
discussed and compared to each other in Section 3. Next, we show how UDA
is applied to multiple application areas in Section 4. In Section 5, we highlight
promising future directions. Finally, we conclude this paper in Section 6.
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2 Overview

In this section, without loss of generality, we first introduce terms and notations
as well as a formal definition of UDA. In UDA, there are an underlying source
domain distribution ps(x, y) ∈ pS and a different target domain distribution
pt(x, y) ∈ pT . Then, a labeled dataset DS is selected i.i.d. from ps(x, y),
and an unlabeled dataset DT is selected i.i.d. from the marginal distribution
pt(x). The goal of UDA is to improve a generalization ability of a trained
model in a target domain, by learning on both DS and DT . We note that
Y = {1, 2, . . . , c} is the set of the class labels for discriminative tasks, e.g.,
classification and segmentation. In contrast, Y can be continuous values,
sentences, images, or languages in generative tasks [67]. UDA [66, 258] is
motivated by the following theorem [118]:

Theorem 1. For a hypothesis h

Lt(h) ≤ Ls(h) + d[pS , pT ]

+ min[Ex∼ps
|ps(y|x)− pt(y|x)|,Ex∼pt

|ps(y|x)− pt(y|x)|]. (1)

Here, Ls(h) and Lt(h) are predefined losses with a hypothesis h in source
and target domains, respectively. d[·] represents a divergence measure, e.g.,
the Jensen–Shannon (JS) divergence in the case of conventional adversarial
UDA [232]. Of note, the third term on the right hand, min[Ex∼ps |ps(y|x)−
pt(y|x)|,Ex∼pt |ps(y|x)− pt(y|x)|], is a negligible value, for which the error in a
source domain Ls(h) and the divergence between two domains is considered an
upper bound of the error in a target domain Lt(h). Ls(h) can be minimized,
using recent advances in supervised learning, e.g., advanced deep feature
extractor networks. Overall, UDA methods aim at minimizing the divergence
between two domains to lower the upper bound of the generalization error in
the target domain Lt(h).

Domain shifts can be categorized into four types [118], as shown in Fig-
ure 3. Existing work primarily focuses on a single shift only, by assuming that
other shifts remain invariant across domains. The covariate shift w.r.t. p(x)
is to align the marginal distribution for all of the data samples. At a more
fine-grained level, the conditional shift is used to align the shift of p(x|y), which
is a more realistic setting than the covariate shift only setting, since different
classes could have their own shift protocols. For instance, some street lamps
glitter, while other lamps are dim at night [143]. However, estimating pt(x|y)
without pt(y) is ill-posed [307]. Moreover, the label shift [21], a.k.a. target
shift, indicates the sample proportion of involved classes is different between
two domains. Furthermore, the concept shift [118] can arise, when classifying,
for example, tomato as a vegetable or fruit in different countries; it is, however,
usually not a common problem in popular object classification or semantic
segmentation tasks. As such, this review mainly focuses on the covariate shift
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alignment in UDA, as is most commonly studied. The challenges of aligning
the other shifts and their combinations are also discussed as directions for
future research.

Figure 3: A summary of four possible domain shifts. The red mask indicates the most
common domain shift scenarios in UDA [143]. Note that p(x) can be aligned, if p(x|y) is
aligned with the law of total probability [307].

3 Methodology

The past few years have witnessed a proliferation of UDA methods, following
the rapid growth of neural network research. Popular approaches include
domain alignment with statistic divergence and adversarial training, generative
domain mapping, normalization statistics alignment, ensemble-based methods,
and self-training, as summarized in Figure 4. In addition, these approaches
can be combined to further enhance performance on a variety of tasks. In this
section, we discuss each category in more detail as well as their combinations
and connections.

3.1 Statistic Divergence Alignment

Learning domain invariant feature representations is the most widely used
philosophy in many deep UDA methods, which hinges on minimizing domain
discrepancy in a latent feature space. To achieve this goal, choosing a proper
divergence measure is at the core of these methods. Widely used measures
include MMD [224], correlation alignment (CORAL) [247], contrastive domain
discrepancy (CDD) [105], Wasserstein distance [145], graph matching loss [287],
etc.

Following the hypothesis of a two-sample statistical test, MMD measures
the distribution divergence with observed samples. Specifically, the mean of a
smooth function w.r.t. the samples from two domains are compared, where a
larger mean difference indicates a larger domain discrepancy. Conventionally,
the unit ball in characteristic reproducing kernel Hilbert spaces (RKHS)—as
a means of analyzing and comparing distributions—is used as the smooth
function, which provides a zero population if and only if the two distributions
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Figure 4: A summary of the main stream UDA methods discussed in this paper.

Figure 5: Different architectures of (a) MMD-based UDA (e.g., DAN [173]), and (b)
adversarial training based deep UDA (e.g., domain-adversarial neural networks (DANN)
[66]).

are equal. In practice, the alignment component serves as another classifier akin
to a task classifier. In what follows, MMD can be calculated and minimized
between the outputs of the classifiers’ layers [224], as shown in Figure 5(a).
Following vanilla MMD, multiple kernel MMD (MK-MMD) [173] and joint
MMD (JMMD) [175] are further proposed to achieve a more robust MMD
estimation.

Similar to MMD, CORAL is proposed, based on a polynomial kernel
[247]. CORAL is defined as the difference of the second-order statistics, i.e.,
covariances, across the features of two domains. To measure the difference of
the covariances, different distances have been explored, e.g., squared matrix
Frobenius norm [248], an Euclidean distance measure in mapped correlation
alignment [311], log-Euclidean distances [272], and geodesic distances [193].
CORAL has also been generalized to possibly infinite-dimensional covariance
matrices in RKHS [312]. The statistics beyond the first-order, e.g., MMD,
and second-order, e.g., CORAL, are further investigated for more accurate
CORAL estimation [27].

To achieve class conditioned distribution alignment, CDD [105] is proposed
to incorporate the class label into MMD. By minimizing CDD, cross-class
divergence is enlarged, while within-class divergence is minimized. Considering
that the label in a target domain is missing in UDA, contrastive adaptation
networks (CAN) [105] is proposed to alternatively estimate the target domain
label with clustering, while minimizing CDD.
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In addition, the Wasserstein distance [68, 80, 156, 170], a.k.a. optimal
transportation distance or earth mover’s distance [145, 149], could be another
alternative to measure the distribution divergence. The joint distribution
optimal transport (JDOT) is proposed to measure the Wasserstein distance be-
tween two feature distributions [48]. As a deep learning framework, DeepJDOT
is further proposed to achieve an end-to-end UDA [50].

Furthermore, graph matching has been used as a divergence measure, which
aims at finding an optimal correspondence between two graphs [287]. With
a batch of samples, the feature extraction can be regarded as nodes in an
undirected graph. The distance between two nodes represents their similarity.
The domain divergence is defined as the matching cost between the graphs in
source and target domain batches [51, 52].

3.2 Adversarial Learning

Instead of choosing a divergence measure, such as MMD, recent work focuses
on adaptively learning a measure of divergence. With recent advances in
generative adversarial networks (GAN), adversarial training is widely used to
achieve domain invariant feature extraction.

Following Theorem 1, to efficiently minimize the upper bound, i.e., the
right-hand side of Equation (1), adversarial UDAs are used to minimize across
domain divergence at the feature level with guidance of a discriminator as
an adaptively learned divergence measure. Specifically, as shown in fig. 5(b),
in [66, 258], a feature extractor f(·) is applied onto x to extract a feature
representation f(x) ∈ RK . We would expect that d[ps(f(x)), pt(f(x))] could
be a small value. Targeting this goal, in addition to training a classifier Cls to
correctly classify source data, f(·) is also optimized to encourage the source and
target feature distributions to be similar to each other, following the supervision
signal from a domain discriminator Dis : RK → (0, 1). We note that the
classifier Cls : RK ×Y → (0, 1) outputs the probability of an extracted feature
f(x) being a class y among c categories, i.e., C(f(x), y) = p(y|f(x);Cls). The
objective of different modules can be

max
Cls

E
x∼ps

logC(f(x), y) (2)
max
Dis

E
x∼ps

log(1−Dis(f(x)) + E
x∼pt

logDis(f(x)) (3)
max
f

E
x∼ps

logC(f(x), y) + λ E
x∼pt

log(1−Dis(f(x)), (4)

where λ ∈ R+ is used to balance between the two loss terms. Following the
conventional adversarial UDA methods, the three max strategy [232, 254]
can be leveraged, and the three objectives above are used to update the
corresponding three modules, respectively. In Equation (3), if f(x) is a source
domain feature, then Dis(f(x)) is trained to produce 0 and vice versa. Note
that maximizing E

x∼pt
logDis(f(x)) for Dis in Equation (3), while maximizing
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E
x∼pt

log(1−Dis(f(x))) for f in Equation (4) has made this formula a minmax
adversarial game.

Specifically, domain adversarial neural network (DANN) [66] utilizes the
gradient reversal layer as a domain discriminator Dis. In addition, adversarial
discriminative domain adaptation (ADDA) [258] is proposed to initialize the
target model with source domain training, followed by adversarial adaptation,
which amounts to the target domain-specific classifier. Other than minimizing
cross-entropy based domain confusion losses, Tzeng et al. [257] propose
enforcing the prediction as a uniform distribution of binary bins. Assuming
that the samples are the same, these two domain discriminative losses are
essentially equivalent to each other [73]. Similarly, Motiian et al. [194] group
the domains and classes as four pairs, by utilizing a four-class classifier for the
domain discriminative network. The feature generator is further developed in
[261] to achieve source domain feature augmentation.

Instead of modeling the domain divergence with the JS divergence as
in conventional adversarial UDA [232], a discriminator for estimating the
Wasserstein distance is further proposed [239]. Following the recent Wasserstein
GAN [1], the Wasserstein distance can be used as a better distance measure,
especially to cope with large discrepancies. This is because the JS-divergence
cannot differentiate the distance between distributions if there is no overlap
between two distributions. In Saito et al. [229], there are two discriminators to
maximize the discrepancy of each class in the target domain, which renders the
target domain features to have a wider class-wise boundary region to facilitate
the classification.

3.3 Normalization Statistics

In modern deep neural networks, batch normalization (BN) layers have played
an important role in achieving faster training [100], smoother optimization,
and more stable convergence [279], due to its insensitivity to initialization
[235]. In each normalization layer, there are two low-order batch statistics,
including mean and variance, and two learnable high-order batch statistics,
including scaling and bias.

Some early work assumes that the BN statistics of mean and variance
inherit domain knowledge. As the early attempt of applying BN to domain
adaptation, AdaBN [134], as illustrated in Figure 6(a), is proposed to achieve
UDA, by modulating BN statistics from a source domain to a target domain.
In AdaBN, once training is completed, the parameters and weights learned
during the training, except for BN layers, are fixed. As a result, BN layers
can be simply added to a target domain, without having an interaction with
the source domain [134]. In addition, AutoDIAL [20] is further proposed as a
generalized AdaBN, which retrains the network weights simultaneously with
additional domain alignment layers.
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Recent work [22, 183, 185, 271] demonstrates that the low-order batch
statistics, including the mean and variance, are domain-specific, because of
the divergence of feature representations across two domains. Note that
simply forcing the mean and variance to be the same between source and
target domains is likely to lose expressiveness of networks [305]. Besides,
once the low-order BN statistics discrepancy has been partially mitigated,
the high-order BN statistics can be shareable between two domains [185,
271]. Note that all of the aforementioned approaches [22, 183, 185, 271, 305]
need joint training on source domain data. Recently, OSUDA [159, 166], as
shown in Figure 6(b), propose reducing the domain discrepancy by means of
a momentum-based adaptive low-order batch statistics progression strategy
and an explicit high-order BN statistics consistency loss for source-free UDA
segmentation.

3.4 Generative Domain Mapping

Rather than aligning features in a latent space, an alternative can be directly
rendering the target domain data at the data level. The classifier or segmenta-
tion network can be trained on the generated target domain data from source
domain data alongside their labels [242]. In addition, the network can be
trained simultaneously with GANs [11, 91], as shown in Figure 7(b).

Cycle reconstruction for image style translation plays an important role
for unpaired translation tasks [113, 294, 318]. However, it is challenging to
efficiently constrain local structures, thus leading to significant distortions in
the translated images and their segmentations [290]. To address this, Yang
et al. [290] extract a modality-independent neighborhood descriptor (MIND)
feature M(xt) and M(GTC(xt)) of xt and GTC(xt) with a manually defined
extractor M , and minimize their reconstruction loss ||M(xt)−M(GTC(xt))||1.
[163] propose a general structure feature extractor f in lieu of M . To achieve
more fine-grained class-wise image mapping, conditional GANs have been
widely used for generative domain mapping.

Figure 6: Different architectures for BN-based methods, e.g., (a) AdaBN [134] and OSUDA
[159, 166].
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Figure 7: Different architectures for (a) adversarial UDA with Conditional and Label Shift
(CLS) [143], and (b) generative adversarial UDA [11].

3.5 Self-training

Unlike approaches that reduce domain discrepancy with a divergence measure,
self-training is proposed as an alternative training scheme, by utilizing unla-
beled target domain data to achieve domain adaptation [321]. Self-training
is based on a round-based alternative training scheme, which is originally
developed for semi-supervised training and has recently been adapted for UDA.
There are two steps involved in deep self-training based UDA: (1) creating a
set of pseudo-labels in the target domain, and (2) retraining the network using
the generated pseudo-labels with target domain data.

Recently, self-training-based approaches have surpassed adversarial training-
based approaches in several deep UDA tasks [188, 241, 273]. Whereas self-
training was initially presented as part of semi-supervised learning [255],
recently proposed deep self-training methods combine feature embedding
with alternative learning in a unified manner, thus yielding flexible domain
adaptation [321].

A crucial issue in self-training-based approaches, however, is that pseudo-
labels in the target domain could be noisy; and thus it is likely that a large
proportion could be unreliable. To mitigate this issue, selecting the prediction
with high confidence is essential. To this end, in classification or segmentation
tasks with softmax output unit, a possible solution would be to gauge the
confidence as the maximum value of histogram [321]. Additionally, to tackle
the problem of the noisy and unreliable pseudo-labels, Zou et al. [321] construct
a more conservative pseudo-label in order to smooth the one-hot hard label to
a soft label vector. Liu et al. [148] further resort to an additional supervision
signal of an energy-based model for regularization, which is independent of
the pseudo-label. Mei et al. [187] explore instance-wise self-training for UDA.

In addition to the discriminative tasks, such as classification and segmen-
tation, Mei et al. [165] further extend self-training to a generative task, by
controlling the confident pseudo-label of continuous pixel value with a Bayesian
uncertainty mask. In learning-based tasks, two kinds of uncertainty exist,
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including an aleatoric uncertainty and an epistemic uncertainty [54, 97, 108].
Specifically, the aleatoric uncertainty is caused by the uncertainty from noisy
training data observations, whereas the epistemic uncertainty is caused by
models that are not sufficiently trained. In self-training, the pseudo-labels
are typically noisy, thus leading to the aleatoric uncertainty. In addition, the
epistemic uncertainty in self-training is caused by a limited number iterations
for model training and a limited number of target domain training samples.
Therefore, taking both uncertainties into account is vital to build a robust
model with a holistic uncertainty calibration.

3.6 Self-supervision

Another solution to UDA is to incorporate auxiliary self-supervision tasks
into the network training. Self-supervised learning hinges on only unlabeled
data to prescribe a pretext learning task, such as context prediction or image
rotation, for which a target objective can be computed without supervision
[117]. This group of work assumes that alignment can be achieved by carrying
out source domain classification and reconstruction of target domain data [70]
or both source and target domain data [12]. In Ghifary et al. [70], a deep
reconstruction-classification network is optimized with a pair-wise squared
reconstruction loss. In particular, the scale-invariant mean squared error
reconstruction loss is introduced in Bousmalis et al. [12] to train its domain
separation networks.

In addition to the conventional reconstruction tasks [171], new self-
supervision tasks have been proposed, e.g., image rotation and jigsaw pre-
dictions [283]. Kim et al. [111] propose both in-domain and across-domain
self-supervision to achieve UDA with fewer source domain labels. Lian et al.
[137] propose a self-motivated pyramid curriculum for segmentation.

3.7 Low Density Target Boundary

Several UDA approaches based on a popular clustering assumption [24] are
proposed in the context of semi-supervised training, which indicates target
domain samples from the same class are likely to be distributed closely as a
cluster. The target domain class-wise decision boundaries should be located
in the low-density regions [82]. To this end, Shu et al. [243] propose virtual
adversarial domain adaptation. In addition, after training, a decision-boundary
iterative refinement step with a teacher is further applied to refine the decision
boundary in a target domain [243]. Kumar et al. [121] combine variational
adversarial training with a conditional entropy loss to achieve a low-density
boundary and avoid overfitting in unlabeled data. Similarly, an entropy loss
has been applied to AutoDIAL [20]. Other than the feature level, generative
methods at the image level have also been developed to make the decision
boundary lie in a lower density region [274].
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Saito et al. [227] propose adversarial dropout regularization, which is seen
as the difference between two dropout networks as a discriminator to generate
target discriminative features. Lee et al. [127] extend the adversarial dropout
for convolutional layers with a channel drop rather than an element drop.
TDDA [71] focuses on task-discriminative alignment for UDA.

3.8 Other Methods

DEV [298] is proposed to achieve UDA via model selection. The prototype
with clustering is utilized in Pan et al. [205] for class-wise adaptation. Liu et al.
[155, 167] further extend the class-wise prototype to fine-grained subtypes.
Wu et al. [278] apply dual mixup regularization to adversarial UDA. Domain
randomization is proposed in Kim et al. [114], Rodriguez and Mikolajczyk
[220] to randomly generate source domain data with a different style to achieve
a decent generalization ability in a target domain. To further utilize unlabeled
data, a mean teacher has been used in Cai et al. [15], Deng et al. [53]. The
inter/intra object correlation is explored in a graph reasoning framework for
domain adaptation in Xu et al. [284]. Liu et al. [160] utilize the self-semantic
contour as an intermediate feature to facilitate domain adaptation.

3.9 Combinations and Connections

Several aforementioned approaches can be combined with each other to exploit
complementary optimization. Both feature-level adversarial alignment and
image-level generative mapping can be combined sequentially, e.g., GraspGAN
[10], or jointly, e.g., CyCADA [103]. Following AdaBN, several works have
shown that the BN alignment can be added on top of other UDA methods
[10, 63, 105, 129]. The BN alignment and entropy minimization for low-
density target boundary are combined for source data free UDA [159, 166].
Adversarial domain-invariant feature alignment has been applied on different
levels, following an ensemble scheme [121]. Low-density target boundary and
domain-invariant feature learning are jointly learned in Lee et al. [124], Saito
et al. [229]. Kang et al. [106] combine generative image mapping with the
alignment of model attention. PANDA [95] integrates adversarial training
with prototype-based normalization.

4 Applications

UDA has been successfully applied to a variety of application areas, including
perception and understanding of images, video analysis, NLP, time-series data
analysis, medical image analysis, and climate and geosciences. While some
works are based on general principles of UDA, other works are targeted to tackle
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specific applications under consideration, by exploiting the characteristics of
training and testing datasets. In this section, we do not intend to provide a
comprehensive review, but rather opt to highlight examples of trends in UDA
for various application areas, given the presence of a huge body of work and a
number of excellent prior reviews.

4.1 Image Analysis

Natural image analysis is the most explored area in UDA, due to the availability
of large-scale visual databases. Depending on the label and corresponding
output, popular tasks include image classification, e.g., object recognition and
face recognition, object detection, semantic segmentation, image generation,
image caption, etc.

4.1.1 Image Classification

Classification or recognition of object categories has been a fundamental task
in computer vision. As such, numerous attempts have been made to use deep
learning and UDA for the classification. For instance, Long et al. [175] use
AlexNet [120] backbone for the task, where the approach is compared against
the source model, the DANN method [65], and the variations of MMD, e.g.,
DDC [259], DAN [173], JAN [175], and RTN [176]. Zellinger et al. [301]
compare their CMD methods with other discrepancy-based methods, e.g.,
DDC [259], deep CROAL [248], DLID [43], AdaBN [135], and adversarial
DANN [65]. In addition to the object classification, UDA of face recognition
is another hot research topic, in which the most important shifts include pose,
illumination, expression, age, ethnicity, and imaging modality [150, 151, 157].
Among these shifts, the expression, ethnicity, and imaging modality have
discrete variations, while other attributes have continuous variations [141, 154].
In Kan et al. [104], a bi-shifting auto-encoder framework is proposed for face
identification with the domain shifts of view, ethnicity, and sensor. Hong et al.
[92] generate different face views for domain adaptation. Sohn et al. [245]
achieve adversarial UDA for video face recognition.

There are several widely adopted benchmarks for classification tasks. As
for databases to test the domain shift in natural images, Office-31 dataset [225]
is widely used, which contains data from three different sources, i.e., Amazon
(A), DSLR (D), and Webcam (W). As for image synthesis to achieve real image
domain adaptation, VisDA17 [209] is a preferred choice. DomainNet [208]
is the largest domain adaptation dataset to date, which consists of −0.6M
images with 345 sub-classes from 24 meta-classes.

In addition to classification with discrete labels, several tasks have ordinal
class labels [142, 144]. In the case of medical diagnosis, it is likely that the
labels are discrete and distributed successively. As such, UDA for ordinal
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classification needs to induce a non-trivial ordinal distribution first, prior to
projecting the data onto a latent space. In Liu et al. [152, 153], a recursively
conditional Gaussian distribution is adapted to ordered constraint modeling,
which admits a tractable joint distribution prior.

4.1.2 Image Detection

In addition to recognizing objects, image detection has been further inves-
tigated, by localizing objects in a wide view of field with a bounding-box
[202]. Deep object detection has been an integral part of several tasks, e.g.,
surveillance, augmented/mixed reality (AR/MR), autonomous driving, and
human-computer interface.

Adversarial feature alignment has been utilized for UDA object detection
in [40, 93, 228, 244, 262]. In addition, adversarial generative mapping at the
image level has been applied in [28, 94, 220, 300, 303]. In several works [74,
109, 112, 130, 222, 313], the pseudo-label based self-training is adopted for
progressive adaptation.

For UDA in image detection, popular domain adaptation scenarios include
adaptation of cross weather conditions, synthetic to real imagery, etc. For
example, domain adaptation is performed from Cityscapes [46] to Foggy
Cityscapes [230], which is rendered from Cityscapes, by adding the fog noise.
In addition, several works [285] use SIM10k dataset as the source domain and
the Cityscapes dataset as the target domain.

4.1.3 Image Segmentation

Image segmentation aims at pixel-wise classification [161, 250]. Rather than
indicating the rough position of the object like a detection task, segmentation
provides fine-grained delineation to support subsequent operations. Compared
with the sample wise classification in UDA, it is difficult to apply the low-
density target region and prototype based UDA methods. Since each pixel
needs to be represented as a point in the feature space, it is difficult to scale
up to large-scale data. Instead, adversarial training at both feature and image
levels have been widely used [187, 256, 299]. Self-training based methods have
also been developed for semantic segmentation [29, 147].

A typical task is to adapt the large-scale labeled game engine rendered
data, i.e., GTA5 [217], to the real-world data, i.e., Cityscapes [46], for which
there are a total of 19 shared labels for semantic segmentation. In a source
domain, there are a total of 24,000 labeled game engine rendered images from
Grand Theft Auto 5. As the standard evaluation protocol [291], all of the
samples in the GTA5 dataset are used as the source domain, while the training
set of Cityscape with a total of 2975 images is used as the target domain
training set. The testing set of Cityscapes has a total of 500 images.
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4.1.4 Image Generation

Generative models have been widely applied to diverse tasks, e.g., entertain-
ment, image harmonization/stylization, and data completion and augmenta-
tion [158, 162, 264, 282, 288, 289].

The image style synthesis task itself can be regarded as a cross-domain
translation task, when the input involves another style or domain. To address
this, GAN-based methods have been widely used for cross-domain image
generation tasks [85]. Self-training has also been applied to the image synthesis
task. For example, Liu et al. [165] leverage self-training for the image synthesis
task, which also considers both epistemic and aleatoric uncertainties [54].
Specifically, Liu et al. [165] aim at cross modality synthesis using paired sets
of images acquired from two different sites.

The typical evaluation in He et al. [85] adopt the T1-weighted to T2-
weighted MRI translation across three IXI centers.1 In addition, the paired
cine and tagged tongue MRI in two private datasets are used in Liu et al. [165].

4.2 Medical Image Analysis

Medical image analysis has been a major application ground for image analysis
methods, due to its wide usage in real-life imaging problems. In addition, a
variety of imaging modalities are used in a clinical setting, each of which poses
unique challenges. An increasing amount of deep network-based methods have
been proposed to achieve enhanced computational speed and better algorithmic
performance over traditional medical image analysis methods. UDA has been
successfully adopted in image segmentation, classification, and generation tasks
in addition to a few other varying applications.

Perone et al. [210] use a self-ensembling technique in semantic image
segmentation, demonstrating that it can improve model generalization. Their
method is evaluated using a small number of magnetic resonance imaging
(MRI) datasets, serving as a proof-of-concept of the advantage of UDA in
medical imaging, rather than showing an actual application in a more extensive
real-life medical problem. Ouyang et al. [201] report UDA for multi-domain
medical image segmentation via a VAE-based feature prior matching, which
features data efficiency. It is applied to a multi-modality cardiac image dataset
to achieve segmentation. Zou et al. [320] propose UDA with the so-called
Dual-Scheme Fusion Network, where both source-to-target and target-to-source
connections are built to help bridge the gap between domain differences for
improved performance. It is applied to the segmentation of both brain tumors
and cardiac data, yielding decent results. He et al. [84] achieve cross-device
retinal OCT segmentation. Liu et al. [160] facilitate cross-modality brain
tumor segmentation with self-semantic contouring. Additionally, more methods

1https://brain-development.org/ixi-dataset/

https://brain-development.org/ixi-dataset/
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have been proposed to improve the segmentation UDA networks from within
their structures. To enable flexibility of two-way adaptations, Ning et al. [198]
propose a bidirectional UDA framework based on disentangled representation
learning. It achieves decent performances in both the forward adaptation
direction, such as from MRI to computed tomography (CT), and the backward
direction, such as from CT back to MRI. The popular evaluation setting is
to use the MMWHS challenge dataset as the source domain and the MMAS
dataset as the target domain, respectively [319].

It often poses a challenge to share medical data for collaboration due to
sensitive patient information. To address the privacy concern of the large-scale
and well-labeled medical data in the source domain, Liu et al. [166, 169] adapt
a pre-trained “off-the-shelf” segmentation model without source domain data
at the adaptation stage. The test-time adaptable segmentation networks have
been developed to achieve UDA in a source-free manner [85, 107]. In addition,
He et al. [85] show that their method can be generalized to image translation
UDA tasks.

Besides, recent years have seen increased usage of UDA to solve segmenta-
tion problems using a variety of imaging modalities, such as CT, MRI, X-ray
imaging [310] and optical coherence tomography imaging [132, 268]. Addition-
ally, UDA has been used in medical image classification [2, 180] and diagnosis
[308]. For instance, Liu et al. [155, 167] explore the subtype of congenital
heart disease [269]. The disease level has been investigated in Liu et al. [152,
153], in which the Kaggle Diabetic Retinopathy (KDR)2 is used as the source
domain, and the recent Indian Diabetic Retinopathy Image Dataset (IDRiD)
dataset [212] is used as the target domain.

4.3 Video Analysis

Video data contain rich spatial and temporal semantic information. However,
it is challenging to collect and annotate a large volume of video data to learn
useful spatiotemporal features. Annotation of all video frames is labor-intensive
and time-consuming for different target applications and devices [131, 207, 231].
Accordingly, UDA has been applied to video analysis tasks, including action
recognition [31, 34, 42, 203], person re-identification [189], action segmentation
[32, 33], video captioning [36], video quality assessment [35], and video artifact
reduction [78].

Because there are few well-organized video datasets in early work, an image-
to-video adaptation method is proposed to use a large-scale image dataset to
train a model for video analysis. Sohn et al. [245] improve accuracy in face
recognition using a video through image-to-video domain adaptation as in
Figure 8(a). They attempt to overcome the difference of visual quality between
still images and video frames. Liu et al. [172] propose a deep image-to-video

2https://www.kaggle.com/c/diabetic-retinopathy-detection

https://www.kaggle.com/c/diabetic-retinopathy-detection
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adaptation and fusion network (DIVAFN) to enhance accuracy in video ac-
tion recognition, by transferring knowledge learned from images. In addition,
UCF-HMDBfull and Kinetics-Gameplay [31] have been collected to promote
video domain adaptation and benchmark the performance in the presence of
large domain discrepancy.

Most pre-trained networks for video analysis tend to perform poorly, when
a pre-trained model encounters unseen temporal dynamics on the target side.
There is prior work to resolve the problems in video action recognition, by
overcoming domain discrepancies along the spatial and temporal directions.
Chen et al. [31] propose a temporal attentive adversarial adaptation network
(TA3N) in Figure 8(b). They attempt to align two domains spatio-temporally,
by encoding spatio-temporal features using an attention mechanism. Choi et al.
[42], Pan et al. [203], and Chen et al. [34] improve the attention mechanism for
better alignment. Video UDA on action recognition is extended to more realistic
settings, using videos collected from surveillance cameras [195] and drones [41].

Figure 8: (a) Example of image-to-video adaptation [245] and (b) example of UDA for video
analysis [31].

UDA is actively studied for video scene analysis and restoration. Chen
et al. [30] propose VideoGAN to focus on the translation of video-based data
and transfer the data across different domains. Guizilini et al. [76] present a
video segmentation method using self-learning to bridge a domain gap between
simulated and real videos. UDA is also applied to face recognition [60], person
re-identification [189], and video captioning [36]. In addition to the analysis of
high-level semantics, there is prior work for UDA in low-level video processing.
Chen et al. [35] and Ham et al. [78] present various UDA methods for video
quality assessment and video artifact reduction. They attempt to provide
reliable performance of a network, when the visual quality of a video frame is
different between source and target domains.

The typical evaluation datasets for image-to-video adaptation include UCF-
Olympic, UCF-HMDBsmall, UCF-HMDBfull, and Kinetics-Gameplay [31]. In
addition, the Kinetics and NEC-DRONE datasets are utilized for evaluation
of video UDA on action recognition [41]. For the video quality assessment,
UDA approaches are evaluated on DIV2K, BSD68, and Set12 datasets [78].



Deep UDA: A Review of Recent Advances and Perspectives 19

4.4 Natural Language Processing

Similar to the visual data processing, the necessity of developing UDA methods
has emerged in NLP [238], partly because it is costly and demanding to annotate
the sheer volume of language data.

Sentiment analysis is the most explored application to develop UDA meth-
ods in NLP [215]. In early attempts of UDA in NLP, Ganin et al. [66] propose
a domain-adversarial neural network (DANN). UDA is carried out by adding
a domain classifier that is connected to a feature extractor through a gradient
reversal layer. It has motivated several studies [72, 136, 219, 239]. Shen et al.
[239] utilize the adversarial training to minimize the estimated Wasserstein
distance between source and target samples. Rocha and Cardoso [219] indicate
that the adversarial training method can be more effective, when the source
and target language datasets contain several content variations in addition to
the language shift. Furthermore, UDA methods are applied to perform various
NLP tasks, including dependency parsing [221, 236], POS (part-of-speech)
tagging [55, 139], relation extraction [64, 218, 240], trigger identification [196],
language identification [136], political data classification [55], etc.

Pre-training has become a key ingredient to deploy an NLP model due to
the inherent complexity of the structure of language and the nature of NLP
tasks [215, 238]. In recent NLP studies, it is a standard training strategy
to fine-tune a transformer-based model with a small amount of data for a
target application. A large-scaled language dataset is used for pre-training
in the source domain, and task-specific data become the target domain in
the context of UDA. With the domain shift, adaptive pre-training has been
proposed to compensate for the classical pre-training, such as BERT [14].
AdaptBERT [79] performs domain-adaptive fine-tuning to adapt contextualized
embedding by masked language modeling from the target domain. Gururangan
et al. [77] use both domain-adaptive pre-training and task-specific pre-training
methods.

Image captioning is an interdisciplinary area to connect computer vision
and NLP. A typical solution to UDA for image captioning would be to leverage
a convolutional encoder for extracting the necessary latent information of
visual scenes, followed by adopting a text generator, e.g., recurrent neural
networks. Similarly, Chen et al. [38] use adversarial training for the paired
source domain data and unpaired target domain data. Zhao et al. [317]
develop a dual learning scheme to fine-tune a source domain model trained
on a limited dataset to the target domain. Because the output of an image
captioning model is a sentence, it poses a challenge to model a conditional
distribution. A possible solution would be to encode a sentence label with an
additional recurrent neural network as in Che et al. [25].

The sentiment classification UDA, across English, Chinese, and Arabic
with the dataset in [39], is used for evaluation [219]. The English OntoNotes
5.0 and the Universal Dependencies datasets are used for dependency parsing
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UDA evaluation [221]. In addition, the English portion of ACE2005 dataset is
used for relation extraction UDA evaluation, which covers a total of 6 genres
and 11 relation types.

4.5 Time Series Data Analysis

Various UDA strategies are exploited for tasks using time series data. Among
others, with time series medical data, such as electroencephalogram (EEG),
electrocardiogram (ECG), and multivariate healthcare data, UDA has been
applied to perform sleep classification [61, 297, 314], arrhythmia classification
[199, 267], motor imagery [216, 252], etc. Especially, these methods attempt
to tackle the distribution discrepancy between different datasets and between
subjects, because medical data vary depending on demographic features such
as age, sex, and illness. For example, Yoo et al. [297] apply both adversarial
training and self-training with three different domain discriminators, including
domain, subject, and stage discriminators, as shown in Figure 9(a), to preserve
local structures of sleep stages as shown in Figure 9(b).

Figure 9: (a) Example of UDA for sleep classification [297] and (b) sleep signal space.

Existing work on emotion recognition [83, 86, 133, 296], speech recognition
[3, 110, 184, 265], and imagined speech recognition [102] also brings the concept
of UDA. Moreover, the effectiveness of UDA is explored for applications that
use industrial time series data, including human action recognition [23, 59,
101, 233], inertial tracking [26], driving maneuver prediction [253], anomaly
detection [191], fault diagnosis [177], and lifetime prediction [47, 214].

Besides, time-series UDA approaches are developed to effectively capture
the temporal dependencies of time series data that may be neglected, by
visual data-based methods. For instance, based on DANN, recurrent domain
adversarial neural network (R-DANN) and variational recurrent adversarial
deep domain adaptation (VRADA) [213] are proposed by exploiting the long
short-term memory (LSTM) network [89] and variational RNN [44] as a feature
extractor, respectively. More models, such as a sparse associative structure
alignment (SASA) model [16] and a convolutional deep domain adaptation
model for time series data (CoDATS) [276], are developed to improve time
series UDA performance.
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For sleep signal UDA, the Montreal Archive of Sleep Studies is used as the
source domain, while the Sleep-EDF database and Sleep-EDF-st database are
used as the target domain [297]. For emotion recognition, the DEAP dataset
and DREAMER dataset are usually used as the benchmarks [86].

4.5.1 Climate science and Geosciences

In recent years, deep learning has been applied to numerous applications on the
Earth science, e.g., climate science and geosciences [17]. Similar to the other
application areas, the perception of remote sensing data can also have the
problem of domain shift, across location and time. In Huang et al. [98], UDA
across active and passive satellite data is developed for cloud type detection.
Notably, the active spaceborne Lidar sensor CALIOP onboard CALIPSO
satellite has better representation capability and sensitivity to aerosol types
and cloud phases, while the passive spectroradiometer sensor VIIRS onboard
Suomi-NPP satellite has wide swaths and better spatial coverage. Mengqiu
et al. [190] propose a UDA method to bridge the gap between the abundant
labeled land fog data and the unlabeled sea fog data for sea fog detection. Soto
et al. [246] exploit the cycleGAN-based UDA approach [318] for deforestation
detection in the Amazon forest.

In addition, UDA has been widely explored in many applications on geo-
science research. Nasim et al. [197] investigate a UDA approach to mitigate the
domain gap between seismic images of the F3 block 3D dataset from offshore
Netherlands and Penobscot 3D survey data from Canada, which utilizes the
EarthAdaptNet to semantically segment the seismic images, when a few classes
have data scarcity. The teacher-student network has been used in Hu et al.
[96] for the classification of the Sentinel-2 images across cities, e.g., Moscow
and Munich. Hu et al. [178] conduct experiments on Satelite Image Time
Series (SITS) classification using existing natural image-based UDA methods
and find that those UDA methods are ineffective, due to the temporal nature
of SITS. Nyborg et al. [200] propose an explicit UDA method that learns
the temporal shift of SITS for crop classification and introduce a dataset for
cross-region adaptation from SITS in four different regions in Europe. Ma
and Zhang [179] introduce a UDA approach for corn-yield prediction using
time-series vegetation indices and weather observations.

5 Promising Directions

As stated above, advanced deep UDA methods have been widely applied to
numerous tasks and applications. In this section, we point to a number of
underexplored areas that are of great theoretical and practical importance,
which can be promising future research directions.
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5.1 Realistic Shift Assumption

Most of the current UDA methods have focused on the alignment of covariate
shift. As analyzed in Section 1, however, there exist four kinds of possible
shifts in real-world applications [119]. While numerous works are proposed in
the literature to address conditional or covariate shifts, label and concept shifts
have not been investigated extensively. Notably, approaches for the adversarial
feature alignment of the covariate shift and approaches without considering the
conditional shift have been outperformed by several competing approaches, e.g.,
self-training [321], dropout [227], and moment matching methods [205] in most
of the benchmarks. As such, it is important to incorporate both conditional and
covariate shifts, as it is ill-posed to take one of them into consideration [118, 307].
In Liu et al. [143], theoretical analysis and methodology under the conditional
and label shift assumptions are discussed in adversarial learning-based UDA.

It is, therefore, necessary to incorporate more realistic assumptions of the
domain shifts, depending on real-world tasks at hand.

5.2 Partial/Open-set Domain Adaptation

Partial UDA can be seen as a special category of label shifts, in which some
classes have zero probability in a target domain. Due to the mismatch of
categories between source and target domains, conventional UDA approaches
may result in negative transfer [18, 19, 116]. Similarly, open-set UDA or
universal UDA are presented under the assumption that there are novel classes
in a target domain; this approach thus could lead to novel class discovery or
out-of-distribution detection [206].

Lipton et al. [140] propose a test distribution estimator to detect the
label shift. Azizzadenesheli et al. [4] introduce a regularization approach to
correct the label shift. Chen et al. [37] cast the problem of the label shift as
an optimal transportation-based UDA task, which is closely related to the
class imbalance problem in the MMD framework. Wu et al. [277] propose
an asymmetrically-relaxed alignment approach using the adversarial UDA.
However, these approaches assume that there is no conditional shift.

As noted above, partial UDA can be regarded as a special case of the
label shifts. Therefore, developing more general label shift UDA methods for
both small label distribution shift and partial UDA can be more practical for
real-world applications. In addition, novel class/subtype discovery could be
incorporated into the open-set UDA.

5.3 Source-free Domain Adaptation

Data privacy has been a critical concern over cross-center collaboration, espe-
cially in the medical domain. Conventional UDA requires the large scale and
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well-labeled source domain data to be shared, which may cause issues over
source domain data leakage and intellectual property [5]. To address this, Liu
et al. [159, 166] propose a source-free UDA approach with white-box domain
adaptation to delineate anatomic structures in medical imaging data. Specif-
ically, that work leverages an off-the-shelf pre-trained segmentation model
to adapt to a target domain, by migrating its batch normalization statistics.
In addition, recently, Yin et al. [295] propose a deep inversion technique to
demonstrate that original training data can be recovered from knowledge used
in the course of white-box domain adaptation [304]. To address this, a recent
work [169] uses black-box UDA segmentation, for which no prior knowledge of
network weights is needed for adaptation. Liu et al. [168] further propose that
a target domain network structure could be different from a trained source
domain model to achieve UDA for segmentation.

Source-free domain adaptation is also closely related to test time adaptation,
in that we encounter a single or a few test samples that are different from
source domain data [62, 165, 223, 266]. To accommodate continuously changing
environments, we expect that frameworks employed would be source-free,
involve low-cost training in mobile devices, and avoid catastrophic forgetting
[90, 181, 280, 281].

Therefore, UDA under a more strict data sharing setting can be a promising
direction, which only shares the pre-trained white/black-box source domain
model. We note that the model sharing is also related to the federated learning,
which is another important transfer learning problem [292].

5.4 Continuous and Test Time Adaptation

Existing work on UDA usually assumes that several stationary domains exist
for which prior work attempts to achieve domain adaptation between discrete
distributions. In real-world environments, however, the change in distributions
could be continuous. For example, when one drives from Seattle to Boston, one
will cross snow-capped mountains, deserts, plateaus, flatlands, hilly areas, etc.
There is, however, no distinct boundaries between these environments, and
thus the shift is smoothly evolving. Therefore, one needs to consider lifelong
learning to progressively adapt a trained model to new environments [146].

There is a need to build well organized and gradually changing UDA
datasets. In addition, the mixup or interpolation technology [171] would
be useful to hallucinate the intermediate data between two largely different
domains to facilitate UDA.

5.5 Adaptation in Foundation Model Era

Foundation models [9] are recently surged as a hot topic to utilize super large
labeled data, which can incorporate sufficiently variant data. In addition,
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they are robust to the covariate shift in many cases. Then, one can ask: if
we have a sufficiently large training set with diverse data distributions, can
they generalize well on all of the implementation scenarios? Though applying
domain generalization may address the covariate and conditional label shifts,
it is challenging to alleviate the label shift, without access to target domain
data. In addition, the concept shift can also cause a problem, even though
there are sufficient training data.

UDA methods to deal with label shift can be an important direction in
the era of foundation models. In addition, it is interesting to investigate the
generality of different foundation models.

5.6 Semi-supervised Domain Adaptation

While there have been great advances in UDA, due to diverse target domains,
the performance of UDA is not satisfactory in many cases [164]. In such
circumstances, labeling a small set of target domain data could be a viable
solution [260]. Along this direction, semi-supervised domain adaptation (SSDA)
is proposed, as it can leverage both labeled source and target data as well
as unlabeled target data. Further, several SSDA classification methods have
been proposed to use instance constraints [58], subspace learning [293], entropy
minimax [226], adversarial attack [115], etc. These methods are based on
discriminative class boundaries for image classification, which, however, cannot
be directly applied to segmentation. In Liu et al. [164], the asymmetric co-
training is proposed to achieve semi-supervised domain adaptation for medical
image segmentation.

The unified framework for both SSL and UDA is able to utilize both labeled
and unlabeled target domain data. The alternative training based methods,
e.g., self-training, have been applied to these two tasks, which can have a great
potential for semi-supervised domain adaptation. Semi-supervised domain
adaptation for object detection and image generation, however, are largely
underexplored.

5.7 Domain Generalization

Most of the prior work on UDA assumes that there is a single source domain,
while recent work has shown that network generalization can be further
improved with multiple source domain sets [192]. By observing varying datasets,
networks can learn domain invariant cues. Domain generalization further
removes the requirement of unlabeled target domain data in multi-source
UDA [186]. There are two main streams for domain generalization tasks.
The first stream is to learn domain invariant features [69]. For example, Li
et al. [128, 141] utilize adversarial training to mitigate the domain divergence.
The second stream targets to fuse the domain-specific feature representations.
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For instance, Mancini et al. [182] develop the domain-specific classifiers with
multiple independent models. Then, the domain agnostic components are
fused to form the domain-wise classification probability. Ding and Fu [57]
match the low-rank structure of domain-specific features. Liu et al. [146]
further align the conditional distribution with a variational inference scheme.

Domain generalization is usually considered a multi-task learning problem
[141], by exploring multiple source domains. How to achieve good test time
adaptation for an unseen domain can be a challenging problem. For example,
the label shift can be adaptively corrected in test time implementation as in
Liu et al. [146].

5.8 Out-of-distribution Detection

OOD detection or deep OOD detection has recently been an active research
topic [25]. If the domain shift is too large for reliable adaptation, a more
reasonable choice would be to reject significant outliers rather than to make
adapted predictions with high uncertainty. While detecting the OOD samples
in a low-dimensional space has been well-studied [211], it is still challenging
to detect OOD in high-dimensional complex data, e.g., images [138]. For
example, Hendrycks and Gimpel [87] identify that trained DNNs usually have
higher maximum softmax output for in-distribution examples than anomalous
ones. A possible improvement of this baseline would be to consider both the
in-distribution and out-of-distribution training samples during training [88].
However, enumerating all possible OOD distributions before deployment is
usually not possible. Liang et al. [138] propose that the difference between
maximum probabilities in softmax distributions on ID/OOD samples can be
made more significant, by means of adversarial perturbation pre-processing
during training.

Devries and Taylor [56] augment the classifier with a confidence estimation
branch, and adjust the objective using the predicted confidence score for
training. Lee et al. [125] train a classifier simultaneously with a GAN, with
an additional objective to encourage low confidence in generated samples.
Hendrycks et al. [88] use real OOD samples instead of generated ones to train
the detector. Vyas et al. [263] label a part of training data as OOD samples to
train a classifier, where that approach dynamically changes the partition of ID
and OOD samples. These improvements based on [87] typically need to retrain
a classifier with modified structures or optimization objectives. Recently,
Lee et al. [126] propose a new framework for anomaly detection. A number
of methods [126, 138, 263] need OOD samples for tuning hyper-parameter
selection, e.g., the threshold for verification. DVN [25] aims to verify the
predictions of a trained deep model, by estimating p(x|y) rather than p(x).

It remains an exciting open problem of how to train good density estimators
on complex datasets, which is an important module for OOD detection. In
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addition, the connection and difference between OOD sample and adversarial
attack samples also need further explorations.

6 Conclusion

In this paper, we have systematically reviewed deep learning-based UDA ap-
proaches. Deep learning has already surpassed its predecessors in a variety
of fields, and future research in deep learning will strive toward the seamless
deployment of trained models in a source domain into unseen and new target
domains. Toward this goal, we provided a comprehensive summary of recent
deep UDA approaches along with the merits and demerits of those approaches.
Furthermore, several successful applications of deep UDA methods were re-
viewed. Finally, several challenges of the current deep UDA approaches were
identified, which could serve as promising future directions.
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