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ABSTRACT
In this work, we develop practical user scheduling algorithms for
downlink bursty traffic with emphasis on user fairness. In contrast
to the conventional scheduling algorithms that either equally divide
the transmission time slots among users or maximize some ratios
without practical physical interpretations, we propose to use the 5%-
tile user data rate (5TUDR) as the metric to evaluate user fairness.
Since it is difficult to directly optimize 5TUDR, we first cast the
problem into the stochastic game framework and subsequently
propose a Multi-Agent Reinforcement Learning (MARL)-based
algorithm to perform optimization on the resource block group
(RBG) allocation in a highly computationally efficient manner.
Furthermore, each MARL agent is designed to take information
measured by network counters from multiple network layers (e.g.
Channel Quality Indicator, Buffer size) as the input states while
the RBG allocation as action with a carefully designed reward
function developed to maximize 5TUDR. Extensive simulation is
performed to show that the proposed MARL-based scheduler can
achieve fair scheduling while maintaining good average network
throughput as compared to conventional schedulers.
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1 Introduction

Future wireless networks have been envisaged to provide high-quality data
services to a massive number of devices simultaneously [5, 17]. To accomplish
this demanding goal, intensive research has been devoted to investigating
how to allocate limited network resources to multiple users in an effective
and yet, fair manner. In particular, user scheduling in the downlink trans-
mission that concerns which active users should be selected and allocated
network resources for transmission at the current time slot has drawn much
research attention. By equally dividing the transmission time to each user,
the Round Robin scheduling (RRS) can achieve the time-fairness at the cost
of the network throughput [7]. In contrast, the opportunistic scheduling
(OPS) was designed to allocate network resources to the advantageous users
of the best instantaneous channel conditions [11]. However, OPS attains
the highest network throughput by scarifying those users of poor channel
conditions, which incurs unfair resources allocation among users. To balance
user fairness and network throughput, the proportional fairness scheduling
(PFS) algorithm was proposed in the seminal work [25] by assigning scheduling
priorities to users of the largest ratios between their instantaneous feasible
data rates and historical average data rates. Recently, a parameterized PFS
called Generalized PFS (GPFS) was proposed by generalizing the ratio defined
in PFS with different weights [3, 18, 27]. However, both PFS and GPFS
only take advantages of information from one single layer, i.e., the physical
(PHY) layer. Since the network throughput is governed by protocols across
multiple network layers, more comprehensive information from different net-
work layers is required to better characterize the dynamics of the network
throughput.

To cope with this problem, a machine learning (ML) approach has recently
been proposed for user scheduling [30]. In sharp contrast to the conventional
model-based approach, the data-driven ML approach exploits the massive
data retrieved from the network without explicitly deriving the mathematical
optimization model. In [4], a reinforcement learning (RL)-based algorithm
was proposed to intelligently select the best scheduling algorithm from a
set of pre-defined algorithms in each transmission time interval (TTI) based
on the network conditions. Despite its good performance, the RL-based
scheduler proposed in [4] suffers from high computational complexity. In
[29], an RL-based scheduler was developed by taking into account multiple
performance metrics including the estimated instantaneous data rate and
the averaged data rate in constructing the input state space. In addition,
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an RL-enabled scheduler was also derived to optimize the network delay
performance in [21]. Recently, some pioneering attempts have been made
by applying the advanced neural network structure to solve the scheduling
problem. For instance, a generative adversarial network (GAN)-empowered
deep distributional RL method was proposed in [8] to allocate radio resource
groups in a demand-aware resource management problem. Furthermore, a
pointer network architecture was adopted into the RL framework to provide
flexible and scalable scheduling to cope with the network dynamics in [24] and
[16]. Finally, a knowledge-assisted deep RL was designed for scheduling to
improve the training and convergence behavior in [6].

However, all the aforementioned scheduling algorithms, regardless of their
model-based or data-driven nature, were established upon the assumption of
full-buffer traffic, i.e., all users have infinite amount of data for downlink trans-
mission. However, all traffic in practical networks is bursty, i.e., each user’s
requested data volume is finite. If bursty traffic is considered, the concept of
time-fairness becomes rather non-trivial. Since it takes less transmission time
slots for users of a smaller amount of bursty data to finish their transmissions
in general, it is reasonable to argue that equally dividing transmission time
slots among all users is unfair for users requesting more data. As a result,
the concept of time-fairness becomes very subjective for the bursty traffic
case. Some pioneering works on scheduling bursty traffic were reported in
the literature. In [10], two novel concepts, namely the average user perceived
throughput (UPT) and the user perceived throughput-cut (UPT-cut), were
proposed to measure user fairness before a percentage proportional fair schedul-
ing (PPFS) algorithm was devised to allocate more transmission time slots
to users of a larger amount of bursty data. Furthermore, PPFS improves
the average UPT by assigning higher priorities to users of less remaining
transmission data. Recently, a hybrid downlink scheduling approach was
proposed in [14] to serve bursty traffic classes of different Quality of Service
(QoS) requirements. More specifically, four important flow parameters, namely
the channel conditions, the packet delay, the flow queue size and the flow type,
were taken into account to compute the scheduling metric using the Jain’s
index for each flow before assigning each resource block (RB) to the flow of
the highest metric in [14]. However, the scheduling algorithms developed in
both [10] and [14] were designed through optimizing ratio-based metrics. Since
such ratios do not have practical physical interpretations, these ratio-based
algorithms cannot provide any guarantee on the actual data rate achieved by
each user.

Inspired by the discussions above, we argue that rate-fairness is a more
appropriate metric in designing scheduling algorithms for bursty traffic. In
particular, we consider the 5%-tile user data rate (5TUDR), i.e., the 5% worst
user data rate, to evaluate the user fairness. Unlike the time-fairness, the
5TUDR metric caters to inferior users without ignoring the overall network
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throughput. As a result, it is feasible to optimize the 5TUDR metric while
implicitly maintaining a satisfactory average user data rate (AUDR). Indeed,
the 5TUDR metric has been commonly employed to evaluate network per-
formance by most wireless network operators in practice [11]. However, it is
challenging to use 5TUDR in practical network design due to the following
reasons. First, since AUDR is governed by factors across multiple network
layers, it is technically infeasible to develop a mathematical model to optimize
AUDR or 5TUDR. Furthermore, 5TUDR is a long-term performance metric
over multiple TTIs after a sequence of resource allocation decisions. Thus,
5TUDR cannot be directly optimized by any single-step scheduling algorithms
such as PFS. In particular, if we consider allocating multiple resource block
groups (RBGs) to multiple users, the optimization space grows exponentially
with time, which makes the design problem analytically intractable.

To overcome these challenges, we propose to first cast the RBG allocation
task as a cooperative game in which multiple RL agents collaboratively op-
timize a common objective function using the same reward function. After
that, we devise a computationally efficient Multi-Agent Reinforcement Learn-
ing (MARL)-based scheduling algorithm to learn a low-complexity policy by
decomposing the action space into multiple smaller action spaces. The main
contributions of this paper are summarized as follows:

• We propose to model the RBG allocation process as a stochastic game
by taking into account information from multiple network layers for both
full-buffer and bursty downlink traffic. To maximize the user fairness
without sacrificing the network throughput, we propose a novel reward
function specifically designed to optimize 5TUDR;

• Based on the proposed stochastic game, we then develop a MARL-based
algorithm to optimize the scheduling policy that achieves good 5TUDR
performance while maintaining a considerable AUDR.

• Finally, extensive simulation is performed to validate the performance of
the proposed MARL scheduler. The experiment results are analyzed in
detail to provide insights about the learned scheduling policy.

The remainder of the paper is organized as follows: Section 2 provides
the system model and the problem formulation. Section 3 elaborates the
framework of the stochastic game for RBG allocation. After that, Section 4
proposes a MARL-based algorithm for solving the stochastic game. Finally,
Section 5 shows the simulation results before Section 6 concludes the paper.

Notation: Uppercase boldface and lowercase boldface letters are used to denote
matrices and vectors, respectively. IN represents the identity matrix with
size N × N . AT and AH are the transpose and conjugate transpose of A,
respectively. [a](i) denotes the i-th element of vector a. In addition, ∥A∥
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stands for the Frobenius norm of A while |A| denotes the absolute value of A.
Finally, |A| is the cardinality of the enclosed set A.

2 System Model and Problem Formulation

2.1 System Model

We consider a wireless network in which a base station (BS) schedules K RBGs
to multiple active user equipments (UEs) in the downlink operating in the
Frequency Division Duplexing (FDD) mode. The UEs arrive at random. Upon
arrival, each UE requests a finite amount of traffic data from the BS. The BS
divides its frequency resources into RBGs with each RBG being allocated to at
most one UE in each TTI. Furthermore, if a user is scheduled, its requested data
will be transferred to a Hybrid Automatic Repeat reQuest and Retransmission
(HARQ) buffer. For each transmitted package, the ACK/NACK message
is fed back from the targeted UE at a fixed time interval. Upon receiving
a NACK message, the BS will re-transmit the corresponding data package.
A UE departs from the network immediately after all its requested data is
successfully received, which effectively emulates the bursty traffic mode. In
our work, some practical network mechanisms such as the Out Loop Link
Adaptation (OLLA) are included in our model. The workflow of the system is
shown in Figure 1 and more details about the network mechanisms considered
in this work can be found in the Appendix.

2.2 Problem Formulation

We begin with the definitions of two key metrics, namely AUDR and 5TUDR,
as well as cooperative games employed in this work.

2.2.1 Average User Data Rate (AUDR)

Without loss of generality, we focus on the first T TTIs. We denote by tna and
tnd the TTI indices when the n-th user enters and exits the network, respectively,
with 1 ≤ tna ≤ tnd ≤ T . Furthermore, we denote by Nt the number of users
who have arrived by the t-th TTI with t ∈ [1, T ]. It should be emphasized
that some of these Nt users may have left the network by the t-th TTI if they
finish their transmissions earlier than the t-th TTI. Thus, we can express the
corresponding AUDR over [1, T ] as:

D(t) =
1

Nt

Nt∑
n=1

ψn(t), (1)



6 Yuan et al.

Figure 1: Flowchart of the network under consideration.

where ψn(t) is the user data rate (UDR) of the n-th user over [tna , t] with
t ≥ tna and takes the following form:

ψn(t) =

t∑
i=tna

Tn[i]In[i]

min(t, tnd )− tna
, (2)

where ψn(t) = 0 if t = tna . In Equation (2), Tn[i] is the packet size designated
for the n-th user during the i-th TTI. Furthermore, In[i] is the indicator func-
tion for the ACK/NACK feedback with “1” indicating a successful transmission
while “0” a transmission failure. Note that the numerator in Equation (2) stands
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for the total amount of successfully transmitted data while the denominator
the time duration of the n-th user spent in the system.

2.2.2 5%-Tile User Data Rate (5TUDR)

In statistics, the n-th percentile of a set of data is defined as the value below
which n percent of the data falls. We denote by Ψ(t) the set containing Nt ≥ 1
user data rates at time instance t where

Ψ(t) =
{
ψ1(t), . . . , ψNt(t)

}
. (3)

Without loss of generality, we assume ψi(t) ≤ ψj(t) where 1 ≤ i < j ≤ Nt.
Thus, the fifth percentile of the user data rate denoted by ϕt can be expressed
as

ϕt = P5%(Ψ(t)) = ψz(t), (4)

where P5%(·) is the operator to find the 5%-tile value in the enclosed set and
z is given by

z = ⌈Nt × 0.05⌉, (5)

with ⌈·⌉ being the smallest integer not smaller than the enclosed number.

2.2.3 Cooperative Games

Stochastic games can be considered as the generalization of Markov Decision
Process (MDP) with multiple agents. If all agents work together to maximize
a collective return, then the stochastic game is called a cooperative game [2].
A cooperative game can be defined by a tuple E = ⟨K,S,U , P, r,O, O, γ⟩ [20],
where:

• K is the set of agents;

• S is the global state space;

• U is the local action space;

• P (s′|s,u) of S × U × S → [0, 1] is the transition probability, where
s, s′ ∈ S and u ∈ U ≡ U |K|;

• r(s,u) of S ×U → R: the reward function that evaluates the reward for
a given state-action pair;

• O is the local observation space with ok ∈ O;

• O(s, k): S × K → O is the observation function;

• γ ∈ [0, 1] is a discount factor.
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Using the definition above, a policy can be defined as a mapping from
observations to actions [23]. Mathematically, a policy denoted by π(s) com-
prises the suggested actions that the agents should take for every possible
state s ∈ S. For notational simplicity, the input notation s is omitted and a
policy is simply represented as π in the sequel.

Finally, we are ready to formulate our problem using the three definitions
above. Given a network described in Section 2.2.1, our goal is to establish
an optimal scheduling policy denoted by π that maximizes the rate-fairness
metric 5TUDR over the time interval [1, T ]. Specifically, the optimization
problem can be written as

argmax
π

ϕT (π) (OP1)

s.t. C1 : D(T ) ≥ κ,
C2 : P (Nt −Nt−1 = n) = f(n) ∀t ∈ [1, T ],

where κ in Constraint C1 is the minimum required AUDR while C2 defines
that the probability of having n new arriving users follows some distribution
f(n). For example, when the Poisson distribution with an average arrival rate
of λ is considered, f(n) = λn

n! e
−λ.

Clearly, it is non-trivial to find the optimal policy π∗ by directly solving
(OP1) due to two reasons. First, it is analytically difficult to manipulate ϕT (π)
as it does not have a closed-form expression. Second, the optimization space of
(OP1) grows polynomially with the number of active users, and exponentially
with the number of RBGs under consideration as well as the time duration. In
the sequel, we will first cast (OP1) into a stochastic game framework before a
MARL-based scheduling algorithm is developed to exploit data from multiple
network layers.

3 Stochastic Game Framework for RBG Allocation

In this paper, we model the RBG allocation as a partially-observable coopera-
tive game. We arrange K agents denoted by K = {1, . . . ,K} to allocate the K
RBGs separately. The k-th agent for k ∈ K learns an independent scheduling
policy πk to decide the allocation of the k-th RBG based on its individual
observation. The joint policy is denoted by π = {π1, π2, · · · , πK}.

Figure 2 illustrates the overview of the cooperative game for the task
of RBG allocation. At every TTI, each of the K agents first observes the
environment and gathers network data to form its local observation ok ∈ O
before choosing its action. It should be emphasized that given the problem
complexity, we propose not to use the global state s ∈ S that is the collec-
tion of all local observations {ok}k∈K in this decision-making stage. Upon
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Figure 2: The overview of the cooperative game of the RBG allocation.

receiving the decisions u = (u1, . . . , uK), the BS performs the corresponding
transmission as specified by the agents. After that, the reward function will
generate a collective reward for all agents to evaluate the overall allocation
performance. Finally, the observations, actions and rewards will be stored in
the experience memory for the scheduling policy update. The details about
the policy update will be elaborated in Section 4. Next, we will explain the
states, the actions and the reward function employed in the cooperative RBG
allocation game.

3.1 Cross-layer Observation and Adaptive Action

For a traditional model-based RBG scheduler, it can only utilize information
from one single network layer due to the prohibitively high complexity incurred
in modeling information from multiple layers. In this paper, we propose to
better characterize the network status by efficiently exploiting information
from multiple network layers.

Table 1 shows the network counters selected in our design as well as the
layer that each counter belongs to. For instance, Reference Signal Receiving
Power (RSRP) is selected to represent the longer-term wireless signal strength
while Channel Quality Indicator (CQI) is employed to reflect the instantaneous
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Table 1: Network data of observations.

Counter Name Layer Dimension

RSRP PHY 1
Average of RB CQI PHY 1
Buffer size MAC 1
Scheduled frequency MAC 1
OLLA offset MAC 1
Historical user data rate (HUDR) MAC 1

channel quality corresponding to the channel’s signal-to-noise ratio (SNR).
Note that the CQI value for the same user varies in different RBGs due to the
frequency-selective channels commonly encountered by the broadband wireless
communication systems. Furthermore, we take into account the buffer size
that stands for the amount of remaining data to be transferred to an active
user as well as each user’s scheduled frequency that keeps track of how often
each user has been scheduled for transmission. Finally, the historical user
data rate (HUDR) and the OLLA offset are also included in our observations,
where the HUDR is the UDR up to the last TTI. As indicated in Table 1, all
these network parameters are taken from either the physical (PHY) or the
multiple access (MAC) layers. It should be emphasized that more counters
can be included in our observation in a straightforward manner at the cost of
higher computational complexity.

At each TTI, each agent forms its observation including the counters listed
in Table 1. We denote by C and Mt the total number of network counters under
consideration and the number of active users at the current TTI, respectively.
We can then construct an Mt × C feature matrix Ok for each k ∈ K based on
their individual observations as follows:

Ok =

 õ1,1k · · · õ1,Ck
...

. . .
...

õMt,1
k · · · õMt,C

k

 , (6)

where õm,c
k stands for the c-th counter value over the k-th RBG observed by the

m-th user with m = 1, 2, . . . ,Mt and c = 1, 2 . . . , C. For instance, assuming
that CQI is labeled as the first counter, then õm,1

k represents the CQI of the
m-th user over the k-th RBG.

To fully exploit the features of the cross-layer information, we propose to
use the deep neural network (DNN) of fixed input and output dimension to
represent the individual scheduling policy. However, for bursty traffic, the
dimension of the feature matrix Ok varies with Mt over time, which makes it
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incompatible with our designed DNN architecture. To circumvent this problem,
we propose to apply the following vectorization operation on Ok:

ok = Vec
(
OT

kOk

)
, (7)

where the operator Vec(·) converts the enclosed matrix into a single vector
row by row. Note that the resulting vector ok has a fixed length of C2. It is
worth noting that Equation (7) is one of the many possible encoding scheme
to generate a vector of a fixed length from Ok.

Capitalizing on ok of a fixed length as the input, the DNN generates
preference values to all Mt active users for each RBG before assigning the
RBG to the best user. However, recalling that the number of active users
Mt also varies with time, i.e., the output of the DNN has a varying length.
In order to have a fixed size of the DNN output, we propose to pre-define a
maximum allowable number of active users denoted by Mmax. Therefore, at
each decision step, Mmax preference values are generated, but only the first
Mt values are used to determine the RBG allocation.

3.2 Reward Function

Next, we devise a novel reward function to evaluate the performance of each
agent. Since the design goal is to maximize 5TUDR while maintaining a
considerable AUDR, the desired reward function should be able to evaluate the
contribution of each scheduling decision towards the final 5TUDR and AUDR.
A trivial 5TUDR-maximizing reward function can be designed to maximize
the increment in 5TUDR between two consecutive TTIs. Unfortunately, the
performance of such reward functions has been found very poor with bursty
traffic.

Figure 3 shows the increment of 5TUDR as a function of time in TTI.
Inspection of Figure 3 reveals that the increment of 5TUDR is always 0 with
occasional sharp increases and decreases. Careful investigation on those sharp
spikes indicates that those sharp decreases were caused by the arrival of new

Figure 3: An example of the increment (decrement when negative) of 5TUDR between two
consecutive TTIs over time.
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users of ψ(t) = 0. In contrast, once a new user was scheduled, its user data
rate suddenly became non-zero, which caused a sharp increase in the increment
of 5TUDR. Therefore, using the increment of 5TUDR as the reward function
is not appropriate for bursty traffic as the increment is a random event due to
the arrival or departure of users.

Figure 4: An example of the increment (decrement when negative) of AUDR between two
consecutive TTIs over time.

Alternatively, we can consider employing the increment of AUDR as the
reward function. However, the increment of AUDR is also heavily influenced
by the arrival or departure of users. Figure 4 illustrates an example of the
increment of AUDR between two consecutive TTIs. In Figure 4, the sharp
decreases of AUDR were caused by the arrival of new users as their contribution
of zero data rates to AUDR. In contrast, the sharp increases occurred when the
agents allocated RBGs to users of advantageous channel conditions and large
data packets were transmitted in a short period of time. Clearly, the increment
of AUDR is not an appropriate reward function to maximize 5TUDR either.

To strike the balance between 5TUDR and AUDR, we propose the follow-
ing reward function by exploiting the changes of the sum of UDR over two
consecutive TTI’s, respectively.

r(t) = h

Mt∑
n=1

ψn(t)−
Mt−1∑
n=1

ψn(t− 1)

 (8)

− exp{−G(∆Ψ(t))},

where h(·) is the sigmoid function and ∆Ψ(t) stands for the UDR change of
each active user given by

∆Ψ(t) =
{
∆ψ1(t), · · · ,∆ψMt(t)

}
, (9)

with ∆ψn
t = ψn(t)− ψn(t− 1) for n = 1, 2, . . . ,Mt. In addition, G(·) ∈ [0, 1]

is the G’s fairness index that measures the level of variations of the elements
of the enclosed set [9]. The G’s fairness index takes value zero when there
is a zero element. For instance, the Jain’s fairness index proposed in [9] is
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employed in our experiments. Mathematically, the Jain’s fairness index of a
set of values {xi}, where i = 1, 2, · · · , ℓ, is given by:

G (x1, x2, . . . , xℓ) =

(
ℓ∑

i=1

xi

)2

ℓ ·
ℓ∑

i=1

x2i

. (10)

It can be shown from Equation (10) that the best case, i.e., x1 = x2 = · · · = xℓ,
has a Jain’s fairness index of 1. Furthermore, the worst case corresponding to
the scenario that one of the values is much larger than the other ℓ− 1 values
has a Jain’s fairness index of 1

ℓ [9]. It is worth mentioning that any G’s fairness
index functions that penalize uneven UDR changes across active users can be
employed in Equation (8). Furthermore, in sharp contrast to the ratios used in
the conventional PFS schemes that do not directly correspond to the 5TUDR
performance, the G’s fairness index in Equation (8) is designed to explicitly
make all active users’ UDR uniform while maximizing the sum of UDR over
all active users.

The following features of the proposed reward function in Equation (8)
deserve further discussion. First, the reward function is conditioned upon the
sum of all user data rates, which makes the reward function insensitive to
the time-varying number of total arrived users. In particular, when new users
of zero UDR enter the system, the reward function is not affected. Second,
since the reward function effectively maximizes the increment in the user data
sum-rate, the resulting scheduling policy drives all agents to effectively allocate
RBGs. Finally, the G’s fairness index is introduced as the regularization term
to discourage agents to be in favor of a few users. As a result, more users will
be given transmission opportunities, which effectively improves 5TUDR.

With the proposed reward function, we are ready to propose the following
alternative optimization problem:

argmax
π

Eπ

[ T∑
t=1

γtr(t)

]
(OP2)

s.t. C1 : D(T ) ≥ κ
C2 : P (Nt −Nt−1 = n) = f(n) ∀t ∈ [1, T ],

where Eπ[·] denotes the expected value of a random variable given that the
agents follow policy π. It is worth noting that (OP2) is designed to optimize
the total user sum rate while penalizing any large discrepancy among user
data rates. Thus, (OP2) implicitly optimizes 5TUDR without requiring the
explicit closed-form expression of 5TUDR. Extensive simulation results will be
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shown in Section 5 to demonstrate that the solution to (OP2) strikes a good
balance between AUDR and 5TUDR as compared to GPFS.

In particular, (OP2) indicates that the objective of this cooperative game
is to find a policy π that maximizes the long-term return. All agents are
allowed to explore diverse polices as long as (OP2) is maximized. For such a
cooperative game problem, the Nash Equilibrium (NE) is commonly employed
to describe the solution [13]. Unfortunately, it is non-trivial to find NE in
many practical scenarios. To cope with this problem, a learning algorithm
based on MARL is proposed in the next section.

4 MARL-Based Algorithm

In this section, we will first review some basics about MARL before introducing
a popular MARL algorithm called QMIX [15].

4.1 MARL Background

MARL learns from the interactions with the environment and subsequently,
updates its policy to maximize the long-term return. To evaluate the policy,
the action-value function is leveraged to characterize the expected return.
More specifically, the expected return takes the following form if the agents
execute the joint-policy π after taking joint-action u for the global state s:

Qπ(s,u) = Eπ

[ ∞∑
t=0

γtrt|s0 = s,u0 = u

]
. (11)

The Bellman optimal theorem indicates that the optimal policy π∗ satisfies:

Q∗(s,u) = Qπ∗
(s,u) = sup

π∈Π
{Qπ(s,u)}, (12)

where Π is the set of stationary policies. Moreover, the Q∗(s,u) obeys the
Bellman optimality equation [1]:

Q∗(s,u) = Es′∼P (·|s,u)

[
r(s,u) + γ max

u′∈U
{Q∗(s′,u′)}

]
. (13)

Based on Equation (13), we can estimate the optimal Q∗(s,u) through the
following iterative method:

Qt+1(s,u) = Es′∼P (·|s,u)

[
r(s,u) + γ max

u′∈U
{Qt(s

′,u′)}
]
. (14)

It has been proved that such an iterative method converges to the optimal
action-value function, that is, Qt → Q∗ as t→∞ [26]. In practice, we usually



Bursty Downlink User Scheduling Using MARL 15

use the function approximation to estimate the action values to overcome the
high-dimensional state space. Denote by Qπ

σ(s,u) the action-value function
with parameters σ, the optimization objective can be transformed to find σ
such that Qπ

σ(s,u) ≈ Q∗(s,u). The optimal parameters σ can be trained by
minimizing the following temporal difference error [12]:

L(σ) =
[
r(s,u) + γmax

u′
{Qπ

σ(s
′,u′)} −Qπ

σ(s,u)

]2
. (15)

4.2 QMIX

In the multi-agent learning problem, it is not straightforward to learn the
action-value function Qπ

σ(s,u) due to the exponentially growing dimension
of the joint-action space. To address this problem, the QMIX algorithm was
developed to learn the joint-action value function through value decomposition
[22]. QMIX is a model-free, value-based, off-policy, parallel execution but
centralized training algorithm designed for cooperative tasks. QMIX employs
the DNN-based function approximation approach to estimate the action-value
function [15].

Figure 5 illustrates the architecture of QMIX. As shown in Figure 5, QMIX
allows each agent k to maintain an individual action-value function Qθk

(ok, uk)
that is conditioned upon each individual observation ok and local action uk,
where θk is the parameters of the DNN approximator. In every step, each agent
k accepts an individual observation ok before generating the corresponding
action values. After that, the action is determined using the ϵ-greedy principle

Figure 5: (a) The hyper-network that produces the weights and biases for mixing network
layers shown in blue. (b) Mixing network structure. (c) The overall QMIX architecture. (d)
Agent network structure.
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with the probability of choosing the action uk given by [28]:

P (uk|ok) =


1− ϵ+ ϵ

|U| , uk = argmax
uk

{Qθk
(ok, uk)}

ϵ
|U| , uk ̸= argmax

uk

{Qθk
(ok, uk)}

, (16)

where |U| is the cardinality of the action space. This policy requires each
agent to randomly select an action from the action space with a probability of
ϵ, or follow the action with the maximum action-value with a probability of
1− ϵ. This policy encourages abundant explorations by assigning a non-zero
probability to explore all possible state-action pairs during training.

To guarantee the consistency between Qπ
σ and Qθk

, we only need to ensure
that the global argmax operation applied on the joint Qπ

σ(s,u) generates the
same result as a set of argmax operation applied on each Qθk

:

argmax
u
{Qπ

σ(s,u)} =


argmax

u
1

{Qθ1
(o1, u1

)}

...
argmax

u
K

{QθK
(oK , uK

)}

 . (17)

Mathematically, this imposes a monotonicity constraint on the relationship
between Qπ

σ(s,u) and each Qk:

∂Qπ
σ(s,u)

∂Qθk

≥ 0,∀k. (18)

To enforce Equation (18), QMIX designs a mixing network as shown in
Figure 5. The mixing network is a two-layer neural network that takes the
agent network outputs Qθk for k = 1, . . . ,K as input, and mixes them to
generate the joint action-value Qπ

σ. In particular, the parameters σ of the
mixing network are produced by the hyper-network, denoted by Hδ with
parameters δ. With reference to Figure 5, we denote by w1,w2,b1 and b2

the weights and biases of the mixing network, respectively. Given a state s,
we have

σ = (w1,w2,b1,b2) = Hδ(s). (19)

We set σ to be positive in order to satisfy Equation (18). Let Q = (Qθ1
, . . . , QθK

),
then Qπ

σ(s,u) is computed as follows:

Qπ
σ(s,u) = w2 · g(w1Q+ b1) + b2, (20)

where

g(x) =

{
α(ex − 1) x < 0

x, x ≥ 0
, (21)
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is the standard ELU activation function and applied component-wise with
α > 0.

Taking the derivative of Qπ
σ(s,u) with respect to Q, we have

∂Qπ
σ(s,u)

∂Q
= w2 · g′(w1Q+ b1) ·w1 ≥ 0. (22)

The last inequality holds since w1 and w2 are non-negative and

g′(x) =

{
αex x < 0

1 x ≥ 0.
. (23)

Finally, QMIX is trained by minimizing the following loss function:

L(θ, δ,σ) =
[
r(s,u) + γmax

u′
Qπ

σ(s
′,u′)−Qπ

σ(s,u)
]2
, (24)

where θ contains the DNN parameters of all agents. Note that Equation (24)
takes the similar form as Equation (15) for the update operations. Finally,
the QMIX-based algorithm updates the scheduling policy as summarized in
Algorithm 1.

5 Simulation and Analysis

In this section, we will perform extensive computer simulation using the
network simulator defined in Section 2. The simulated network includes many
practical network mechanisms as shown in the Appendix. Table 2 summarizes
the parameters employed in the simulation.

For illustration purposes, only three RBGs are deployed in the BS with
each RBG composed of three resource blocks (RBs). In particular, each HARQ
process can have at most eight re-transmissions with the ACK/NACK message
is returned with a delay of seven TTIs.

5.1 Model Training

The agents are trained using the parameters listed in Table 2. Each epoch
represents one scheduling process of 1000 TTIs. In each epoch, BS will continue
to accept new users while all agents perform RBG allocation until the end of
the epoch. This process is designed to produce the experience data composed
of the state-action pairs and the corresponding rewards. After that, each agent
will select a mini-batch of experience data to update its parameters. 10 batches
of batch size of 256 each are simulated.

As shown in Figure 6, the episode reward increased with the training epoch
throughout the training process.
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Algorithm 1 The QMIX algorithm for User Scheduling

1: Initialize K agent networks {Qθ1
, . . . , QθK

} with DNN parameters θ =
{θ1, . . . ,θK};

2: Initialize the hyper-network Hδ and the mixing network Mσ with param-
eters δ and σ;

3: Set a replay buffer B, a learning rate τ , a discount factor γ and an
exploration rate ϵ;

4: for t = 1, . . . , T do
5: Each agent k makes its local action uk(t) based on its local observation

ok(t) using the ϵ-greedy policy before observing a new local state ok(t+1);

6: Execute the joint-action u(t) and evaluate the team reward r(t) before
collecting a new global state s(t+ 1);

7: Store the following transition in B for k ∈ {1, . . . ,K}:{
s(t), r(t), s(t+ 1)

}
,
{
ok(t),ok(t+ 1), uk(t)

}
;

8: Sample a random mini-batch of b transitions from B:{
s(i), r(i), s(i+ 1)

}
,
{
ok(i),ok(i+ 1), uk(i)

}
,∀k;

9: Derive K individual Q values:

Q =
{
Qθ1

(
o1(i), u1(i)

)
, . . . , QθK

(
oK(i), uK(i)

)}
,

Q′ =
{
Qθ1

(
o1(i+ 1), u1(i+ 1)

)
, . . . ,

QθK

(
oK(i+ 1), uK(i+ 1)

)}
;

10: Compute weights for mixing network, then get Qπ
σ

(
s(i),u(i)

)
and

Qπ
σ

(
s(i+ 1),u(i+ 1)

)
:

σ(i)← Hδ(s(i)),

σ(i+ 1)← Hδ

(
s(i+ 1)

)
,

Qπ
σ

(
s(i),u(i)

)
←Mσ(i)(Q),

Qπ
σ

(
s(i+ 1),u(i+ 1)

)
←Mσ(i+1)(Q

′);

11: Set y(i) = r(i) + γ max
u(i+1)

{
Qπ

σ

(
s(i+ 1),u(i+ 1)

)}
;

12: Update all the agent networks and hyper-network by minimizing the
following loss:

L(θ,σ, δ) =
1

b

b∑
i=1

[
y(i)−Qπ

σ

(
s(i),u(i)

)]2
.

13: end for
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Table 2: Parameters for simulation.

BS parameters used in simulation Parameters for training

Parameters Values Parameters Values

Epoch 100 Transmit power for
each RB

18 dBm

Duration of one
experiment

1000∼TTIs Number of RB for
each RBG

3

Learning rate 1e-3 Number of RBGs 3
Learning rate decay 1e-7 Frequency

bandwidth for each
RBG

10MHz

Batches 10 Noise power density −174 dBm/Hz
Batch size 256 Minimum MCS 1
Replayer capacity 2000 Maximum MCS 29
ϵ 1e-2 Mximum number of

HARQ
8

Initial number of
users

5 Feedback period of
HARQ

8

Average of Possion
distribution (λ)

1e-2 Initial RB CQI
value

4

Figure 6: Episode reward as a function of epochs.
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5.2 Performance Comparison

Next, we compare the performance of the proposed scheduler against the
conventional OPS, RRS and GPFS, whose operating principle can be found in
the Appendix. It is well-known that the performance of GPFS is influenced
by its two parameters, namely α1 and α2. For fair comparison, we will first
select an appropriate α1 value to optimize the resulting 5TUDR performance
using computer simulation.

Figure 7 shows the 5TUDR performance averaged over 1000 experiments as
a function of α1 for GPFS, RRS and OPS. Inspection of Figure 7 reveals that
the 5TUDR performance of GPFS initially increases with α1 before it saturates
after α1 = 0.5. This is because that a larger α1 encourages GPFS to give
higher scheduling priorities to users of better channel conditions, which initially
improves both the AUDR and 5TUDR performance by more efficiently utilizing
the network resources. However, any further increase in α1 deteriorated the
data rates of the users of poor channel conditions, which became detrimental
to the 5TUDR performance of the network. In contrast, the performance of
RRS and OPS is independent of α1 that is not a parameter in RRS and OPS.
It is evidenced from Figure 7 that OPS had the worst 5TUDR performance
while GPFS with α1 = 0.5 outperformed OPS and RRS in terms of 5TUDR.
In the sequel, GPFS with α1 = 0 and α2 = 1 is referred to as GPFS1 while
GPFS with α1 = 0.5 and α2 = 1 as GPFS2.

Next, we will compare the AUDR and 5TUDR performance of the proposed
MARL-based scheduler against GPFS1, GPFS2 and RRS. More specifically,

Figure 7: The 5TUDR performance as a function of α1 with α2 = 1.
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Figure 8: CDF of the AUDR achieved by the proposed algorithm as compared to PFS and
RRS.

Figure 9: CDF of the 5TUDR achieved by the proposed algorithm as compared to PFS and
RRS.

we compute the improvement of the proposed scheduler over the three afore-
mentioned conventional schedulers using 100 experiments. Figures 8 and 9
plot the cumulative distribution function (CDF) of the achieved AUDR and
5TUDR, respectively. As shown in Figure 8, the proposed scheduler substan-
tially outperformed GPFS1 and RRS in terms of AUDR while suffering from
marginal AUDR degradation as compared to GPFS2 that is optimized for
AUDR as shown in Figure 7. More specifically, the median AUDR achieved
by the proposed MARL-based scheduler was 456.94 Bits/TTI as compared
to 379.80 Bits/TTI for GPFS1 and 322.0 Bits/TTI for RRS, respectively.
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It is also observed in Figure 8 that GPFS2 had the highest median AUDR
of 514.97 Bits/TTI. Furthermore, Figure 9 shows the CDF of the 5TUDR
obtained. Clearly, the proposed scheduler significantly outperformed all three
conventional schedulers in terms of 5TUDR, which is evidenced by the heavy
tail of the CDF curve labelled as “MARL.” Specifically, the proposed scheduler
achieved a median 5TUDR of 113.40 Bit/TTI, which is a significant improve-
ment as compared to GPFS2, GPFS1 and RRS. The median 5TUDR values
obtained by GPFS2, GPFS1 and RRS are 79.56 Bit/TTI, 68.74 Bit/TTI and
52.37 Bit/TTI, respectively. Based on the discussions above, we can see that
the proposed MARL-based scheduler is able to achieve substantially better
5TUDR performance (i.e., higher fairness) while maintaining a considerably
large AUDR.

5.3 Analysis of the Learned Policy

To shed light on the policy learned by the proposed MARL-based scheduler,
we will compare the scheduling preference of the proposed scheduler, GPFS1,
GPFS2 and RRS. In the following simulation, we consider five users competing
for three RBGs for bursty traffic over 500 TTIs.

5.3.1 More Transmission Time and Shorter Residence Time

We will first investigate two metrics, namely the total transmission time
and the total residence time of each user in the system. The transmission
time of a user counts the number of TTIs that the user is allocated with
RBGs for transmission. For instance, if three RBGs are allocated to three
different users in one TTI, then the transmission time is counted as three. In
contrast, if all three RBGs are allocated to the same user in one TTI, then the
corresponding transmission time becomes one. In other words, the transmission
time is designed to measure how often users are served over a period of time.
Furthermore, the residence time is defined as the number of TTIs that a user
stays in the network before it completes its bursty transmission and leaves
the network. Note that the residence time includes the time that a user
spends on waiting for RBG allocation. We compare the total transmission
time and the total residence time over all users for different schedulers in
Figure 10. Inspection of Figure 10 suggests that the proposed MARL-based
scheduler resulted in significantly reduced total residence time, which indicates
that the proposed scheduler can finish the requested transmissions for all
users within a much shorter time period by more efficiently utilizing the same
network resources. Furthermore, the total transmission time over all users was
significantly increased, which implies that the proposed scheduler tends to
divide the available RBGs to different users and subsequently, all users were
scheduled more frequently. This also explains the shorter residence time of all
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Figure 10: Total residence time and total transmission time over all users.

users as all users had more opportunities for being served. The results shown
in Figure 10 support our observation that the proposed scheduler resulted in
higher AUDR and 5TUDR performance.

5.3.2 Diverse RBG Allocation

As suggested in Figure 10, the proposed MARL-based scheduler prefers al-
locating RBGs to diverse users, in lieu of concentrating all RBGs to only
a few users. In this section, we will use data from two specific TTIs in a
specific experiment to illustrate the different behaviors of the schedulers under
consideration. Tables 3 and 4 document the RBG allocation results in TTI = 1
and TTI = 100, respectively. In Table 3, the first section details the counter
information for each user. For the next four sections, we compare how each
scheduler allocated each RBG. In particular, we use “T” and “F” to represent
if the corresponding RBG was allocated or not allocated to the user indicated
by the column index. For instance, the proposed scheduler allocated “RBG#2”
to “UE#1” while “RBG#1” and “RBG#3” to “UE#4” who has better RSRP
and a smaller data package for transmission indicated by the “Buffer” counter.
In contrast, the three conventional schedulers allocated all RBGs to the same
user as all users have the identical CQI value across all RBGs.

After the network ran for 100 TTIs, we investigated the network counter
information as well as the scheduling results in Table 4. For the proposed
scheduler, “UE#3”, “UE#4” and “UE#5” have already finished their trans-
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Table 3: Allocation example 1 (TTI=1).

Attr. UE#1 UE#2 UE#3 UE#4 UE#5 Attr. UE#1 UE#2 UE#3 UE#4 UE#5

RSRP −99 −90 −96 −88 −70 RSRP −99 −90 −96 −88 −70
Buffer 94768 96288 15528 4400 36400 Buffer 94768 96288 15528 4400 36400
HUDR 0.0 0.0 0.0 0.0 0.0 HUDR 0.0 0.0 0.0 0.0 0.0
CQI#1 4 4 4 4 4 CQI#1 4 4 4 4 4
CQI#2 4 4 4 4 4 CQI#2 4 4 4 4 4
CQI#3 4 4 4 4 4 CQI#3 4 4 4 4 4
RBG#1 F F F T F RBG#1 T F F F F

MARL RBG#2 T F F F F GPFS2 RBG#2 T F F F F
RBG#3 F F F T F RBG#3 T F F F F
RBG#1 T F F F F RBG#1 T F F F F

GPFS1 RBG#2 T F F F F RRS RBG#2 T F F F F
RBG#3 T F F F F RBG#3 T F F F F

Table 4: Allocation example 2 (TTI=100).

Attr. UE 1 UE 2 UE 3 UE 4 UE 5 Attr. UE 1 UE 2 UE 3 UE 4 UE 5

RSRP −99 −90 N/A N/A N/A RSRP −99 −90 −96 N/A N/A
Buffer 86119 89886 N/A N/A N/A Buffer 84663 86246 5884 N/A N/A
HUDR 72.1 42.9 N/A N/A N/A HUDR 81.6 182.3 132.1 N/A N/A
CQI#1 7 9 N/A N/A N/A CQI#1 7 9 7 N/A N/A

MARL CQI#2 7 9 N/A N/A N/A GPFS2 CQI#2 7 9 7 N/A N/A
CQI#3 3 14 N/A N/A N/A CQI#3 3 14 9 N/A N/A

RBG#1 T F F F F RBG#1 T F F F F
RBG#2 T F F F F RBG#2 T F F F F
RBG#3 F T F F F RBG#3 F T F F F

RSRP −99 −90 −96 N/A −70 RSRP −99 −90 −96 N/A N/A
Buffer 84563 87882 5360 N/A 2433 Buffer 88587 82716 5828 N/A N/A
HUDR 82.8 158.6 139.3 N/A 849.2 HUDR 55.9 125.3 90.3 N/A N/A
CQI#1 7 9 7 N/A 25 CQI#1 7 9 7 N/A N/A

GPFS1 CQI#2 7 9 7 N/A 25 RRS CQI#2 7 9 7 N/A N/A
CQI#3 3 14 9 N/A 27 CQI#3 3 14 9 N/A N/A

RBG#1 T F F F F RBG#1 T F F F F
RBG#2 T F F F F RBG#2 T F F F F
RBG#3 T F F F F RBG#3 T F F F F

mission and left the network, which is indicated by ”N/A” in Table 4. As a
result, only “UE#1” and “UE#2” were allocated RBGs. Despite the fact that
“UE#2” had better channel conditions (indicated by its CQI and RSRP values)
and a lower HUDR, the proposed scheduler was actually in favor of “UE#1”.
This scheduling decision could be explained by the fact that “UE#1” has a
smaller buffer size and may be able to finish its transmission in a shorter time.
In contrast, GPFS2 and RRS only finished the transmission for “UE#4” and
“UE#5” by TTI=100 while GPFS1 had four users remaining in the network.
Note that GPFS1 and GPFS2 allocated more RBGs to “UE#1” as “UE#1”
has the lowest HUDR among all remaining users.

Finally, we analyze the number of RBGs that each scheduler allocates to
a single user in the same TTI. Figure 11 shows the percentages of scheduled
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Figure 11: Percentages of scheduled users who were allocated with “One”, “Two” or “Three”
RBGs.

users who were allocated with “One”, “Two” or “Three” RBGs in the same TTI,
recalling that our simulation only considered three RBGs. As indicated in
Figure 11, GPFS1 and RRS allocated all the RBGs to a single user almost
throughout the entire simulation. In contrast, the proposed scheduler and
GPFS2 chose to distribute their RBGs to different users more evenly. As a
result, users are given more opportunities to access RBGs, which led to higher
user fairness. In particular, the proposed scheduler never allocated all three
RBGs to one single user, which makes our proposed scheduler very distinctive
from the three conventional schedulers.

5.3.3 Scheduling Preference

Finally, we explore the scheduling preference of the proposed MARL-based
scheduler. Unfortunately, the policy of the proposed scheduler is represented by
a set of DNN parameters, which makes the analysis challenging. To cope with
this challenge, we first analyze the scheduling log data as shown in Tables 3
and 4. Specifically, “UE#1” and “UE#2” in Tables 3 and 4 had a much larger
buffer size than the other three users. By TTI= 100, the proposed scheduler
has completed the data transmission for those users of a smaller buffer size
without holding these users waiting in the network. As a result, the average
user data rates for those users were improved, which in turns contributed to
the increase in AUDR. Therefore, the results hint that the proposed scheduler
prefers scheduling the users of a smaller buffer size first. To validate this
insight, we first investigate the number of active users waiting for services in
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Figure 12: Number of active users as a function of TTI.

Table 5: Total RBG number allocated to users of a smaller buffer size during the first
100 TTIs.

MARL GPFS1 GPFS2 RRS

UE#3 127 75 73 84
UE#4 16 5 7 15
UE#5 24 25 20 30

Sum 167 105 100 129

each TTI by different schedulers. Figure 12 shows that the number of active
users in the network was reduced from five to two only after 83 TTIs by the
proposed scheduler, meaning that three users finished their transmission within
the first 83 TTIs. In contrast, it took almost 150 TTIs for RRS and GPFS1 to
finish the transmission for three users while GPFS1 was not able to complete
the transmission for all five users even after 500 TTIs.

Furthermore, we examine the total number of RBGs assigned to “UE#3”,
“UE#4” and “UE#5” whose buffer sizes are 15528 bits, 4400 bits and 36400 bits,
respectively. Note that the RSRP values for “UE#3”, “UE#4” and “UE#5”
are −96 dB, −88 dB and −70 dB, respectively. Table 5 shows the total RBG
number allocated to each of these three users during the first 100 TTIs, i.e.,
300 RBGs in total. We first observed that the proposed scheduler allocated
more than 50%, i.e., 167 out of the total 300 RBGs to these three users of
smaller buffer sizes. In addition, inspection of the simulation data revealed
that it took only 9 TTIs or 16 RBGs for the proposed MARL-based scheduler
to finish the transmission for “UE#4” of relatively high RSRP. Furthermore,
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Figure 13: Spearman correlation coefficient matrix.

the proposed scheduler allocated noticeably more RBGs to expedite the data
transmission for “UE#3”. As a result, the proposed scheduler was able to
complete the transmission for “UE#3” after 83 TTIs, which enabled the network
to concentrate on serving the remaining users. By providing scheduling priority
to the users of smaller buffer sizes, the proposed scheduler can improve the
UDR of those users and subsequently, the AUDR and 5TUDR performance.

To better characterize the proposed scheduler, we calculate the Spearman
correlation coefficient matrix [19] illustrated in Figure 13. For instance, the
correlation coefficient between the allocation result of “RBG#1” and buffer is
0.6308, which implies that the allocation of “RBG#1” has a strong connection
with the buffer size of the scheduled user.

In summary, the scheduling policy of the proposed MARL-based scheduler
has the following characteristics. First, it prefers to distribute RBGs to different
users in the same TTI. As a result, all users have more opportunities to access
network resources for transmission, which effectively improves the user fairness.
In addition, such a scheduling policy helps increase the average user data rate,
which in turns increases the 5TUDR performance. Furthermore, the proposed
scheduler is in favor of finishing the transmission requests from those users
of a smaller buffer size. This feature indeed helps reduce the total time that
those users spend in the network and subsequently, improve the user data rate
for those users. Finally, despite that the scheduling policy of the proposed
scheduler cannot be mathematically analyzed, some insights can be observed
through the Spearman correlation coefficient matrix to identify the strongly
correlated input-output factor pairs.
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6 Conclusion

In this work, we have investigated the problem of RBG scheduling for users of
bursty traffic in wireless networks. To provide fair opportunities to all users to
access the available RBGs, a fairness-oriented scheduler has been formulated as
a stochastic game by incorporating information from multiple network layers
such as CQI and buffer size. In particular, a reward function has been devised
to maximize the 5%-tile user data rate. Furthermore, a MARL-based learning
approach has been proposed to learn the optimal scheduling policy by dividing
the large state-space into multiple sub-problems each of which is handled by
one agent. Extensive computer simulation has been performed to compare
the performance of the proposed scheduler against the conventional GPFS,
OPS and RRS. Simulation results have confirmed that the proposed scheduler
can achieve impressive 5TUDR performance while maintaining good AUDR
performance. Finally, we have investigated the characteristics of the scheduling
policy learned by the proposed scheduler and found that the proposed scheduler
distributes RBGs to more users in each TTI with higher preference towards
users of a smaller buffer size.

There are several extensions of this study that can be further explored. One
possible drawback of the proposed scheme is that the mathematical relationship
between OP1 and OP2 has not been rigorously established. In addition, the
optimality of the QMIX solution deserves further investigation. Finally, it is
of great practical interest to compare the performance provided by different
G’s fairness index functions in the proposed reward function.
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Appendix: Network Mechanism

In this Appendix, we review some of the network mechanisms implemented in
our network simulator that was used in generating the training and test data
sets for our experiments.
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A Out Loop Link Adaptation (OLLA)

Each UE measures the received SNR on each RB, and periodically reports
the corresponding CQI values to the BS. The BS selects the appropriate
Modulation and Coding Scheme (MCS) based on the received CQI. However,
the reported CQI is distorted by noise. As a result, the MCS chosen based on
the reported CQI is not always optimal. To compensate for the discrepancy
between the chosen MCS and the optimal MCS, an OLLA process is carried
out on the BS by adding a small offset α to the current CQI value q, i.e.,

q̄ = [q + α] , (25)

where [·] is the rounding operator and q̄ is the adjusted CQI for the MCS
selection. In addition, α is updated every time when an ACK/NACK is
received according to

α =

{
α+ sA, if an ACK is received,
α+ sN , if a NACK is received,

(26)

where sA > 0 and sN < 0 are the update rates.

B Transmission Block Formation

After the BS decides the RBG allocation, it will calculate the transmission
block (TB) size for each scheduled user. Specifically, for each scheduled user,
the BS first computes the average adjusted CQI over the set of all RBs allocated
to that user, and then use the adjusted CQI to select a proper MCS index.
The chosen MCS index is then mapped to a spectral efficiency according to
some operator-specific tables. Finally, the spectral efficiency and the number
of allocated RBGs together decide the transmission block size.

Let F(q̄) denote the mapping from the CQI q̄ to its spectral efficiencies
(SE), and I a set of CQI levels over a specific group of RBs observed by a user.
The maximum number of bits that can be loaded to this group of RBs by the
user is given by

f(I) = |I| · F

(⌊
1

|I|
∑
i

I(i)
⌋)

, (27)

where ⌊·⌋ is the floor function. For instance, the estimated data rate of the
n-th user in the k-th RBG can be obtained by Rn,k = f(In(k)), where In(k)
is the set of all RBs in the k-th RBG measured by the n-th user. If multiple
RBGs are allocated to the same user, the same MCS is utilized to convey one
transport block (TB) whose size is given by Tn = f(In), where In is the set
of all RBs allocated to the n-th user.
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C HARQ and Retransmission

When a TB is formed, its data will be loaded into a HARQ buffer and stored
there until the transmission completes (i.e., receive an ACK) or the data is
dropped due to five consecutive transmission failures (i.e., five NACKs). The
BS arranges at most eight HARQ processes (each with a HARQ buffer) for each
active user at a time. When a NACK message is received, a retransmission
is triggered and the RBGs initially assigned to the failed transmission are
reserved for retransmission. The MCS chosen for the retransmission remains
the same to ensure that the same TB can be reloaded to the delegated RBGs
again.

D Conventional Scheduling Schemes for Benchmarking

We provide some definitions of GPFS, OPS and RRS.

1. Generalized Proportional Fairness Scheduling (GPFS)

In GPFS, each RBG is independently scheduled according to the Proportional
Fairness (PF) values of all active users. More specifically, the PF value of the
n-th user on the k-th RBG at the t-th TTI is defined as

ζnk (t) =
(Rn

k (t))
α1

(T̂n(t))α2

, (28)

where Rn
k (t) is the achievable data rate of the n-th user on the k-th RBG at

the t-th TTI while T̂n(t) is the user’s moving average throughput expressed as

T̂n(t) = (1− χ) T̂n(t− 1) + χTn(t− 1). (29)

with χ and Tn(t− 1) being the moving average coefficient and the actual TB
size of the n-th user at the (t− 1)-th TTI. Furthermore, α1 and α2 are two
design parameters within [0, 1]. For α1 = 0 and α2 = 1, GPFS concentrates
on giving priorities to users of low average data rate in the past. In contrast,
α1 = 1 and α2 = 0 degenerates GPFS to the conventional OPS.

Users of larger PF values are given higher priorities to be scheduled for the
RBG under consideration.

P ∗
GPFS(k) = argmax

n
{ζnk }. (30)

Note that the PF value of the same user may vary across different RBGs in
the same TTI.
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2. Opportunistic Scheduling (OPS)

The opportunistic scheduling allocates an RBG to the user who can achieve
the highest estimated data rate and takes the following form:

P ∗
OP (k) = argmax

n
{Rn

k}. (31)

For full buffer traffic, OPS is considered the optimal algorithm for achieving
the highest network throughput and AUDR. However, this conclusion is not
necessarily true for bursty traffic.

3. Round Robin Fashion Scheduling (RRS)

RRS is the classic scheduling algorithm that allocates all available RBGs to
one user at a time and serves all users in turns. Note that new users are
appended to the end of the queue for scheduling if bursty traffic is considered.
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