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ABSTRACT

To learn from the numerous unlabeled data for smart infrastructure, we
propose Enhanced Multi-Task Self-Supervised Learning (EMS?L) for
self-supervised action recognition based on 3D human skeleton. With
EMS?L, multiple self-supervised tasks are integrated to learn more com-
prehensive information, which is different from previous methods in
which a single self-supervised task is manipulated. The self-supervised
tasks employed here include task-specific methods (i.e., motion prediction
and jigsaw puzzle task) and task-agnostic methods such as contrastive
learning. Through the combination of these three self-supervised tasks,
we can learn rich feature representations. Specifically, motion prediction
is applied to extract detailed information by reconstructing original data
from temporally masked and noisy sequences. Jigsaw puzzle makes the
learned model capable of exploring temporal discriminative features for
human action recognition by predicting the correct orders of shuffled se-
quences. Besides, to standardize the feature space, we utilize contrastive
learning to constrain feature learning to increase the compactness within
the class and separability between classes. To learn invariant represen-
tations, an attention model is proposed for contrastive representation
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learning to reduce the distance between original features and attention
features. To avoid the performance degradation of network represen-
tation due to the pursuit of excessive invariance, this attention-based
contrastive learning gives different degrees of weights to the features
of different transformed data. Under a variety of settings, including
fully-supervised, semi-supervised, unsupervised, and transfer learning,
we evaluate EMS?L with downstream tasks. We also explore differ-
ent network architectures (i.e., GRU GCN). The remarkable results
on NW-UCLA, NTU RGB-+D, and PKUMMD datasets illustrate the
generality of our approach. With sufficient and extensive experiments,
the advantage of our method is demonstrated by learning features that
are more general and discriminative. Besides, we further provide more
experimental analysis for different self-supervised tasks.

Keywords: Self-supervised learning, skeleton-based action recognition, multi-
task learning.

1 Introduction

In the construction of smart infrastructure, human-related intelligent algo-
rithms, such as action recognition, are in huge demand in applications [46]. By
analyzing the motion video collected by sensors such as surveillance cameras,
tasks such as human-computer interaction, danger warning, and motion mon-
itoring can be achieved. However, the development of smart infrastructure
needs to meet the challenges of data growth. The challenges include the huge
consumption of spatio-temporal resources for data storage and processing of
the collected data, and a large amount of which is unlabeled data.

The amount of data collected by smart infrastructure is enormous because
billions of sensors and devices are deployed to collect. In addition, the complex
environment in the city and the rich appearance of people bring great challenges
to the action recognition task. Human skeletons, which describe human behav-
ior with skeleton joints using the 3D coordinate locations, have gotten a lot of
interest because of their lightweight, resilience to different views, appearances,
and backgrounds. Additionally, skeleton data will not reveal personal privacy
information, making it more secure, attracting the attention of researchers
looking into skeleton-based action recognition [6, 20, 33, 35, 47, 49, 50, 53].

Nevertheless, these models are supervised training paradigms and therefore
require numerous labeled training samples. This kind of supervised learning
has great limitations, especially when it is difficult to obtain a large amount of
label data. More and more works [21, 34, 37, 52] now focus on self-supervised
learning. Self-supervised tasks apply the information of the data itself to



EMS?L: Enhanced Multi-Task Self-Supervised Learning 3

learn without additional annotation, which can be better applied to smart
infrastructure to learn online from the vast amount of collected data. In
previous models [37, 52|, the encoder-decoder structure is applied for feature
learning. The encoder extracts features from the original skeleton data or
part of the original skeleton data, and the decoder reconstructs the skeleton
data based on the extracted features. After encoding, downstream tasks are
performed using the encoded features. We argue that the prior works have two
potential flaws. (1) Between generation and recognition, there is a task gap.
Skeleton reconstructions are devoted to skeleton coordinates while neglecting
comprehensive spatiotemporal knowledge required for downstream tasks. (2) It
may lead to overfitting to a particular task if one learns from one single task [30].

Single self-supervised learning task has some shortcuts and may get stuck at
local optima. Some other works learn unsupervised feature representations by
metric learning methods, such as neighborhood consistency [34] and contrastive
learning [21]. These metric learning techniques go into the inherent properties
of feature space. More importantly, these approaches improve the feature
tightness within classes, improve class separation, and are more suited to
downstream classification tasks. However, because the data is unlabeled, these
approaches all face a difficulty, that it is possible to reduce the separability
between the features of different classes of data. Therefore, the features
extracted by the previous work are difficult to generalize and do not have
strong separability for action recognition tasks.

A novel self-supervised learning technique is proposed that optimizes multi-
tasks simultaneously to overcome the aforementioned problems. To make the
features more de-redundant and contain more diverse information, we focus on
integrating multiple tasks. In our work, three self-supervised tasks are designed
to assist feature learning, including motion prediction, jigsaw puzzle task, and
contrastive learning. Among them, motion prediction and jigsaw puzzle are
task-specific self-supervised tasks. Through these tasks, the temporal evolution
characteristics and the spatial motion characteristics of the skeleton data can
be learned. Contrastive learning is a task-agnostic self-supervised task, which
is utilized to further standardize the feature space and increase its separability
and compactness.

More specifically, motion prediction involves covering and adding noise to
the anchor data, then restoring the original data from the transformed data.
In this way, the network can store detailed information about human body
movement, and be robust to noise at the same time. The puzzle task expects
that the network predicts the correct temporal sequences of the shuffled data.
Shuffling can be done in two ways: segment shuffling and temporal domain
reversal. Through this task, the network is made more aware of time-domain
sequence information about the action sequences.

Furthermore, contrastive learning narrows the differences between the trans-
formed and original data, while increasing the differences between the negative
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examples. In previous contrastive learning, data transformation is important.
Therefore, it is easy to be adversely affected by the transformed data that
has lost too much information. Because these data lose too much information
due to the transformation, as a consequence of requiring invariant representa-
tions of transformed data, the network could discard useful information for
downstream tasks. Hence, weights are assigned to different transformed data
using the attention mechanism to limit the network damage caused by the
excessive transformation of data. To reduce the impact of challenging samples,
we reduce their weights through the attention mechanism. Our empirical evalu-
ations of training methods are conducted in several experimental settings. Our
experiments illustrated the efficacy of our method through a comprehensive
analysis and evaluation procedure.

Compared with our previous work [21], we improve the multi-task self-
supervised learning by injecting more diverse transformations. We revisit
our transformation design systematically. We add noise to the uncovered
data in motion prediction so that the network needs to denoise and make
predictions at the same time. For the jigsaw puzzle, we employ randomly
reversing the skeleton sequences in the temporal dimension. The rich semantic
information introduced by stronger data augmentation can significantly im-
prove the generalization of learned representations. Furthermore, we employ
an attention module in contrastive learning tasks to adaptively aggregate
transformed features. Our method can be better applied to the construction
of smart infrastructure, analyzing from the large amount of unlabeled data
collected by sensors.

To exemplify the adaptability of our method, we employ it in a variety of
network designs. These results suggest that our approach can be improved
by using alternative encoder architectures. We also add to the experiment
analysis to obtain a better comprehension of our self-supervised learning tasks
and to investigate the impact of parameter selection on different self-supervised
tasks.

The following aspects summarize our contributions:

e We propose a multi-task self-supervised learning framework to extract
features from skeleton data for action recognition. We revisit our trans-
formation scheme systematically and present more challenging data
transformations.

e We design a novel feature aggregation mechanism in the contrastive
learning. This mechanism self-adaptively assigns dynamic weights to
transformed features to avoid the disadvantages of noisy features.

e We provide detailed experiments and thorough analysis on different data
sets with different architectures to verify the flexibility and generalization
of features extracted through self-supervised tasks.
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The remainder of the paper is organized as follows. In Section 2, previous
works on skeleton-based action recognition and self-supervised learning are
reviewed. Section 3 delves into the details of our suggested self-supervised
learning method and training techniques. Section 4 is where we give the
outcomes of our experiment and our analysis. Section 5 includes concluding
remarks.

2 Related Work

This section introduces relevant work on action recognition based on skeleton
data before providing a quick overview of self-supervised learning.

2.1 Skeleton-Based Action Recognition

In the early stages of their development, skeleton geometry-based systems use
handcrafted features that are based on basic joint geometry relationships [11,
20, 40, 42]. Deep networks are the current basis for many methods that
recognize actions based on the structure of the skeleton data. Du et al. [7]
made a pioneering contribution by modeling sequential data with hierarchical
recurrent neural networks. With a group sparsity constraint, the co-occurrence
of joints is studied by Zhu et al. [53]. An attention-based method for automat-
ically identifying important joints [35, 36, 50] and video frames [35, 36] can
be used to learn the movement patterns of skeleton joints more dynamically.
Recurrent neural networks, however, always have a gradient vanishing problem,
which causes problems during optimization [14]. Then, for action recognition
using skeletons, convolutional neural networks are more attractive. A new 3D
skeleton representation [17] is proposed which, when used for convolutional
neural networks, turns the action recognition problem into image classification.
A graph convolution network was used by Yan et al. [47] to extract features
of skeleton data with graphs to better represent structural information in
the skeleton data. Adaptive attention mechanisms adapt to spatial configura-
tions and temporal dynamics to capture discriminative features in the graph
representation in Shi et al. [33] and Si et al. [32].

While effective in skeleton-based action recognition, these models require
substantial amounts of annotation to obtain the best results. A reconstructed
sequence was crafted by Zheng et al. [52] employing an auto-encoder structure
without supervision from the original masked sequences. Recent research [37]
has demonstrated that a more efficient encoder can be developed, and the
decoder could be weakened so that it is forced to learn more meaningful
representations of information. However, only one single task is applied in
the models [37, 52] which limits their ability to learn features. With multiple
self-supervised tasks, we were able to learn more intrinsic features without
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manual annotations, thus assisting feature representation learning without the
need for manual annotations.

2.2 Self-Supervised Learning

We learn feature representations of unlabelled data from a large quantity of
data with self-supervised learning. The results of supervised training have been
verified to improve with self-supervised training [8] and computer vision has a
wide range of applications [15, 16, 29]. Self-supervised learning is accomplished
through pretext tasks, which take advantage of easy-to-obtain automated
supervision without human expensive annotation.

It has been explored in great depth how pretext tasks can be applied
to learn representations from unlabelled images [5, 10, 26, 27, 45, 51]. The
convolutional neural network is proposed by Doersch et al. [5] for reordering
perturbed image patches. Taking the concept further, the previous methods [26,
27, 45] estimated the spatial relationships between several shuffled images
patches with a permutation method called the jigsaw puzzle method. Other
relevant tasks include colorizing grayscale pictures [51] and estimating image
rotation angles [10, 48|. More recently, the contrastive learning framework
SimCLR is introduced by Chen et al. [1], using a series of data augmentation
methods, such as random cropping, Gaussian blur, and color distortion to
generate positive samples and utilize the in-batch samples as negative samples.
At the same time, a projection head performs feature operations to distinguish
between positive and negative samples. The MoCo proposed by He et al. [13]
implements a memory module that adopts a queue to store negative samples,
and this queue is constantly updated with training. To quantitatively measure
the similarity between two samples, Tian et al. [39] started with mutual
information and studied sample selection in contrastive learning, demonstrating
that good samples need to reduce mutual information while retaining task-
related information.

In recent studies, representation learning has also been addressed for
sequential data, such as videos. Learning temporal pattern is commonly
accomplished by predicting the video frame order [9, 19, 24]. By using a window
function, Oord et al. [28] designed a time-domain contrastive representation
learning method for text, audio, and other samples. Negative examples are
drawn from a different data set, while positive examples are drawn from
the same data set. Mithilfe of a generative adversarial network and spatio-
temporal 3D convolution, Vondrick et al. [41] proposed learning spatio-temporal
representations more effectively. Using the jigsaw puzzle method in the image
domain, Kim et al. [18] came up with a jigsaw puzzle-inspired space-time
puzzle. Recent work [44] involves regression of movement and visual statistics
in spatial and temporal dimensions that improves the spatiotemporal feature
representations. The contrastive learning technique is also used here to restrain
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the representation space by contrasting positives and negatives respectively.
Additionally, multiple tasks are used to learn spatial and temporal patterns.
And we employ an attention mechanism to generate better features with
multiple transformations. This mechanism dynamically assigns weights to
transformed features to avoid the disadvantages of noisy features.

3 Enhanced Multiple Self-Supervised Learning

We introduce our self-supervised learning approaches in this section. We begin
by giving a broad overview of our methodology. Then we go through concrete
instantiations of our method.

3.1 Preliminaries

For skeletal data, we concentrate on self-supervised feature learning. The learnt
representations are then used to skeleton-based action recognition. Skeleton
data is sent to an encoder f(-) to extract representations, and action labels are
assigned to the input sequences with an action classifier C(-). Formally, the ith
input sample is X’ = {x!,...,x%}, and that x| represents the ¢th frame. Then
p' = C (f (X")) is the prediction for action recognition, where p* is possibility
of each action label. The objective of our research is to utilize self-supervised
learning to build strong feature representations from the encoder f(-). In
addition, we investigate various settings and techniques for using the learnt
features to evaluate the action classifier C'(-).

3.2 Multiple Self-Supervised Tasks

Now we go through our method for self-supervised learning. In self-supervised
learning, these proxy tasks can be divided into two categories, task-specific
self-supervised learning, and task-agnostic self-supervised learning [2]. The
task-specific self-supervised learning leverages reconstruction tasks or pseudo-
label tasks. These tasks usually have inherent assumptions or premises. The
extracted features have intrinsic limitations in self-supervised tasks, which are
difficult to generalize. In addition, these tasks are susceptible to overfitting,
which renders the extracted features meaningless, even though they are de-
signed to provide information related to downstream tasks. The task-agnostic
self-supervised learning learns task-independent semantic features. To facilitate
compression within a class and separation between classes, the task-agnostic
self-supervised learning tasks usually involve representation learning methods
such as clustering and contrastive learning.

We utilize task-specific and task-agnostic self-supervised tasks to learn
generalization and robust features. Note that motion prediction and jigsaw
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puzzles are task-specific and contrastive learning is task-agnostic. Through
motion prediction, we aim to model movement tendency, and we will learn
chronological modes by solving the jigsaw puzzle task. Furthermore, contrastive
learning can be used to moreover regularize the feature manifold to obtain
more natural representations. As shown in Figure 1, our pipeline utilizes the
shared encoder f(-) and adopts multiple heads for several objectives.

Masked data (a) Encoder 1 (") (b) Multi-task heads Motion prediction

-~k =2 2 B K 5 &g
: t t+1 +2 +3 Reconstruction head 7,,(*) t t+1 t+2 +3
[ Original data Contrastive Learning
: =NTaY e
K . TRECED LT
i t t+1 t+2 t+3 Projection head /()
' Shuffled data Jigsaw puzzle recognition

43 +2 1 ' BiGRU Classification head /(") t t+1 +2 +3

Figure 1: The composition of our pipeline. (a) Encoder. (b) Multi-task heads. Yellow,
blue, and green arrows are employed to indicate the pipeline for motion prediction, jigsaw
puzzle recognition, and contrastive learning, respectively. In motion prediction, we input
masked data and apply the network to reconstruct the original data. In the jigsaw puzzle,
we input shuffled data to predict the correct arrangement order. In contrastive learning, we
utilize masked and shuffled data as positive samples of the original data to increase feature
similarity between positive instances while reducing feature similarity between negative
samples.

3.3 Task-Specific Self-Supervised Learning

Here we introduce two task-specific self-supervised learning methods. With the
two methods of motion prediction and jigsaw puzzle, we can learn about the
temporal representations of the data. By reconstructing specific joints, motion
prediction extracts low-level features, whereas a jigsaw puzzle reconstructs the
correct arrangement to extract high-level temporal information.

8.8.1 Motion Prediction

Motion prediction involves predicting a person’s future poses by modeling
skeleton dynamics in the context of the past motion sequence. A recurrent
encoder-decoder based on Seq2Seq [38] is applied to achieve the desired result.
The encoder f(-) reads in sequences and extract representations. In Figure 1,
the decoder h,, (-) employs the learned representations to reconstruct the whole
input sequences by generating sequences.

The input sequences are strengthened by adding random noise during the
transformation process. The noise is generated using a Gaussian distribution.
This method allows the network to learn more effectively.
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For the formulation of motion prediction, assume that the input skeleton
sequence is X' = {x!,...,x%}, and we mask from x%, to x for 77 < T
to obtain the masked sequence X!, = {x{,...,x}}. Then, random noise
is input into the sequence X!, to obtain a noisy sequence X!, . We predict
the complete and clean skeleton sequence by Xi = h,, ( f (Xﬁn)), where

Xi, = {x}, ,,..., X%}, the mean square error (MSE) is employed to calculate
the network’s parameters as follows:

where N means the batch size.

_XtH27 (1)

By applying reconstruction, motion prediction enables the network to
determine the exact location of each joint by analyzing the motions of the
joints, and the relationship between past and future motions helps the network
to capture the characteristics in the temporal domain. Furthermore, denoising
is aimed at improving the robustness of the input and reducing the overfitting
of the network by increasing the randomness of the input.

3.8.2  Jigsaw Puzzle

The goal of solving the jigsaw puzzle problem is to anticipate the proper
permutation from shuffled sequences. For the network to learn temporal
patterns and sequential orders, we utilize a jigsaw puzzle for skeleton sequences
in the temporal domain. From the skeleton sequences, puzzles are generated
by dividing P segments into equal parts, with a total of % frames in each
segment. The segments are shuffled randomly. In addition, we randomly
reverse the video to increase the diversity of the temporal transformation as
shown in Figure 2(b). By using the network to predict the correct sequence of
the disrupted sequence, we train the network to obtain a temporal sequence
modeling. Figure 2 shows an example.

After extracting the features through the shared encoder f(-), the classi-
fication header h;(-) is applied to obtain the classification results, and then
predict the way of being shuffled. MLP is employed as the classification head.
The cross entropy loss £; constrains the learning process of the network, as
follows:

N
= > oy (£ (X)) @)

where Xé- represents the shuffled data of the original sequence X?, and 3 is
the label of the shuffle method.
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Figure 2: Our design of skeleton jigsaw puzzle. Different segments are represented by
different colors, and these segments are randomly shuffled to create various permutations.
The goal of solving the jigsaw puzzle problem is to anticipate the proper permutation
from shuffled sequences. Using this sequential information, the network can model the
characteristics of the temporal domain. (a) Shuffling transformation. We cut the skeleton
data into segments and shuffle these segments randomly to create various permutations. (b)
Reversing transformation. we randomly reverse the video in temporal dimension.

Meanwhile, since jigsaw puzzle and action recognition are both high-level
tasks, the use of puzzle tasks reduces the task gap between proxy and down-
stream tasks, making the extracted features more suitable for action recogni-
tion.

3.4 Task-Agnostic Self-Supervised Learning

Then, we use contrastive learning to maximize compactness and separability
by constrained features. At the same time, contrastive learning is employed to
fuse the features obtained from the other two self-supervised tasks, ensuring
better performance on downstream tasks.

8.4.1 Contrastive Learning

Our method learns by extracting the same representation from the transformed
data and the original data and regulates the feature space by increasing the
invariance of the transformation between representations.

With cosine similarity is used to compare the similarity between features,
the network learns representations based on SimCLR [1]. Each original sample
is subjected to multiple transformations. Our method consists of selecting N
randomly selected samples, and applying M different kinds of transformation
operators to obtain N M transformed samples. We can then construct pairwise
positive and negative pairs for each original sample by transforming its samples.

To map the encoded sequences into the representation manifold, a projection
head h.(-) is designed. The features z;,zs,...,zy are extracted from the
output of the encoder f(-) and the projection head h.(-) of original data,
and z},z5, ...,z be the features of the data transformed from the original
data with ¢ from 1 to M. An attention mechanism is applied to dynamically
integrate the transformed features.
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Attention Mechanism In the feature space built by contrastive learning,
we employ a self-attention mechanism to aggregate the features. The previous
work [21] employs mean features to aggregate different transformed features.
However, some transformations inject too much noise to the original sequences
or make the data losing information that is necessary for the downstream tasks.
Those transformed features may harm the performance of downstream tasks
because of losing information. Therefore, we apply the attention mechanism
to assign different weights to different features to be more flexible. This can
reduce the influence of noise features and make the training process more
robust and stable.

We apply a multilayer perceptron g(-) to assign weights to generated
samples. The weight o is calculated as follows:

exp(|lg(z), — zx)|13) ;
>ty exp(llg(a, — 2i)l13) (3)

With the weights a,ﬁ, ceey aﬁ/[ computed by g(-), we can aggregate the features
of generated samples to the attention feature z; as follows:

oy, =

M
5= ajz. (@)
i=1

After the positive and negative samples are obtained, we use contrastive
learning to train the network with InfoNCE loss, which will be described in
detail as follows:

InfoNCE Loss We use sim(u,v) = u?v/|[ul]2||v|]2 to determine the cosine
similarity between u and v following recent works [1]. The InfoNCE loss
function L. is defined as follows:

N . _
Lo=—S log exp(sim(z, Zx)) ' 5)

N ; —
k=1 Zj:l exp(sim(zx,z;))

This loss function can increase the feature similarity between positive
samples and reduce the similarity between negative samples. Moreover, it has
a negative correlation with mutual information. Therefore, optimizing the
loss function can extract the mutual information between the original and
transformed data. By increasing the mutual information between pairs of
positive samples, different information between them can be discarded and
consistent representations can be obtained. This consistency can improve
the robustness of the network. This information bottleneck mechanism dis-
cards a large amount of redundant information while maintaining meaningful
information.
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As shown in Figure 3, a feature space constraint can be gained with our
approach that adapts to any number of transformation operators. We employ
two transformation operators that are the same as the motion prediction
and puzzle tasks to achieve contrastive learning, i.e., temporal masking, and
shuffling.

l (N) Norm  (s) Softmax ® Multiplication ‘

Projection head /(")

Figure 3: Our method of self-attention contrastive learning. We use yellow, grey, blue, and
green to indicate the pipeline for masked data (M), original data (D), shuffled data (S), and
attention features, respectively.

3.5 Training for Action Recognition

As shown in Figure 4, we add an action classifier C(-) to the encoder f(-) to
perform action recognition. Action recognition applies cross entropy loss as
follows:

Ecls = - ZyzlogC(f(Xz)) (6)

Lgetf = L + L + L. represents the sum of the three self-supervised learning
losses. Three self-supervised tasks are jointly optimized to enable the network
to extract diverse features.

Original data (a) Encoder /() (b) Action classifier C(")
SR | &H« «] | D_’D L D_,D |, Action
g | label
i t+1 BiGRU GRU MLP

Figure 4: Our method for action recognition. With the features extracted by encoder f(-),
we apply an action classifier C(-) for the downstream task.

As part of the evaluation process, various training methods, such as unsu-
pervised, semi-supervised, and supervised methods, have been experimented
with. To use linear evaluation for unsupervised experiments, the encoder only
uses the previously introduced self-supervised task as a training task and then
trains the action classifier when the encoder is fixed. In a semi-supervised
setting, the encoder and classifier are trained together. We train the encoder
and fine-tune the network using self-supervised tasks in a fully supervised
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setting. In addition, we evaluate the performance of transfer learning in the
linear evaluation setting and the fine-tuning setting.
Here are detailed introductions of different training strategies.

8.5.1 Linear Fvaluation

Through self-supervised learning, we optimize the model without any category
labels. We exploit downstream tasks to evaluate the quality of the extracted
features. Following SimCLR [1], we attach the linear classifier on top of the
frozen encoder to prevent the label information from influencing the encoder
for linear evaluation.

3.5.2  Fine-tuning Procedure

For the finetuning process, the weights of the pretrained network are used to
initialize, and then the network is finetuned. We exploit the self-supervised
learning tasks for the pretraining procedure and employ the labeled data for
supervised fine-tuning.

3.5.3 Jointly Training

The jointly training method needs to optimize both the encoder and the
classifier. This requires the network to apply both self-supervised tasks and
downstream tasks for learning. The loss objective is explained as follows:

Ejmint =Los + Wﬁselfa (7)

where w is a non-negative constant employed to adjust the ratio of the two-loss
functions.

4 Experiment Results

Three datasets: the North-Western UCLA dataset [43], the NTU RGB+D
dataset [31], and the PKUMMD dataset [22] are applied for evaluation. With
the introduced self-supervised learning tasks, we aim to examine if the feature
encoder f(-) can generate suitable feature representations for downstream tasks.
Therefore, action classification models are trained in a variety of conditions
(i.e., unsupervised, self-supervised, fully supervised, and transfer learning).
Besides, We apply our method in different network architectures to show the
versatility, i.e., GRU and GCN. Finally, a wealth of experimental analysis
allows us to have a deeper understanding of our self-supervised learning tasks
and explore the influence of the parameter selection of different self-supervised
tasks.
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4.1 Dataset and Settings

4.1.1 North-Western UCLA (NW-UCLA) [43]

The dataset includes 1494 videos of 10 individuals performing actions in 10
categories. Body joints have 20 joints, and there are three views of the action
data. The first two views are employed for training and the third view is
utilized for testing. The videos consist of 1,018 training data and 462 testing
data.

4.1.2 NTU RGB+D Dataset (NTU) [31]

There are 56,578 videos in this dataset, with 60 annotations and 25 joints
in each frame, performed by 40 subjects. This dataset includes interactions
with individual actions as well as pairs. Testing for our methodology is the
cross-subject protocol where training is performed on one subject and testing
on another. This yields 40,091 training videos and 16,487 testing videos.

4.1.8 PKU Multi-Modality Dataset (PKUMMD) [22]

PKUMMD covers a range of detailed information about human activities and
a multi-modality multi-modality 3D understanding of human actions. The
actions are organized into 52 action categories and include almost 20,000
instances. There are 25 joints in each sample. The PKUMMD is divided
into two versions, part I and part II. In part II, action recognition is more
difficult, while in part II, the large view variation causes more skeleton noise.
Experiments are conducted according to a cross-subject protocol and on the
two subsets.

All sequences of skeletons are downsampled to 60 frames to train the
network. Our motion prediction uses the former 70% of frames, which we add
random noise to, and mask the latter 30% of frames. When we shuffle the
sub-sequences for the skeleton jigsaw, we can select up to 12 ways, including
reversing the sequence.

To evaluate different encoder architectures, we used GRU and GCN. Specif-
ically, GRU encoders f(-) are 2-layer bidirectional GRUs with 300 units in
each layer and GCN encoders f(-) are 3-layer GCNs with 600 units in each
layer. For motion prediction, the reconstruction head h,,(-) utilizes two layers
of unidirectional GRUs with 600 units and one FC layer. One FC layer is
included in the classification head h;(-) for jigsaw puzzles. For contrastive
learning, MLPs are used as the projection head h.(-). An FC layer is used
for recognition in the classifier C'(-). The initial distribution of all networks is
random.
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The learning rate decreases 0.1 every 100 iterations with the decay rate
decreasing from 0.001 with Adam optimizer [25].

4.2 Ewvaluation and Comparison

By exploring whether the features extracted by our self-supervised enhanced
multi-task model (EMS?L) are helpful for action recognition in this section, we
raise questions about their relevance. As a result of our varying experimental
settings, including unsupervised, semi-supervised, and supervised learning
methods, we can evaluate our approach both comprehensively and comprehen-
sively. Comparing the results of our method with state-of-the-art approaches
is also included.

4.2.1 Unsupervised Approaches

The unsupervised setting utilizes self-supervised tasks to train the encoder
f(-) and then evaluates the feature representation by a linear evaluation
mechanism. The linear evaluation mechanism applies a linear classifier to the
encoder f(-) with fixed weights to classify the features extracted from it to
evaluate the feature representation and utilizes the action recognition accuracy
as a measure of the quality of the representation. Note that this encoder f(-)
is only optimized with self-supervised tasks and will not be fine-tuned in the
linear evaluation protocol. The test configuration includes:

e Rand-Unsupervised (Rand-U): Only linear classifiers are trained.
This encoder f(-) is randomly initialized, and its weight is fixed through-
out training. This is the configuration that we utilize as a baseline.

e LongT GAN [52]: This research develops an unsupervised training
technique for action recognition that employs skeleton reconstruction for
self-supervised learning by using adversarial generative training strategy.
It recovers the original data by combining features derived from the
original data and randomly covered skeleton data. Following that, in the
recognition task, the weights of the encoder are applied. Based on the
paper, we build a network.

e MS?L [21]: The encoder is trained by a self-supervised task MS*L,
which contains multiple self-supervised tasks.

o EMS?L: The encoder is trained first by EMS?L, then the linear classifier
is learned while the encoder remains frozen.

Besides, we also perform experiments with recent self-supervised learning
methods, i.e., SimCLR [1], MoCo v2 [13|, BYOL [12], and SimSiam [3].
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However, those methods are designed for image classification. Thus, the original
transformations and structures are more suitable for the characteristics of the
picture. Here, to compare with our method, we apply the same architecture and
same data transformations for training, i.e., temporal masking, and temporal
jigsaw. More detailed information is as followed:

e SimCLR [1]: SimCLR applies InfoNCE loss (Equation 5) for contrastive
learning and regards data in a batch as negative samples. And the
transformed data are positive samples.

e MoCo v2 [13]: MoCo v2 utilizes a queue to store negative features to
avoid big batch size in training.

e BYOL [12]: BYOL only applies cosine similarity loss between outputs
of two neural networks, which one is updated with a slow-moving average
of the other network.

e SimSiam [3]: SimSiam uses cosine similarity for training and employ
stop-gradient operation for preventing collapsing.

In Table 1, the results of the self-supervised learning methods, the baseline
(Rand-U), LongT GAN, MS?L, and the proposed EMS?L, are shown in different
architectures, different datasets. Our approach outperforms random baselines,

Table 1: Comparison of action recognition results with unsupervised learning approaches.

PKUMMD PKUMMD NTU

Models Architecture NW-UCLA part I part I NTU
SimCLR [1] 39.1 63.5 30.1 54.9
MoCo v2 [13] GRU 49.7 62.6 27.6 47.8
BYOL [12] 9.9 18.6 8.7 34.2
SimSiam [3] 9.7 5.4 9.0 55.0
Rand-U 52.0 51.6 28.4 40.2
LongT GAN [52] GRU 74.3 67.7 25.9 52.1
MS2L [21] 76.8 64.8 27.6 52.5
EMS2L 77.9 68.5 29.9 57.9
SimCLR [1] 70.7 73.2 34.6 54.9
MoCo v2 [13] GON 72.2 75.9 33.9 56.0
BYOL [12] 49.5 43.3 15.4 36.1
SimSiam [3] 73.3 72.4 33.5 55.9
Rand-U 76.1 77.2 31.8 60.3

EMS2L GCN 78.1 77.6 29.3 61.2
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LongT GAN, and MS?L in most settings. Comparing with the self-supervised
learning tasks shown in Table 1, our method also gets better results in most
settings. Our method was successful because it forced the network to extract
more useful information. This allows our method to obtain more separable
features, which have better compactness and separability. Therefore, we have
achieved better results than previous methods. However, our method does not
achieve better results in PKUMMD part II dataset. We explain this as the
data in the PKUMMD part II dataset contains more noise. And we apply a
reconstruction task in self-supervised learning. The reconstruction task utilizes
the MSE loss to compute the joint-wise difference. This joint-wise difference
is affected by noise. Reconstructing the noisy data may harm the ability of
the network. Meanwhile, we notice that GCN with random initialization can
achieve higher accuracy than that with GRU. This shows that the randomly
initialized GCN also has feature extraction capabilities. On both network
architectures, our method can improve its ability to extract features.

In Table 1, we can obverse that if we transfer the image-based self-supervised
learning methods into skeleton data directly, the performance is degraded due to
the domain gap. SimCLR and MoCo v2 achieve better action results because
these methods apply the same contrastive learning loss as ours. However,
BYOL and SimSiam meet serious feature collapsing, which is caused by the
gap between skeleton and image data. Skeleton data contains less information
than images. Thus, it makes the model more easily collapse to the same
outputs.

4.2.2  Semi-Supervised Approaches

With both labeled and unlabeled data, semi-supervised learning can use the
structure of unlabeled data to obtain better generalization performance. We
utilize unlabeled data to train the encoder f(-), and then apply labeled data
to jointly train the classifier C(-).

¢ Rand-Semi Supervised (Rand-SS): Weights are initialized with
randomness in the encoder f(-). With the labeled data, all the network
weights are then fine-tuned.

e LongT GAN [52]: We train the GAN weights with unlabeled sequences
and then fine-tune the network using labeled sequences.

e S*L [48]: A incorporation of self-supervised and semi-supervised meth-
ods is used to train S*L. As an auxiliary task of self-supervised learning,
skeleton inpainting is used for 3D action recognition.

e ASSL [34]: ASSL combines self-supervised learning and semi-supervised
scheme by training the networks via adversarial learning and neighbor
feature fusion.
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e MS?L [21]: With both labeled and unlabeled data, our encoder f(-) is
trained together using a jointly training strategy, which means that it is
trained with supervised and self-supervised tasks simultaneously.

o EMS?L: With selected w in Equation 7, during training supervised and
unsupervised tasks are simultaneously applied to the model.

From Tables 2 and 3, our method consistently improves the baseline, even
when we only used small subsets of the datasets.

The model we developed outperforms LongT GAN. LongT GAN recon-
structs an entire skeleton with the help of a generative adversarial training
strategy. Therefore, the details of skeleton joints are given more attention.
Nevertheless, these details might not contribute significantly to action recogni-
tion. ASSL exploits label information in neighborhood consistency, we think
this method only reduces the distance of the distribution of labeled data and
unlabeled data, and for unlabeled data, this method only utilizes the neighbor-
hood consistency for constraint. Our method adopts different self-supervised
learning tasks to obtain more meaningful representations. Moreover, joint

Table 2: Comparison of action recognition results on NW-UCLA dataset with semi-supervised
learning approaches.

Proportion Models Architecture NW-UCLA
Rand-SS 29.4
MS?L [21] GRU 21.3
1% EMS?L 37.2
Rand-SS 28.6
EMS?L GCN 33.0
Rand-SS 52.5
SAL [48] 35.3
. ASSL [34] GRU 52.6
0 EMS?L 56.5
Rand-SS 53.6
EMS2L GCN 59.5
Rand-SS 57.1
MS2L [21] GRU 60.5
10% EMS2L 66.3
Rand-SS GON 54.5

EMS2L 60.8
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Table 3: Comparison of action recognition results on PKUMMD dataset with semi-supervised
learning approaches.

Proportion Models Architecture Part I Part 11
Rand-SS 31.8 10.1
LongT GAN |[52] 35.7 12.3
1% MS?L [21] GRU 36.4 13.0
¢ EMS2L 43.0 12.5
Rand-SS 36.8 9.0
EMS2L GCN 47.1 10.0
Rand-SS 67.7 21.0
EMS?L GRU 68.8 21.2

5%

Rand-SS 60.4 18.2
EMS2L GCN 70.3 20.0
Rand-SS 75.4 24.3
LongT GAN |[52] 69.5 25.7
L0% MS2L [21] GRU 70.3 26.1
¢ EMS2L 76.4 28.5
Rand-SS 76.1 26.6
EMS2L GCN 76.0 23.3

training provides stronger constraints and avoids overfitting to the labeled
data, as well as take advantage of unlabeled data.

However, from Table 3, we can notice that with 1% labeled data, the
accuracy increases 11.2% from 31.8% to 43.0% with the GRU architecture
while the accuracy only increases 1.1% with 5% labeled data and 1.0% with 10%
labeled data in PKUMMD part I dataset. Also, the accuracy increases 2.4%
from 10.1% to 12.5% with GRU architecture while the accuracy only increases
0.2% with 5% labeled data in PKUMMD part II dataset. These results show
that with the increase of label data, the performance improvement obtained
by the self-supervised task gradually decreases, especially in large datasets.
We conjecture this is because our method is mainly to prevent overfitting.
When the dataset increases, the overfitting phenomenon is alleviated, so the
improvement is not significant.

4.2.8  Supervised Approaches

We apply the self-supervised task encoder f(-) for pretraining in the supervised
learning setting, and after pretraining on the encoder f(-), finetune the entire
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network. We train the encoder f(-) and classifier C(-) using complete training
data. Here are the configurations:

e Rand-Supervised (Rand-S): We initialize the encoder f(-) and the
classifier C'(-) randomly.

e MS?2L [21]: The weights of the encoder f(-) are trained by MS*L, and
then the entire network is trained by the action recognition task.

e EMS?L: The encoder f(-) is initialized with the weights obtained by the
self-supervised task, and the downstream tasks finetune the parameters
of the network for action recognition.

e SimCLR [1]: SimCLR employs two different transformations of the
same data as positive samples to increase the similarity between positive
examples and reduce the similarity between different data.

e MoCo v2 [13]: MoCo v2 utilizes a queue to store the features of negative
examples, applies contrastive learning pretraining to obtain the weights,
and then employs action recognition to train network parameters.

e BYOL [12]: BYOL only applies cosine similarity loss to train the
encoder f(-) and then we employ action labels for fine-tuning.

e SimSiam [3]: SimSiam is an upgraded version of BYOL. Tt applied
cosine similarity to optimize the network so that the two-stream network
extracts the same features from different transformations of the same
data.

Tables 4 and 5 display the action recognition accuracy on the NW-UCLA
and PKUMMD datasets, respectively. Finetuning the encoder after training
improves the accuracy of action recognition compared to training from scratch.
This result confirms that our method extracts the information demanded by
downstream tasks and can better assist in action recognition. The multi-faceted
information extracted by this multi-task self-supervised learning has better
generalization performance. In comparison with state-of-the-art supervised
learning methods, our model achieves better performance on NW-UCLA and
is comparable to previous methods on PKUMMD part I and part II.

4.2.4  Transfer Learning Performance

We study the transfer representation learning of EMS?L to see whether it can
acquire knowledge about related tasks.

We apply both linear evaluation and finetuning settings to evaluate the
performance of transfer learning.
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Table 4: Comparison of action recognition results on the NW-UCLA dataset with supervised
learning approaches.

Models Architecture NW-UCLA
HBRNN-L [7] RNN 78.5
SK-CNN [23] CNN 86.1
VA-LSTM [49] 70.7
Denoised-LSTM [4] LSTM 80.3
SimCLR [1] 84.4
MoCo v2 [13] 78.1
BYOL [12] GRU 30.7
SimSiam [3] 61.4
Rand-S 83.9
MS?L [21] GRU 85.2
EMS2L 85.8
SimCLR [1] 75.7
MoCo v2 [13] 76.4
BYOL [12] GCN 72.7
SimSiam [3] 74.8
Rand-S 84.2
EMS2L GCN 88.0

e EMS?L: On the source data set, we apply the self-supervised task
to train the encoder f(-), and then we employ linear evaluation and
finetuning to train the network on the target data set.

Self-supervised learning can learn the common features in different skeleton
data distributions so that the representation has a strong transfer performance.
Data of different distributions are mapped to the same feature space to obtain
high-level action information so that its expressive ability is also adapted to
data outside the distribution. The results in Table 6 demonstrate the advantage
of our suggested approach, especially when our method is pretrained with the
NTU dataset. That is because NTU is much larger than PKU, and pretraining
in large dataset extracts more general feature representations. However, when
we transfer from NTU dataset to PKUMMD part I dataset, the accuracy
drops 5%, though this result is still competitive to previous methods. We
conjecture this is because we perform a down-sample transformation in the
NTU dataset. This transformation makes a domain gap between PKUMMD
part I dataset with NTU dataset in the temporal dimension, which may
influence the performance of GRU.
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Table 5: Comparison of action recognition results on the PKUMMD dataset with supervised
learning approaches.

Models Architecture Part I Part 11
ST-GCN [47] GCN 84.0 48.2
VA-LSTM [49] LSTM 84.1 50.0
SimCLR [1] 87.0 44.8
MoCo v2 [13] 86.6 43.7
BYOL [12] GRU 68.1 38.4
SimSiam [3] 85.6 44.1
Rand-S 81.5 44.1
MS2L [21] GRU 83.4 42.4
EMS2L 86.4 46.6
SimCLR [1] 85.2 38.2
MoCo v2 [13] 82.3 34.9
BYOL [12] GCN 76.6 38.9
SimSiam [3] 86.4 41.4
Rand-S 86.8 42.4
EMS2L GCN 86.8 45.2

Table 6: Comparison of the transfer learning performance.

Architecture Source dataset Part I Part II NTU
Linear evaluation
part I 68.5 27.9 39.4
GRU part II 49.5 29.9 40.3
NTU 63.5 39.8 57.9
part 1 77.6 34.7 54.2
GCN part II 68.5 29.5 49.5
NTU 78.9 33.0 61.2
Fine-tuning
part 1 86.4 46.4 70.7
GRU part 11 84.7 46.6 71.2
NTU 84.4 49.2 74.9
part I 86.8 40.8 72.7
GCN part 11 86.2 45.2 70.3

NTU 86.8 45.4 73.8
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4.8 Ablation Study

To analyze our proposed approach further, we conduct ablation experiments.
The GRU architecture is used for all ablation studies.

4.8.1 Analysis of Self-Supervised Tasks

Throughout this section, we will discuss the importance of each self-supervised
task in the training process.

Motion Prediction We test the accuracy of action recognition under dif-
ferent masking ratios of the input sequences, of which some parts of human
key points have been masked and zeroed out. Figure 5 shows the accuracy in
different settings. It can be observed that as the masking ratio increases, the
accuracy of action recognition increases at first and then decreases. Meanwhile,
Figure 5 shows the curve of InfoNCE loss between the original and masked
sequences. From this, we can see that as the masking ratio increases, the
InfoNCE loss between the unmasked sequence and the transformed sequence
increases, which implies the mutual information decreases. This is mainly
because when the masking ratio is small, motion prediction enables the net-
work to extract the temporal information of the motion for downstream tasks.
However, when too much data is covered, the masked sequences have less
mutual information with the skeleton data, and it becomes a challenging task
for the network to predict future actions through the remaining fragments.
The network, therefore, fails to learn useful information from the task, and it
also consumes the ability of the network.
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Figure 5: Curves of action recognition accuracy and InfoNCE loss under different masking

ratios of the input sequences with 5% of labeled skeleton sequences, respectively (NW-UCLA).

Figure 6 reveals the trend of action recognition precision with the different
strength of noise added after 30% frames are masked. It shows a reverse
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U-shape. We explain it as the light noises injected into the input sequence
effectively avoid overfitting for the network, while the large noises would
interrupt the learning process.
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Figure 6: Curves of action recognition accuracy and InfoNCE loss under different noise
strength with 5% of labeled skeleton sequences, respectively (NW-UCLA).

Jigsaw Puzzles We test the accuracy of action recognition with a different
number of segments to shuffle in Table 7. We show the accuracy of action
recognition and InfoNCE loss on the NW-UCLA dataset with 5% of labeled
skeleton sequences, respectively. Note that with the number of segments
increases, the accuracy of action recognition decreases, and the InfoNCE
loss between the original and shuffled sequences increases, which means the
shuffled sequences lose more mutual information with the original sequences.
We conjecture that the larger number of segments results in a more difficult
task, which may hinder the performance of action recognition. Besides, small
segments lose too much temporal information.

Table 7: Analysis of jigsaw puzzles on NW-UCLA dataset with 5% of labeled skeleton
sequences.

Transformation Accuracy InfoNCE
3 Segments 53.1 0.866
5 Segments 51.6 0.881
7 Segments 43.2 0.877
9 Segments 29.6 0.890
11 Segments 26.3 0.896
w/o Reversing 53.1 0.866
w/ Reversing 54.5 0.883
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Table 7 shows the impact of whether to perform reversing operation to
augment the transformation when the segment number is set to 3. Reversing
operation can make the network notice the order of occurrence of action
sequences.

Contrastive Learning We study the importance of the attention mechanism
for feature fusion. Table 8 shows that attention mechanism can help contrastive
learning learn more discriminative representations. We apply the mean feature
and attention feature for contrastive learning with unsupervised approaches
and supervised learning approaches, respectively. From Table 8, we notice that
with the attention mechanism, the performance improves in those settings.
However, we notice that in small datasets like NW-UCLA, it improves more
from 61.5% to 65.8% with linear evaluation and from 81.4% to 83.3% with fine-
tuning. On large datasets, it improves marginally because the noisy features
influence more in small datasets and take up a smaller proportion in large
datasets. We argue that the attention mechanism provides a more flexible
mechanism for feature fusion. In the data transformation, the data may lose a
lot of information, which makes the transformed data and the original data
quite different. At this time, a large amount of information will be lost if the
representations that are required to be consistent between the transformed
data and the original data are extracted. The introduction of an attention
mechanism can alleviate this effect.

Table 8: Analysis of contrastive learning with unsupervised and supervised learning ap-
proaches.

Models NW-UCLA Part I Part II NTU
Linear evaluation

Mean feature 61.5 68.3 26.5 39.6
Attention feature 65.8 68.5 26.7 40.4
Fine-tuning

Mean feature 81.4 86.3 45.5 73.6
Attention feature 83.3 86.3 46.6 74.0

Single self-supervised task and its combinations are displayed in Table 9 for
each text. Motion prediction and puzzle tasks are task-specific self-supervised
tasks, which extract semantic information from the skeleton data. Among them,
motion prediction extracts more low-level joint information, and the puzzle task
focuses on global temporal information. As a task-agnostic proxy, contrastive
learning intends to find a common manifold between the transformed and
original sequences. Through this, the network is trained to acquire deeper
representations of inherent features. The best results are achieved when all
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three tasks are used. The reason is that the features of the extracted tasks
maintain more perspectives of the original data statistically.

Table 9: Comparison of various combinations of self-supervised tasks on NW-UCLA dataset
with 5% of labeled skeleton sequences.

Method NW-UCLA
Rand-S 52.5
Prediction 52.8
Jigsaw 54.5
Contrastive 53.2
Prediction & Contrastive 54.8
Jigsaw & Prediction 55.3
Contrastive & Jigsaw 55.9
Prediction & Jigsaw & Contrastive 56.5

4.8.2  Training Strategy

We compare the fine-tuning procedure and jointly training strategy in semi-
supervised learning. Table 10 shows that for semi-supervised learning, a jointly
training strategy achieves better performance than the fine-tuning procedure
in the NW-UCLA dataset, PKUMMD part I dataset, and PKUMMD part
IT dataset. In the NTU dataset, fine-tuning strategy achieves 50.6% with
5% labeled data, while jointly training strategy gets 48.1%. We explain it
as jointly training provides stronger constraints and prevents overfitting the
small labeled datasets. However, with more data, the over-fitting phenomenon
is alleviated.

Table 10: Analysis of training strategy with 5% of labeled skeleton sequences.

Models NW-UCLA Part I Part II NTU
Fine-tuning 45.6 68.7 16.9 50.6
Jointly training 56.5 68.8 21.2 48.1

5 Conclusion

To better apply to the construction of smart infrastructure and analyze from
a large amount of unlabeled data collected by sensors, our work proposes a
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self-supervised learning approach to recognize actions in skeletons. Overfitting
can be avoided by integrating multiple tasks to learn more general features
and enhancing the tasks with dedicated data transformations. The skeleton
dynamics are modeled by motion prediction, whereas temporal patterns are
modeled by jigsaw puzzle recognition. Additionally, contrastive learning helps
in regularizing the representation space and aids in the acquisition of intrinsic
features. Specifically, motion prediction and jigsaw puzzle tasks are used as
task-specific proxy tasks to extract semantic-related information. Contrastive
learning, as a task-agnostic task, increases the compactness within the class and
the separability between classes. We demonstrate that our feature extractor
model is a powerful one that outperforms the baseline in a comprehensive
analysis of three datasets.
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