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ABSTRACT

Deepfake technology has been undoubtedly growing at a rapid pace
since 2017. Particularly since using GAN architecture was popularized,
research in this area has grown and seems to only be gaining momentum.
One interesting area is animating images of full body humans using
deep learning. This paper looks at the research done in this area and
research that can influence it by looking at papers regarding human
pose transfer, human motion transfer, and human motion generation.
All of these types of papers have similar requirements, where a target
pose must be abstracted to a skeleton and combined with appearance
data from a source image to generate a result. The primary difference
in the three types of research is whether or not there is motion in the
result and whether that motion is given as an input or generated by
the model. Overall, the research in this area is still new, and with the
potential applications of this technology, both good and bad, there are
many avenues of potential future research in this area in both creation
and detection.
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1 Introduction

Deepfake technology has been undoubtedly growing at a rapid pace since 2017.
There are various applications of deepfake technology in the entertainment
industry, e.g., animating images or 3D models of actors, video dubbing of
foreign films, and animating images of historical figures in a museum to provide
a more interactive experience. There are also applications in online shopping,
where customers are able to virtually try on clothing using appearance transfer
and animation.

However, there has been no question about the danger that this technology
poses as a tool of misinformation and disinformation. Many people first heard
about deepfakes when they were used to steal celebrities’ images and swap their
faces onto pornography, which was posted on Reddit [30]. The next time deep-
fakes made it into the mainstream media is when MIT released a very convincing
deepfake of Barack Obama, made from analyzing his speeches [65]. Through
these events, many people saw the possibilities and risks of deepfakes and began
researching their creation and detection. In the past few years there have been
many different tools for creating fake media available to the public. Some are as
common as face swapping on social media, like TikTok and Snapchat, where a
person can put a different face on a body. Some go further – a creator on TikTok
named deeptomcruise makes frighteningly realistic deepfakes of Tom Cruise [12].
As recently as March 2022, deepfakes have been used to spread disinformation
in an international conflict, as a deepfake was posted on a Ukrainian news site
of Ukrainian President Volodymyr Zelensky telling soldiers to surrender during
the war with Russia [4]. There are also applications uploaded to GitHub for
anyone to use [52, 61]. These are state-of-the-art models that anyone with
access to Google Colab or a decent GPU can run with enough time. Most of
these tools are developed based on Deep Neural Networks (DNNs).

As an emerging technique, deepfake does not have a generally accepted
definition yet, though several have been proposed. For example, some repre-
sentative definitions include:

• “manipulated digital media such as images or videos where the image or
video of a person is replaced with another person’s likeness” [5]

• “deepfakes . . . are created by techniques that can superimpose face images
of a target person to a video of a source person to make a video of the
target person doing or saying things the source person does . . . deepfakes
are artificial intelligence-synthesized content that can also fall into two
other categories, i.e., lip-sync and puppet-master” [51]

While these definitions cover some typical deepfake applications, they
narrowly focus on manipulating human faces, while ignoring more complex
manipulations on the human body, gesture, clothes, background, etc.
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A more general definition is: “believable media generated by a deep neural
network ” [48]. Although this definition takes the emphasis off of faces and
leaves room for advancements, it is too general and loses the focus of the
human as a victim. In addition, the word “believable” is vague. If we were to
animate an image of a historic figure, such as George Washington, it would not
be “believable” as a real media taken of him, even though it may be created
by the same technique as animating a realistic image of Joe Biden.

As a result, we claim that this paper mainly focuses on relevant techniques
contributing to the creation of deepfakes with a human being as a target/victim.
We define these techniques as synthetic image animation as follows.

Definition 1. Synthetic image animation: Application of movement to a
static source image through deep neural networks with the goal of creating
synthetic visual media of a person.

This definition distinguishes between manual image animation (where some-
one may use Photoshop or other software to animate images by hand) and image
animation using deep neural networks. In addition, this definition also requires
a static source image for appearance data. This requirement can help us focus
more on technologies that can be leveraged to fabricate disinformation against
certain human victims (i.e., by using the victim’s image as the source image).

As for animation methods using DNNs, existing studies can be categorized
into roughly three areas:

1. Human Pose Transfer: Taking the appearance of a person from a
source image and a representation of a target pose and applying the
source appearance to the target pose to create a new image.

2. Human Motion Transfer: Taking the appearance of a person from
a source image or video and a representation of a target motion and
applying the source appearance to the target motion to create a new
video, typically with the goal of temporal coherence.

3. Human Motion Generation: Generating a video, typically with
temporal coherence, of a person doing some movement, either with a
source image for appearance data or generating the appearance as well.

Although we classify existing studies into these three categories based on their
inputs and outputs, the techniques developed for each category are related.
For example, the research that informs human pose transfer can be applicable
to human motion transfer. In the most naïve approach, one could take the
frames of a video and put them through the human pose transfer model and
combine them at the end to create a video. The results from this approach can
be of lower quality because there is nothing in the models enforcing temporal
coherence, but it is technically a version of synthetic image animation. On a
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higher level, the research done in human pose transfer in abstracting images,
applying poses, and improving texture and clothing quality can be influential
on human motion transfer and generation.

Also, on a technical level, the difference between human motion transfer
and human motion generation is the work that goes into determining the next
frame. For human motion transfer, this process is guided by a driving video,
which should already have temporal coherence. Human motion generation
involves training the model to determine the next frame and make sure the
end result has temporal coherence. Therefore, this paper looks at papers in
all three areas to present a fuller picture of the current literature.

Following the introduction, this paper begins with a breakdown of tech-
nologies used in synthetic image animation in Section 3. Section 4 has a
deeper look into the different methods of classification of deepfake papers
and models within human pose transfer, human motion transfer, and human
motion generation. Then, there is a review of the methods for human pose
transfer in Section 5. We then survey the synthetic image animation methods,
including motion transfer and motion generation in Section 6. Though the
focus of this paper is on the creation of media, Section 7 covers some deepfake
detection methods for videos and images. Finally, Section 8 looks into the
future of the field of synthetic image animation.

2 Related Works

Recent works surveying deepfake creation and detection tend to cover deepfakes
more broadly. Papers [48, 51, 69] look at deepfakes as a whole, going over
various types of deepfakes, the technology used, and methods to detect them.
Both [51] and [48] provide accurate and in-depth descriptions of the specific
technologies used for deepfake creation. Specifically, [48] has figures for all of
the major deepfake creation models and discusses how technologies like GANs,
CNNs, RNNs, etc. are combined in each model in clean, easy to read figures.
While their contributions are notable, [48] focuses more on facial deepfakes
and [51] has a strong focus on deepfake detection, rather than creation. While
both reference some models that perform image animation, it is not a focus
for either paper.

In [69], similar to [51], there is a strong focus on deepfake detection, and
the paper discusses DNNs in reference to how they can help detection efforts,
rather than creation. However, [69] does have a decent description of the
different manipulations deepfakes can utilize, some of which are referenced
earlier in this paper.

In [5], there is a strong focus around the technology used in deepfakes,
going into the specifics about CNNs, RNNs, GANs, and LSTMs. Our paper is
distinct from these in that it focuses on synthetic image animation and the
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process taken to reach this point, with a focus on full body animation. As a
result, this paper looks at topics such as pose transfer, motion transfer, and
motion generation, as these three topics can have overlapping research, which
is discussed further in Section 5.

3 Key Building Blocks of Existing Studies

In this section, we summarize the key components of synthetic image animation
that will be used throughout this paper, including the inputs, networks, typical
loss functions adopted, and data sets.

3.1 Inputs

We first introduce the typical inputs used by image animation papers. In the
context of this paper, we adopt the following terms.

• Source Image: An image that provides appearance information for
image animation or pose transfer.

• Skeleton: A representation of the outline of an image. Examples include
segmentation maps, key-points, or 3D Models.

• Target Image: An image that has a target pose for animation.

• Driving Video: A video taken in as input that provides specific move-
ments that a model will replicate with a different appearance. This does
not include videos used to train a model.

3.2 Networks Used in Image Animation

The most common networks and architectures used in synthetic image ani-
mation tasks are defined here. Several of these networks can be combined to
complete the tasks. The most popular seen for image animation are CNNs,
GANs, U-Nets, and encoder-decoders. CNNs are central as they are the DNN
used most often for image processing. U-Nets and encoder-decoders perform
similar tasks, where they are applied to CNNs to apply appearance data and
refine results. GANs have been central to the growth of image animation
because the results they produce can be very high quality, as the deepfakes
are directly compared to a ground truth image. RNNs and LSTMs are more
commonly used in deepfake detection, but have applications in making fluid
motion in an animation.

• Encoder-Decoder: A method used to compress and decompress data,
typically used to apply and refine appearance data. A representation
can be seen in Figure 1a.
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• U-Net: An CNN-based encoder-decoder that includes skip connections
between certain layers to improve the quality of the decompressed data,
especially in situations with conditional appearance data [42, 56]. A
representation can be seen in Figure 1b.

• Generative Adversarial Network (GAN): A type of DNN with a
generator and a discriminator, which generates media in an adversarial
manner, where the generator synthesizes media and the discriminator
determines if it is real or generated. A representation can be seen in
Figure 1c.

• Convolutional Neural Network (CNN): A type of DNN which is
used to compress and analyze image data by converting small sections
of the image into matrices and performing calculations on them.

• Recurrent Neural Network (RNN): A type of DNN that is used
for processing temporal data, such as videos, by keeping track of current
behavior and expected behavior.

• Long Short-term Memory(LSTM): A type of RNN that was pro-
posed to overcome the vanishing gradient problem in RNNs. Its primary
benefit is that it can both remember past data and forget it as new data
comes in.

Figure 1: Most popular architectures for synthetic image animation.
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3.3 Performance Metrics and Loss Functions

A critical part of creating a model to generate or animate images is picking
or designing loss functions. The purpose of loss functions is to evaluate the
distance between an output of a model and the expected output. Representa-
tions of the most common loss functions used in synthetic image animation
are listed in Table 1.

• Spatial Consistency: Consistency of placement of objects from frame
to frame.

• Temporal Coherence: Consistency of color and lighting from frame
to frame.

• L1 Loss (and its derivatives): One of the most common loss functions
seen in image animation, L1 loss is the sum of all the absolute differences
between the true and predicted values. It is used to minimize error.

• L2 Loss: L2 Loss is the same as L1, but the values being summed are
all squared. It is used less than L1 loss, but it is seen in some papers.

• Adversarial Loss: Used for training GANs. There are typically two
parts: one for generator loss and one for discriminator loss. Adversarial
loss functions are much less standardized than L1 or L2 loss functions, and
can differ greatly from each other depending on their specific applications.

• Contextual Loss: Used to train CNNs by measuring the similarity
between the generated image and a target image [46]. Similar to adver-
sarial loss, there are many ways to implement this type of loss function
depending on the model the loss function is used for.

• Perceptual Loss: Perceptual loss is used to recover fine texture details
and is a derivative of adversarial and contextual losses [33].

• VGG Loss: Based on the ReLU activation layers of a VGG network,
VGG loss is defined as the euclidean distance between the feature repre-
sentations of a reconstructed image and the reference image [33].

• Feature Loss: Used to determine what features are missing or present
between two similar images.

3.4 Datasets

Dataset selection is critical for training models to perform well, according
to the requirements of the model. The only consistent desirable requirement
among datasets is that they have lots of data because, generally, the model
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Table 1: Common loss functions in surveyed papers.

Loss Function example Citation

L1

∑n
i=1 |ytrue − ypredicted| Widely adopted

L2

∑n
i=1(ytrue − ypredicted)

2 Widely adopted
Perceptual Lp(y, ŷ) =

∑N
v=1 ||Φv(y)−Φv(ŷ)| |2 [50]

VGG 1
Wi,jHi,j

∑Wi,j

x=1

∑Hi,j

y=1 (ϕi,j(I
HR)x,y −

ϕi,j(GθG(I
LR))x,y)

2

[33]

Adversarial 1
2Ez[l(D(z, y) − 1)] + 1

2Ez[l(D(z, ŷ))] +
1
2Ez[l(D(G(z)− 1))], where l(x) = x2

[50]

LSGAN (D) min
D

VLSGAN (D) = 1
2Ex∼pdata(x)[(D(x) −

b)2] + 1
2Ez∼pz(z)[(D(G(z))− a)2]

[45]

LSGAN (G) min
G

VLSGAN (G) = 1
2Ez∼pz(z)[(D(G(z))−

c)2]

[45]

can learn more and generate better results. However, the type of data can vary
in resolution, type of media, and focus of the media (face, full body, etc.), and
these differences can inform which datasets to choose. This section covers the
more popular datasets used in research on human pose and motion transfer,
however, many researchers created their own datasets from YouTube videos
and may or may not have made the dataset public [9, 87].

• DeepFashion [40]: DeepFashion has over 800,000 high-resolution im-
ages with annotations and over 300,000 exact pairs. This dataset is
popular for pose transfer research and is often used in conjunction with
the Market-1501 dataset or other low-resolution datasets so researchers
can compare the effectiveness of their models on high and low resolution
data. This data set has been used by [10, 14, 21, 35, 42, 43, 50, 55, 78,
84, 86].

• Market-1501 [81]: A dataset with over 500,000 low resolution images,
taken from cameras posted on a campus. The purpose of the dataset
is for re-identification of people. However, it is commonly used in pose
transfer with DeepFashion so models can compare their effectiveness on
high and low resolution data. This data set has been used by [10, 14, 35,
42, 55].

• VoxCeleb1 Dataset [49]: This video dataset is a collection of 22,496
videos and 1251 speakers with their original audio. The videos are of
celebrities giving interviews. While the dataset is targeted to those doing
audio-visual deep learning research, it is used by papers researching pose
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and motion transfer. This data set has been used by [24, 44, 62, 63, 73,
76].

• VoxCeleb2 Dataset [11]: This video dataset is a collection of 150,480
videos and 6112 speakers with their original audio. It is the second
iteration of VoxCeleb1 and, like its predecessor, it can be used for papers
researching audio-visual deep learning and pose and motion transfer.
This data set has been used by [28, 44].

• Tai-Chi Dataset [68]: This dataset was gathered for training a motion
generation model, but is useful for pose or motion transfer as well.
It consists of more than 4500 videos gathered from YouTube, so the
resolution is variable. This data set has been used by [68, 81].

• Tai-Chi-HD Dataset [62]: This dataset is similar to Tai-Chi, but it
was not gathered by the same research group. This dataset is a collection
of 280 high quality videos that are cropped to 256 × 256 pixels. The
dataset was collected for motion transfer research. This data set has
been used by [62–64].

• Fashion Dataset [81]: A dataset of videos where a single person models
an outfit. The models are all different, as are the clothing types and
textures. There are 600 total videos, split into training and testing, with
each video containing roughly 350 frames. The videos are high resolution
and have a static camera. This data set has been used by [39, 55, 62,
81].

• iPER [38]: This dataset contains 206 videos with one of thirty people
performing some action. There is variability in the types of clothing and
the height and weight of the people. There is a total of 241,564 frames
in the dataset. This dataset was collected for “human motion imitation”
and “human appearance transfer” [38], specifically with how clothing can
impact the results. The dataset is used by [38, 39, 55, 75].

3.5 Other Background Terms

There are several commonly seen terms regarding deepfakes models in existing
literature. We summarize them here as they can be helpful in the discussions
later.

• Generation: Creating a new, realistic image or video. This manipula-
tion is different from all the rest of the categories, as it does not require
an original/driving image or video [69].
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• Face Swap: Taking the facial features from one person and putting
them on the body of a different person. If the two people share similar
facial and body features, these can be extremely realistic [69].

• Expression Transfer: Changing the expression of a person in a target
image to an expression represented in an image or some other medium,
like key-points or segmentation maps [69].

• Segmentation map-to-image: Generating an image based on a seg-
mentation map, or an image where different parts of the image are
abstracted out in different shapes and colors and detail is added in [69].

• Inpainting: Filling in missing data from a picture by using training
data and surrounding context as clues [69].

• Object-agnostic: A model that does not assume knowledge about the
objects that will be animated [62].

• Object-specific: A model that assumes knowledge about the specific
object to animate [38].

4 Supporting Techniques

4.1 Types of Models

In Section 1, we provide definitions for the terms Human Pose Transfer, Human
Motion Transfer, and Human Motion Generation. In the rest of the paper, we
will be using those terms to classify and organize the literature we reviewed.

Within these three classifications, the models can be further categorized
by the type of media used as sources and results, which are defined in Table 2.
Skeleton-to-Image (Figure 2a) and Image-to-Image (Figure 2b) are both dis-
cussed with Human Pose Transfer in Section 5, as the resulting media is not
a video. Human Motion Transfer and Human Motion generation are both
discussed in Section 6, with Skeleton-to-Video (Figure 2c), Video-to-Video
(Figure 2d), and Image-to-Video (Figure 2e) models, because their results
are videos. It should be noted that these model classifications are generic; a
specific model may have more or less number of sources or results depending on
the goals of the researchers creating it. For example, several Skeleton-to-Image
models require a skeleton for the source image and a target skeleton, or, a
motion generation model may be discussed under Image-to-Video, but it does
not have a driving video.
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Figure 2: Summary of generic models.

4.2 Abstracting Images

The first step in determining how an image should move is determining which
parts of the image should move and abstracting that to something deep learning
models can understand and generate. In general, three approaches to this
process are image segmentation, key-point estimation, and 3D pose estimation.

Image segmentation is the partitioning of images or video frames into
multiple segments and objects [47]. The benefit of this method is that it can
be applied to any type of image, from images of cities [26], flowers [26], or
people [82]. This is also used by the authors of [86] to differentiate between
different types of clothing on a person. For example, a t-shirt may cut off
about halfway down the upper arm, while a sweater may extend to the wrists.
Other methods of image abstraction may not have the ability to map out
clothing in this detail, which can make image segmentation a desirable method
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Table 2: Models, definitions, and examples.

Model Definition Example Figure

Skeleton-to-Image A model that takes some
skeleton of a pose or seg-
mentation map and ap-
plies an appearance to it.

Pose Guided
Person Image
Generation [42]

Figure 2a

Image-to-Image A model that takes a
source image and a tar-
get image and creates a fi-
nal image with the source
pose and target appear-
ance.

Human
Appearance
Transfer [82]

Figure 2b

Skeleton-to-Video A model that takes a
skeleton or segmentation
map for the motion of a
person and adds a tar-
get appearance to a final
video.

High-Quality
Video
Generation from
Static Structural
Annotations [58]

Figure 2c

Video-to-Video A model that takes a
video of one person for
the motion of another
person and adds a tar-
get appearance to a final
video.

Everybody
Dance Now [9]

Figure 2d

Image-to-Video A model that takes an im-
age as the source and a
video for the motion and
applies the source appear-
ance to the video motion.

Animating
Arbitrary
Objects via Deep
Motion Transfer
[60]

Figure 2e

for clothing and texture transfer. However, the increase in detail comes at
a cost, as the time and work to create training data for image parsing is
extensive [16].

The second type of image abstraction is key-points. Rather than the entire
human body, key-points are typically a collection of some number of joints used
as markers to determine how a body looks and where movements take place [7,
16]. Key-points are used in a large majority of the research referenced in this
paper because they are lightweight and can be sufficient in full body person
animation. An offshoot of key-points and image segmentation are semantic and
co-part segmentation [16, 63], which define entire sections of movement, instead
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of points of movement. This can provide more detail regarding movements,
especially between varying body shapes [64].

The third option is to perform 3D pose estimation, which is the process of
determining the position of a body in an image or video and representing it as
a 3D model [50, 81, 82]. While 3D human pose estimation is more often used
for tracking and identifying what pose a person is in by name, identifying how
a person in a source image is posed is critical when determining how to apply a
target image or driving video to achieve the target. Some of the body models
often used are DeepPose [66] and DensePose [23]. In [29], the authors propose
to learn a representation of 3D human dynamics over a temporal context of
image features by predicting not only the current 3D human pose and shape
but also changes in pose in the nearby past and future frames. The learned
3D dynamics knowledge can be transferred to static images by learning a
“hallucinator.” The authors of [31] propose an adversarial learning framework
to discriminate between real human motions captured in-the-wild and those
generated by the temporal pose and shape regression network. The benefits of
these models are that they are detailed and could have more realistic results.
The primary drawback is that they are resource intensive.

4.3 Clothing and Texture Transfer

Once a target from a source image has taken on a different pose, adjustments
also need to be made for any clothing or hair. This practice is a subset of
inpainting, where part of an image is removed, and a model is tasked with
filling it in. If in pose transfer, for example, a source is in profile, but the
target pose is face-forward, then the algorithm needs to generate the second
half of the face, hair, any designs or textures on the clothing, etc. This is a
complex task, but it is critical for the goal of creating deepfakes consistent
with the source material.

While nearly all of the papers referenced here use clothing transfer, several
papers focus explicitly on this task. For example, [86] utilizes an initial encoder
to analyze the source pose and target pose, and a second encoder to analyze
the textures from the source image and apply it to the target. Similarly, [21]
utilizes GANs, CNNs, and an encoder-decoder architecture to evaluate the
source image clothing and to apply inpainting to the new images. While the
details differ between these papers, the general strategy is to determine the
source image pose first, the target pose second, and then apply any required
textural changes to the target image.

Unsupervised Image-to-Video Clothing Transfer [53] also deals with clothing
transfer, but applies the techniques to animation specifically, instead of just
static images. Specifically, they store memory before and after generating each
frame to determine how the clothing should change from frame to frame to
produce a coherent video. Image-to-Image clothing transfers do not need this
capability, as the images do not need to maintain coherent textures and poses
across multiple images.
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5 Human Pose Transfer

In this section, we mainly focus on existing studies to transfer human poses.
In particular, this section is split into four parts. The sections focus on two
types of models that papers create: Skeleton-to-Image and Image-to-Image.
The type of model included in those sections is expanded in Table 2.

5.1 Skeleton-to-Image

As shown in Figure 2a, the method of pose transfer uses a source image to get
the necessary textures and a skeleton to assign a target pose. In this paper,
“skeleton” is used as a general term for a computer representation of different
poses. Skeletons can be in different forms, such as 3D poses [50] and 2D poses
[7], two types of which are key-points [14, 85, 88] and segments [16, 23, 43,
86]. Often in transferring poses on images, a model will assign a skeleton to
the source and target poses to simplify the process and identify which parts of
the images should change.

Each of the forms of skeletons mentioned have different benefits and draw-
backs, as mentioned in Section 4.2. The most commonly used is key-points
because of their simplicity [7, 10, 34, 88]. Generally, the models in these papers
took in a tuple of a source image, target skeleton, and source skeleton. In
theory, these models could avoid inputting the skeleton of the source image
using pose estimation. However, that is a more intensive process and is less
necessary when generating images because datasets of still images are not
difficult to come by.

A different type of Skeleton-to-Image, as defined for this paper, is referenced
in [26]. This paper describes a model that is very similar to the other papers
mentioned here, in that it can take a skeleton of a photo and add details, but
it is different because part of the model is going from an image to a skeleton,
which is more often seen in models that have visual media as the target or
driving video input. Furthermore, since the images are not strictly of humans,
the researchers use segmentation maps instead of key-points. As a final point,
there is also functionality that generates photos that, instead of adding detail
to a skeleton, it can change one feature of an image. For example, if an image
input is in the day, the output could be the same scenery, but at night.

Pose Attention Transfer Networks (PATN) and Pose Attention Transfer
Blocks (PATB) represent another way to perform pose transfer. Models based
on this idea, instead of jumping from a starting pose to an ending pose, attempt
to generate more realistic poses by generating the motion in between, thereby
incrementally generating a more accurate picture. This concept is introduced
in [88] which proposed utilizing cascading PATBs in a PATN to guide the pose
transfer process. Some works that are based on this idea are [10, 78], and [34].
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5.2 Image-to-Image

As shown in Figure 2b, the natural iteration from Skeleton-to-Image is to
apply the pose from an image to the appearance from another image, also
known as pose transfer and, when applied to humans, human pose transfer.
Papers that implement Image-to-Image models are: [15, 35, 41, 43, 50, 59,
82, 84]. Generally, models implemented as Image-to-Image take in a target
image and a source image and output a result, where the subject in the source
image has the pose of the subject in the target image, much like in Figure 2b.
There can be exceptions to this, such as [84], where the model requires that
the source image is in a certain position, and there is no target image, as the
model automatically outputs the subjects in two pre-trained poses.

In looking at the research done in this area, it is clear that the current
trend is attempting to break down the process into smaller and smaller parts,
with the goal of improved results. For example, if a model were to attempt
to generate new images based on a pose all at once, it is likely that elements
of the foreground and background will become mixed and the end result will
have artifacts that indicate it is a fake.

Additionally, the generation process may go from one image to another
all at once. A model could receive an input of an image of a person facing
forward and a target pose of them facing away. In this system, there would be
little process for determining what the back of a person’s head may look like
just from the front, likely resulting in lower quality outputs.

One way that researchers have attempted to break down the process is
through the application of disentangling the foreground and background in
images. If a model can correctly determine the foreground from the background
in an image and disentangle the two parts, the resulting image is less likely
to have artifacts that indicate it is a deepfake. There are a couple papers
which discuss this technique. One example is in [7], which is focused around
disentanglement, the act of separating a person, the background, and any
items that person is holding. Another is in [43], where the researchers are
specifically aiming to generate images in a disentangled manner.

6 Human Motion Transfer and Generation

There are two types of approaches for animating synthetic images to form
videos, namely motion transfer and motion generation. Motion transfer and
generation studies need to additionally take time coherence as an important
criteria, which is not a requirement for pose transfer studies.

Most of the research found in the area focuses on motion transfer, though
there are notable examples of human motion generation, such as [68] and [77].
The major difference between studies in these two categories is whether a
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driving video is required. The human motion transfer models adopt a driving
video, so that the person/object in the deepfake videos acts exactly in the
same way as the one in the driving video. On the other hand, the human
motion generation models do not use a driving video, but are trained on a
variety of general motion videos so that any arbitrary motions can be created.
Furthermore, general video generation models have been developed for some
time. But most of them do not require a specific source image to create a
deepfake for the specific person/object in the source image, which differentiates
them from the two works discussed in this section.

Specifically, according to the different sources, we classify existing studies
into three categories: Skeleton-to-Video, Video-to-Video and Image-to-Video,
and discuss each category in detail. Understandably, it may seem odd to
include a section on Video-to-Video models in a paper that is meant to focus
on image animation. The reason this section is included is because several
of the papers on Video-to-Video motion transfer utilize similar methods of
motion and pose transfer, especially when broken down to the frame-by-frame
level. The research done in [71] provides a decent example of this by breaking
down the source movement video into frames and generating a new frame
of the target person in the movement pose. Furthermore, we discuss Video-
to-Video before Image-to-Video because order of discussion is based on the
complexity of the models, not the complexity of the source material for them.
Image-to-Video models can be more complex than Video-to-Video because
Video-to-Video models can gather more data about the source person to apply
to a result, while Image-to-Video models need to predict any missing data.

6.1 Skeleton-to-Video

As shown in Figure 2c, the idea of Skeleton-to-Video is that the models cut
down on the work of extracting the initial motion by just taking in the skeletal
motion. There are some models that use skeletal driving videos instead of
driving videos of objects. An example of these videos could be when actors
wear motion capture suits and videos of key-points are taken. Generally, the
process of motion transfer is:

• Step 1. Take the driving video as input

• Step 2. Analyze the driving video for the motion

• Step 3. Extract the motion and apply it to some skeleton (typically a
3D model or key-points)

• Step 4. Apply the appearance from an input image to the skeleton

For Skeleton-to-Video models, steps 1, 2, and most of 3 are combined, though
the model will still need to process the driving video.
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One option is to use a segmented image as an input and to apply color,
texture, and motion to it through DNNs [58]. In this case, the proposed task is
pix2vid, which generates movement based on the structural annotation given.
However, while there are some interesting applications and benefits to a system
like this, it is harder to find datasets of image segments for training and testing.
Furthermore, this system does not take in appearance information, which can
be a significant negative for certain tasks.

A predecessor of pix2vid is vid2vid [74]. Instead of having a static skeleton
used for the video synthesis, the skeleton is an image segmented video. This
implementation means that the model does not have to dissect the skeleton
from a video, and it also allows for different types of motion in non-human
subjects. In the case of most of the papers in this review, the movement is
limited to a singular object, usually a human. This paper stands out because
it can represent the motion of many objects going by, for example, as if a
spectator is looking out the window of a car.

In [55], the focus is on full body motion. The purpose of the paper is
to generate images of models in different poses indicated by a skeleton of
key-points, and to expand those generated images into videos. In order to
create coherent animations, they generate the videos recurrently so that the
model can extract correlations between adjacent frames. Specifically, this
model extracts skeletons from videos of skeletons and cleans them up so that
they align with required parameters. After that is done, the model generates
clips using a source image, where the person in the source image does the
same motions as the skeleton.

In another paper, [86], researchers were able to generate images from a
segmentation map, and they were also able to create animations of garment
transfer. Garment transfer is somewhat out of the realm of this paper, but
the concept of expanding an existing Skeleton-to-Image model to an image
animation one is adjacent to our scope.

6.2 Video-to-Video

As shown in Figure 2d, Video-to-Video models are those that take in videos
for the source motion and the target appearance. Having the data of the
target person’s full appearance makes it easier for the model to generate a
video of the target executing the motion of the source, when compared to
Image-to-Video models.

The first and one of the most prevalent state-of-the-art Video-to-Video
synthesis models is vid2vid [74]. This paper is referenced in Section 6.1 as
well because it takes an image segmented video and adds texture and color.
Because this model is considered state-of-the-art, the paper is included in the
related works of [9, 28, 38, 62, 73, 81], and [1].
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As mentioned, other Video-to-Video models focus on human motion transfer
[1, 9, 19, 28, 32, 54, 71, 75, 87]. The most influential in this group is [9].
Paper [9] is one of the first papers on successful Video-to-Video motion transfer
and introduces the researchers’ method of motion transfer, “Everybody Dance
Now,” and a method to detect whether or not a video is fake. In order to
ensure temporal coherence, this model generates two predicted outputs, one
based on the previously generated frame and one based on the driving video
frame, and puts them through a GAN. To add more realism to faces of the
generated image, a FaceGAN was added which successfully added necessary
detail. The final part of the paper was the creation and usage of a detection
model by the researchers, which successfully identified the videos from the
model.

Finally, an interesting exception comes up in [73], where few-shot vid2vid,
a successor to vid2vid, is proposed. In many Video-to-Video models, the model
has to be trained individually for each person the model should output. The
goal of few-shot vid2vid is to be able to have multiple people as inputs and
outputs with only one driving video and a few example images of each source.
This paper stands out particularly because it does not fit in completely with
any of the classifications established in this paper because the inputs are a
driving video and several example images of each subject for the motion to be
transferred to. It is included in this section because having to input more than
one image is closer to a Video-to-Video model, which is taking in a sequence
of images as frames, than it is an Image-to-Image model, which only takes in
one image and has to generate any other appearance data from nothing else.
The ability to get appearance data from only a few images and create multiple
videos with only one model are both potentially huge areas of future research
and could reduce the required size of datasets, but still produce high quality
results.

6.3 Image-to-Video

The focus of this paper is the technology surrounding synthetic image animation.
In this section, we look at papers that take a source image as input and add
movement, either through motion transfer or motion generation. The question
of how to animate images, or representations of objects, has existed since long
before deep learning [8, 83]. With the revelation of GANs in 2014 [20], research
into Deep Neural Networks and synthesizing images and movement received a
massive boost.

The history of image animation using neural networks starts in 2016 with
[77], which uses variational autoencoders and proposes CNNs to synthesize
future frames of a video based on an image. Between 2016 and 2019, much
of the research surrounded pose transfer and Video-to-Video applications.
However, X2Face [76] was published in 2018, and research on other models,
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like DwNet [81], MarioNETte [24], Liquid Warping GAN [38], and Monkey-Net
[60] in 2019. Each of these papers proposes different models for synthetic image
animation, though using a GAN is a common theme among them. Initial
research into motion transfer and image animation tends to focus around
humans.

X2Face [76] is an architecture with the ability to generate videos of faces
from, in one iteration, a source frame and driving video. While the focus of
this survey is on full body models, the work in X2Face is cited in multiple
other papers in this area, such as [24, 62, 73], and others.

DwNet [81] utilizes DensePose [23], which focuses on human skeletons,
and does not yet seem to have the capability for other types of focuses to be
animated, to encode poses. However, DwNet’s leading contribution to image
animation is a warp module, which estimates the final location for source
appearance placement, based on the target poses, and refines that estimate
for the final output.

MarioNETte is another method proposed in [24]. This method proposes
“a few-shot face reenactment framework.” This means that while there is a
driving video, the source image can actually be several images. Adding more
data obviously means generating a more accurate animation. However, this has
the obvious downside in that it is not as clearly image animation. In testing,
however, the researchers also tested MarioNETte with single shot sources,
which meets the required definition for an Image-to-Video model. This model
performs better than some of the other original models, such as X2Face [76]
and Monkey-Net [60], but compared to more advanced models, it is a lower
performer.

Liquid Warping GAN is introduced in [38], which specifically focuses on
body movement. The focus on humans can be seen in the skeleton used in
processing the images, which focuses around human features, and the loss
functions used, such as a face identity loss. This method works quite well on
humans, but because it is object-specific, the applications are more limited.

Object-agnostic image animation is not a new idea but current research
in this area, specifically Monkey-Net [60], can make for promising future
research. The primary technology used in Monkey-Net is “using a set of sparse
motion-specific key-points that were learned in an unsupervised way to describe
relative pixel movements [60].” This technology is what enables Monkey-Net
to reassign key-points to different images and objects that are inputted into
the model, making it object-agnostic.

First Order Motion Model (FOMM) [62] also aimed to create an object-
agnostic model by improving on the work done for Monkey-Net. FOMM
improves on Monkey-Net by adding local affine transformations to model
complex motions, an occlusion-aware generator to estimate objects not in the
source image, and an adjusted equivariance loss function. The model was able
to train key-points to identify movements for different types of pictures (human
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faces, human full-bodies, animals, etc.), which is not seen in most models.
Combined, these results outperform the original Monkey-Net, according to the
given data. However, the work on FOMM was not final, and another paper
has been published [64], making improvements on the original model. They do
this by changing the segmentation methods in order to better apply motion
between people of different body types or different clothing shapes.

Now that a few state-of-the-art technologies have been proposed, papers
have been published that modify elements of previous work, such as in [44], in
order to experiment with optimizing existing models.

It is also worth looking at papers that are outside of the norm of human
motion transfer, like [68] and [77], which both use motion generation. These
papers are still mentioned in this section because, while the original version of
MoCoGAN [68] simply is trained on a dataset and then generates videos based
on the dataset the model was trained on, [68] mentions a variant of MoCoGAN
where an image is inputted into the model and the model generates motion
based on that image. That is not to say that there is no source media; there is
an entire dataset that trains the model so that it can generate the movement.
However, motion generation for image animation is an interesting path that
has been less researched than motion transfer.

7 Deepfake Detection

As more deepfake creation methods are introduced, it has never been easier to
create a deepfake video using existing applications or following tutorials online.
Due to the threats brought by deepfakes to personal privacy and social security,
many detection methods have been developed along with the advancements of
deepfake creation techniques. Previous detection methods relied on evaluating
specified features from the inconsistencies of fake videos during their synthesis
process. Nowadays, detection methods utilize deep learning technologies to
extract inconsistent features automatically [51].

In this section, we divide the deepfake detection methods to two major
categories, image manipulation detection and video manipulation detection.
Most of these methods attempt to build a robust and accurate classifier to
distinguish between real and fake contents.

7.1 Image Manipulation Detection

Image manipulation is fundamental to deepfakes, as a deepfake video is gener-
ated by a series of deefake images. Early applications such as face-swapping
played a key role in promoting image manipulations, by splicing fake face
regions to the original images. Therefore, using 3D head poses and a SVM
classifier can reveal the errors of fake images [79]. With the utilization of deep
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learning methods such as GANs, synthesized images can be easily created
with outstanding quality. In order to accurately and efficiently detect fake
images, a fake image detector needs to be forged. During the training process
of image detectors, adversarial perturbations can be added to fool the system
[18] to improve its robustness. Pairwise learning can be applied to increase
the accuracy [25]. Deep learning approaches are also beneficial to improve the
detectors. The DeepTag uses an encoder and decoder to recover embedded
messages from facial images in order to prevent authentic images from ma-
nipulation [72]. CNNs and image segmentation are also used to examine the
factors that affect detection accuracy [80].

7.2 Video Manipulation Detection

The development of image manipulation makes the video manipulation more
accessible. However, most detection methods for image detection cannot be
directly applied to video detection due to video compression [2] and temporal
characteristics. In order to successfully detect deepfake videos, some methods
evaluated the temporal dynamics of the videos, such as exploiting the dynamics
of mouth shape with a spoken phoneme [3] and evaluating temporal dynamics
with recurrent approaches [57, 67]. Other methods utilized CNNs to improve
the robustness of the detecting classifier, such as extracting frame-level features
[22], adopting optical flow fields [6], and detecting face warping artifacts [36].
Combining super resolution algorithms to deep learning can also improve the
accuracy of the detector [27].

In addition, large-scale datasets with increasing number of videos have
been created to evaluate the performance of DeepFake detection algorithms.
The Celeb-DF dataset [37] contains 5,639 DeepFake videos generated from
celebrities’ videos on the internet. The DFDC dataset [13] created by Facebook
has more than 100,000 video clips collected from 3,426 actors and actresses.
These datasets contribute to the foundation of detection benchmarks.

8 Future of Field

We discuss the future of the field mainly from three aspects: further improve-
ment, computational complexity reduction, and future applications.

8.1 Further Improvement

Looking at some current research can inform what to expect from future studies.
First, further efforts towards improving how faces look in full body modeling
for humans are important. Current research can do well when focused on just
the face of a person, or just the body, but in a high-definition video, the face
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tends to get less precision than required. There is a balance that needs to be
found to find good results here.

Second, will future models be object-specific or object-agnostic? Research
is likely to be prominently object-specific, as producing clean results is easier
with object-specific modeling. However, although challenging, the research
coming from object-agnostic models will be more interesting, as the media
able to be produced by an object-agnostic model would have more capabilities.

Last but not least, there are a handful of papers that, instead of building
entire models, focus on a detail of the model to improve, such as the texture
of clothes, blurred edges, time inconsistency, etc. An example can be seen
in [64], which improves upon FOMM by adjusting how the model abstracts
objects to better pass appearance information. Although existing studies have
achieved significant progress in making deepfakes realistic, it is still far away
from deceiving human eyes. We consider it critical to further refine details of
the outcomes, and as there are state of the art models out there already, future
research will likely be focused on these details instead of the entire model.

8.2 Computational Complexity Reduction

The adoption of deep neural networks has significantly improved the quality
of fake images/videos, however, the process typically requires very heavy
computation and massive training data, making it less practical. Reducing
computational complexity of image animation models is critical, as hackers
have an incentive to reduce the complexity and make it easier to produce
material and security researchers need to keep up in order to detect them.

The first place to look is datasets. Training and testing models on videos
requires a non-negligible amount of computational power when compared to
training on photos. While the results from Video-to-Video models seem to
be better than Image-to-Video models, a researcher could use more data for
training with the same amount of computational power for Image-to-Video,
when compared to Video-to-Video. Image-to-Video also has an advantage in
that there are more datasets of pictures than videos. Videos take up more data
than images, and the creation of datasets is much more difficult and expensive,
compared to photographs. Particularly, full body motion datasets are lacking,
and these would be best for training and testing synthetic image animation
models.

Another area researchers could look into to reduce computational com-
plexity is few or one-shot papers. A few of these are referenced in our paper
[24, 73] and demonstrate that this type of model has potential in creating
quality deepfakes with less data in both Image-to-Video and Video-to-Video
models. As these models take in less data they could work better with existing
datasets.



DeepFake and its Enabling Techniques: A Review 23

8.3 Future Applications

Synthetic image animation has potential for future and current technology
and development. Current development of this technology is happening in
social media. Snapchat and TikTok are both major players in this game as
part of creating fun filters for sharing content. One particular filter on TikTok
is a Photo Animation filter, where users can apply the filter to drawings,
photographs, and themselves. The filter will add eye movements and other
effects to the photo to make it come alive.

Video games and movies also have potential with this technology, and
research into using deepfakes in this industry is already taking place [8, 17, 70].
This technology could be used to insert players into the game with an avatar
that has their likeness, such as with metaverse applications. Applications in
movies could be used to create more dynamic action scenes, where a thorough
image of an actor or actress could be used in place of a manually animated
model or stunt double. This technology has also been used to bring historic
photographs to life. Adding full body animation to those photographs could
bring to life photos of dances, events, celebrities, or relatives, making the
experience of learning about history more dynamic and even interactive.

9 Discussion and Conclusion

Before beginning this research, and certainly while working on it, the potential
negative impact of deepfakes and image animation applications, particularly
in their ability to mislead and generate disinformation, raised the question,
“Why study this in the first place?” In most of the research published, the
technology itself is neutral, with research teams motivated by the pursuit of
knowledge and understanding the capacity of this technology. However, the
consequences depend on who is leveraging it.

A question that better gets to the root of this problem is “Should this
technology exist?” However, this question is still lacking, because the views on
this issue will be different from person to person, institution to institution.

The real question is, “Will this technology exist?,” to which the answer
is yes. At this point, with or without academia, this technology is going to
exist and grow. Considering concerns regarding how to detect deepfakes are
growing, studying this technology, both its creation and detection, in the open
is critical for researchers to develop detection techniques. In order to know
how to detect deepfakes, we need to be able to know how they work, and the
best way to do that is to publish research out in the open.

From designing new architectures that are more energy efficient to deter-
mining the best loss functions to produce higher quality outputs, human pose
and motion transfer have many avenues of research yet to be explored. In this
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paper we have focused on different types of architectures that can all lead to
improvements in image animation research on full human bodies. In starting
with pose transfer, we aimed to show the different parts of pose transfer and
how they can relate to motion transfer. With motion transfer, there is a story
in how each part of the process comes together. Skeleton-to-Image models
do not have to be concerned with pose estimation in the driving video, and
can focus on generating the appearance data on the result video correctly.
Video-to-Video models do not have to be concerned with missing appearance
data, and can focus on correctly extracting the motions from the source and
applying them to the target. Image-to-Video models have to address all of
these tasks as well as the ones mentioned in pose transfer. The task is diffi-
cult, but considering the pace at which architectures for this task have been
developed and improved, that task will likely be accomplished in the coming
years.
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