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ABSTRACT

This work presents a generative modeling approach based on successive
subspace learning. Unlike most generative models in the literature,
our method does not utilize neural networks to analyze the underlying
source distribution and synthesize images. The resulting method, called
the progressive attribute-guided extendable robust image generative
(PAGER) model, has advantages in mathematical transparency, progres-
sive content generation, lower training time, robust performance with
fewer training samples, and extendibility to conditional image generation.
PAGER consists of three modules: core generator, resolution enhancer,
and quality booster. The core generator learns the distribution of low-
resolution images and performs unconditional image generation. The
resolution enhancer increases image resolution via conditional generation.
Finally, the quality booster adds finer details to generated images. Ex-
tensive experiments on MNIST, Fashion-MNIST, and CelebA datasets
are conducted to demonstrate generative performance of PAGER.
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1 Introduction

Unconditional image generation has been a hot research topic in the last decade.
In image generation, a generative model is trained to learn the image data
distribution from a finite set of training images. Once trained, the generative
model can synthesize images by sampling from the underlying distribution.

GANs have been widely used for unconditional image generation with
impressive visual quality in recent years [18]. Despite the evident advantages
of GANs, their training is a non-trivial task: GANs are sensitive to training
hyperparameters and generally suffer from convergence issues [23]. Moreover,
training GANs requires large-scale GPU clusters and an extensive number
of training data [46]. Limited training data usually cause the discriminator
to overfit and the training to diverge [30]. These concerns have led to the
development of improved GAN training methods [19], techniques for stabilized
training with fewer data [30, 46], or non-adversarial approaches [23]. Yet, the
great majority of existing generation techniques utilize deep learning (DL), a
method for learning deep neural networks, as the modeling backbone.

A neural network is typically trained using a large corpus of data over long
episodes of iterative updates. Therefore, training a neural network is often a
time-consuming and data-hungry process. To ensure the convergence of deep
neural networks (DNNs), one has to carefully select (or design) the neural
network architecture, the optimization objective (or the loss) function, and
the training hyper-parameters. Some DL-based generative models like GANs
are often specifically engineered to perform a certain task. They cannot be
easily generalized to different related generative applications. For example,
the architectures of these neural networks for unconditional image generation
have to be re-designed for image super-resolution or attribute-guided image
generation. Last but not the least, due to the non-linearity of neural networks,
understanding and explaining their performance is a standing challenge.

To address the above-mentioned concerns, this paper presents an alterna-
tive approach for unconditional image generation based on successive subspace
learning (SSL) [37–40]. The resulting method, called progressive attribute-
guided extendable robust image generative (PAGER) model, has several ad-
vantages, including mathematical transparency, progressive content generation,
lower training time, robust performance with fewer training samples, and
extendibility to conditional image generation.

PAGER consists of three modules: (1) core generator, (2) resolution
enhancer, and (3) quality booster. The core generator learns the distribution
of low-resolution images and performs unconditional image generation. The
resolution enhancer increases image resolution via conditional generation.
Finally, the quality booster adds finer details to generated images.

To demonstrate the generative performance of PAGER, we conduct exten-
sive experiments on MNIST, Fashion-MNIST, and CelebA datasets. We show
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that PAGER can be trained in a fraction of the time required for training
DL based models and still achieve a similar generation quality. We then
demonstrate the robustness of PAGER to the training size by reducing the
number of training samples. Next, we show that PAGER can be used in
image super resolution, high-resolution image generation, and attribute-guided
face image generation. In particular, the modular design of PAGER allows
us to use the conditional generation modules for image super resolution and
high-resolution image generation. The robustness of PAGER to the number of
training samples enables us to train multiple sub-models with smaller subsets
of data. As a result, PAGER can be easily used for attribute-guided image
generation.

The rest of this paper is organized as follows. Related work is reviewed
in Section 2. The PAGER method is proposed in Section 3. Experimental
results are reported in Section 4. Extendability and applications of PAGER
are presented in Section 5. Finally, concluding remarks and possible future
extensions are given in Section 6.

2 Related Work

2.1 DL-based Image Generative Models

DL-based image generative models can be categorized into two main classes:
adversarial-based and non-adversarial-based models. GANs [18] are adversarial-
based generative models that consist of a generator and a discriminator. The
training procedure of a GAN is a min-max optimization where the generator
learns to generate realistic samples that are not distinguishable from those
in the original dataset and the discriminator learns to distinguish between
real and fake samples. Once the GAN model is trained, the generator model
can be used to draw samples from the learned distribution. StyleGANs have
been introduced in recent years. They exploit the style information, leading
to better disentangability and interpolation properties in the latent space and
enabling better control of the synthesis [31–33].

Examples of non-adversarial DL-based generative models include variational
auto-encoders (VAEs) [34], flow-based models [14, 15], GLANN [23], and
diffusion-based models [13, 21]. VAEs have an encoder/decoder structure that
learns variational approximation to the density function. Then, they generate
images from samples of the Gaussian distribution learnt through the variational
approximation. An improved group of VAEs called Vector-Quantized VAEs
(VQ-VAE) can generate outputs of higher quality. In VQ-VAEs, the encoder
network outputs discrete codes and the prior is learnt instead of being static
[54, 62]. Flow-based methods apply a series of invertible transformations
on data to transform the Gaussian distribution into a complex distribution.
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Following the invertible transformations, one can generate images from the
Gaussian distribution. GLANN [23], employs GLO [4], and IMLE [45] to
map images to the feature and the noise spaces, respectively. The noise space
is then used for sampling and image generation. Recently, diffusion-based
models are developed for image generation. During the training process, they
add noise to images in multiple iterations to ensure that the data follows the
Gaussian distribution ultimately. For image generation, they draw samples
from the Gaussian distribution and denoise the data in multiple gradual steps
until clean images show up.

Despite impressive results of DL-based generative models, they are math-
ematically not transparent due to their highly non-linear functionality. Fur-
thermore, they are often susceptible to unexpected convergence problems [23],
long training time, and dependency on large training dataset size. As we
show in our experiments, PAGER addresses the aforementioned concerns while
maintaining the quality of the images generated by DL-based techniques.

2.2 Unconditional and Conditional Image Generation

In unconditional image generation, sample images are drawn from an underly-
ing distribution without any prior assumption on the images to be generated.
In conditional image generation, samples are generated under a certain assump-
tion. One example of the latter is the generation of a high-resolution image
given a low-resolution image. The proposed PAGER method contains both
unconditional and conditional image generation techniques. Its core generator
module employs the unconditional image generation technique. Its resolution
enhancer and quality booster modules perform conditional image generation.
Although PAGER is an unconditional image generator by itself, it can be
easily extended to conditional image generation with rich applications. We will
elaborate this point with three examples, namely, attribute-guided face image
generation, image super resolution, and high-resolution image generation. Each
task is elaborated below.

2.2.1 Attribute-Guided Face Image Generation

For a set of required facial attributes, the goal is to generate face images
that meet the requirements. Lu et al. [48] performs attribute-guided face
image generation using a low-resolution input image. It modifies the original
CycleGAN [69] architecture and its loss functions to take conditional constraints
during training and inference. In Kowalski et al. [36], synthetic labeled data
are used to factorize the latent space into sections which associate with separate
aspects of face images. It designs a VAE with an additional attribute vector to
specify the target part in the factorized latent space. Qian et al. [53] proposes
to learn a geometry-guided disentangled latent space using facial landmarks
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to preserve generation fidelity. It utilizes a conditional VAE to sample from a
combination of distributions. Each of them corresponds to a certain attribute.

2.2.2 Image Super-resolution

The problem aims at generating a high-resolution image that is consistent
with a low-resolution image input. One solution is the example-based method
[17]. Others include auto-regressive models and normalized flows [52, 61, 63].
Quite a few recent papers adopt the DL methodology [16]. Another line of
work treats super-resolution as a conditional generation problem, and utilize
GANs or diffusion-based models as conditional generative tools which use
low-resolution images as the generation condition [12, 41, 60].

2.2.3 Progressive Generation of Very-high-resolution Images

Generation of a very-high-resolution image of high quality is challenging
and treated as a separate research track. A common solution is to take a
progressive approach in training and generation to maintain the model stability
and generation quality. There exist both GAN-based and diffusion-based very-
high-resolution image generation solutions [21, 29].

Our PAGER method can be trained for unconditional image generation as
well as for conditional image generation such as attribute-guided face image
generation and image super-resolution. In principle, it can also be used for
progressive generation of very-high-resolution images. Our PAGER serves as a
general framework that can bridge different generation models and applications.

2.3 Successive Subspace Learning

In order to extract abstract information from visual data, spectral or spatial
transforms can be applied to images. For example, the Fourier transform is used
to capture the global spectral information of an image while the wavelet trans-
form can be exploited to extract the joint spatial/spectral information. Two
new transforms, namely, the Saak transform [39] and the Saab transform [40],
were recently introduced by Kuo et al. [37–40] to capture joint spatial/spectral
features. These transforms are derived based on the statistics of the input
without supervision. Furthermore, they can be cascaded to find a sequence
of joint spatial-spectral representations in multiple scales, leading to SSL. The
first implementation of SSL is the PixelHop system [10], where multiple stages
of Saab transforms are cascaded to extract features from images. Its second im-
plementation is PixelHop++, where channel-wise Saab transforms are utilized
to achieve a reduced model size while maintaining an effective representation
[11]. An interesting characteristic of the Saab transform that makes SSL a
good candidate for generative applications is that it is invertible. In other
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words, the SSL features obtained by multi-stage Saab transforms can be used
to reconstruct the original image via the inverse SSL, which is formed by multi-
stage inverse Saab transforms. Once we learn the Saab transform from training
data, applying the inverse Saab transform in inference would be trivial.1

SSL has been successfully applied to many image processing and computer
vision applications [56]. Several examples include unconditional image genera-
tion [42–44], point cloud analysis [26–28, 65–68], fake image detection [7–9,
70], face recognition [57, 58], medical diagnosis [47, 51], low light enhancement
[2], anomaly detection [64], to name a few. Inspired by the success of SSL,
we adopt this methodology in the design of a new image generative model as
elaborated in the next section.

2.4 SSL-based Image Generative Models

GenHop [42] is the contemporary SSL-based image generative model in lit-
erature. GenHop utilizes SSL for feature extraction. It applies independent
component analysis (ICA) and clustering to obtain clusters of independent
feature components at the last stage of SSL. Then, it finds a mapping between
the distribution of ICA features and Guassian distributions. In this work, we do
not perform ICA but model the distribution of SSL features via GMMs directly.
As compared to GenHop, our approach offers several attractive features. First,
it has lower computational complexity and demands less memory. Second,
our method offers a progressive and modular image generation solution. It is
capable of conditional and attribute-guided image generation. It can also be
easily extended to other generative applications such as super-resolution or
high-resolution image generation.

3 Proposed PAGER Method

The PAGER method is presented in this section. First, our research motivation
is given in Section 3.1. Then, an overview on PAGER and its three modules are
described in Section 3.2. Finally, our attribute-guided face image generation is
elaborated in Section 3.3.

3.1 Motivation

A generative model learns the distribution of the training data in the training
phase. During the generation phase, samples are drawn from the distribution as
new data. To improve the accuracy of generative image modeling, gray-scale or
color images should be first converted into dimension-reduced latent represen-
tations. After converting all training images into their (low-dimensional) latent

1https://github.com/zohrehazizi/torch_SSL

https://github.com/zohrehazizi/torch_SSL
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representation, the distribution of the latent space can be approximated by a
multivariate Gaussian distribution. For learning the latent representation, most
prior work adopts GAN-, VAE-, and diffusion-based generative models; they
train neural networks that can extract latent representations from an image
source through a series of nonlinear transformations. Similarly, we need to learn
such a transformation from the image space to the latent representation space.

In this work, we utilize an SSL pipleline, rather than neural networks,
to achieve the transformation to the latent representation space. The SSL
pipeline consists of consecutive Saab transforms. In essence, it receives an
image, denoted by I ∈ Rw×h×c, and converts it into a latent feature vector,
denoted by X ∈ Rn, where w, h and c are the pixel numbers of the width,
height and color channels of an image while n is the dimension of the latent
vector. For the remainder of this paper, we refer to the latent space obtained
by SSL as the core space. The Saab transform utilizes mean calculation and
PCA computation to extract features from its input. Due to the properties
of PCA, the i-th and j-th components in the core space are uncorrelated for
i ̸= j. This property facilitates the use of Gaussian priors for generative model
learning over the core space.

Figure 1 illustrates the distributions of input image pixels (I) and Saab
outputs (X). In this example, we plot the distributions of the first, second
and third components of I (i.e., the RGB values of the upper-left pixel of
all source images) and X (i.e., the Saab transform coefficients). The RGB
components are almost uniformly distributed in the marginal probability. They
are highly correlated as shown in the plot of joint distributions. In contrast,
Saab coefficients are close to the Gaussian distribution and they are nearly
uncorrelated. While the distributions of one- and two-dimensional components
of X are very close to Gaussians, the distribution of higher-dimensional vectors
might not be well modeled by one multivariate Gaussian distribution. For this
reason, we employ a mixture of Gaussians to represent the distribution of the
core space.

Figure 1: Example distributions from RGB pixels (left block) and Saab transforms (right
block). The top figures correspond to single vector dimensions (I0 . . . I2 in RGB and X0 . . . X2

in Saab domains). The bottom figures correspond to joint distributions. Distributions are
extracted from the first three components of CelebA images.
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3.2 System Overview

An Overview of the PAGER generation method is shown in Figure 2. PAGER
is an unconditional generative model with a progressive approach in image
generation. It starts with unconditional generation in a low-resolution regime,
which is performed by the core generator. Then, it sequentially increases the
image resolution and quality through a cascade of two conditional generation
modules: the resolution enhancer and the quality booster.

Figure 2: Overview of PAGER generation method.

3.2.1 Module 1: Core Generator

The core generator is the unconditional generative module in PAGER. Its goal
is to generate low-resolution (e.g., 4 × 4 × 3) color images. This module is
trained with images of shape 2d × 2d × 3 (e.g., d = 2). It applies consecutive
Saab transforms on input images {Ii}Mi=1 using PixelHop++ structure [11],
ultimately converting images into n-dimensional vectors X ∈ Rn (n = 2d×2d×
3) in core space. The goal of the core generator is to learn the distribution of
{Xi}Mi=1. We use X to denote a random variable within {Xi}Mi=1, representing
observed samples in core space. Let P (X ) be the underlying distribution of
X ∈ Rn. The generation core G attempts to approximate the distribution
P (X ) with a distribution G(X ).

DL-based methods utilize iterative end-to-end optimization of neural net-
works to achieve this objective. In PAGER, we model the underlying distri-
bution of the core space using the Gaussian Mixture Model (GMM), which
is highly efficient in terms of training time. This is feasible since we use
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SSL to decouple random variables, which we illustrated in Section 3.1. The
conjunction of multi-stage Saab (SSL) features and GMMs can yield a highly
accurate density modeling. Formally, the GMM approximation of G(X ) is
defined as follows:

G(X ) =

K∑
k=1

pkN (X , µk,Σk), (1)

where N (X , µk,Σk) is a multi-variate normal distribution with mean µk and
diagonal covariance matrix Σk, and pk is a binary random variable. We have
pk = 1 with probability Pk, pk = 0 with probability (1−Pk) and

∑K
k=1 Pk = 1.

In other words, only one of the K Gaussian models will be selected at a
time, and the probability of selecting the k-th Gaussian model is Pk in such a
GMM. The parameters of the GMM can be determined using the Expectation
Maximization (EM) algorithm [55]. Once such a GMM model is obtained, one
can draw a sample, X, randomly and proceed to Modules 2 and 3.

The need for Modules 2 and 3 is explained below. G(X ) is learned from
observations Xi, i = 1 · · ·M . When the dimension, n, of the core space is large,
estimating G(X ) becomes intractable and the approximation accuracy of GMM
would drop. For this reason, the unconditional generation process is constrained
to a low-dimensional space. Then, we employ conditional generative models
(modules 2 and 3) to further increase image resolution and quality.

3.2.2 Module 2: Resolution Enhancer

We represent image Id as the summation of its DC and AC components:

Id = DCd +ACd, (2)
DCd = U(Id−1), (3)

where Id is an image of size 2d × 2d, U is the Lanczos image interpolation
operator, DCd is the interpolated image of size 2d × 2d and ACd is the residual
image of size 2d × 2d. The above decoupling of DC and AC components of
an image allows to define the objective of the resolution enhancer. It aims to
generate the residual image ACd conditioned on DCd. In Figure 2, a multi-
stage cascade of resolution enhancers is shown. The detail of a representative
resolution enhancer is highlighted in the lower subfigure.

To train the resolution enhancer, we first decouple the DC and AC of
training samples. Then, we extract SSL features from the DC and build a
GMM model with K components, denoted by GDC . By this method, we
learn a distribution of the DC at a certain image resolution. Note that each
DC from a training image belongs to one of the Gaussian models in GDC .
Therefore, DCs (and their associated AC) are clustered into K classes using
GDC . We gather the AC of each class and build a corresponding GMM,
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denoted by GAC,k where k ∈ {1, · · · ,K}. In total, we learn K + 1 GMMs:
{GDC , GAC,1 . . . GAC,K}.

At the test time, the resolution enhancer receives the low resolution image
Id−1, and upsamples it to obtain the interpolated DC, i.e., DCd = U(Id−1).
Then, the resolution enhancer converts the DC to its SSL features and classifies
it into one of the K clusters using GDC . Mathematically, we have

XDC = SSL(DCd), (4)

y = argk max {N (XDC , µk,Σk)}Kk=1, (5)

where N (XDC , µk,Σk) is the probability score of XDC according to the k-th
component of GDC , and the classification label y is the maximizer index. In
other words, the resolution enhancer identifies a cluster of samples that are
most similar to DCd. Next, the resolution enhancer draws a sample from the
AC distribution corresponding to class y:

XAC ∼ GAC,y(XAC). (6)

With the above two-step generation, the resolution enhancer generates XAC

conditioned on XDC . Afterwards, XAC is converted to the RGB domain using
the inverse SSL transform:

ACd = SSL−1(XAC). (7)

The computed AC component is masked and added to the DC to yield the
higher resolution image via

Id = DCd + ÂCd, (8)

ÂCd = M(DCd)⊙ACd, (9)

where M(DCd) is a mask and ⊙ denotes element-wise multiplication. The mask
is derived from the edge information obtained by the Canny edge detector [5].
The masking operation serves two objectives. First, it prevents details from
being added to smooth regions of the DC component. Second, it suppresses
unwanted noise. Once Id is generated, it is cropped into four non-overlapping
regions, and each region goes through another resolution enhancement process.
The process is recursively applied to each sub-region to further enhance image
quality. In our experiments, we continue the recursion until a cropped window
size of 2× 2 is reached.

3.2.3 Module 3: Quality Booster

The right subfigure of Figure 2 presents the quality booster module. It follows
the resolution enhancer by adding detail and texture to the output of the
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resolution enhancer. It exploits the locally linear embedding (LLE) [59] scheme
and adds extra residue values that are missed by the resolution enhancer. LLE
is a well known method in building correspondence between two components in
image super resolution [6, 25] or image restoration [24]. To design the quality
booster, we decompose the training dataset, enhance the DC component, and
compute the residuals as follows:

Id = DCd +ACd, (10)
Ed = Enhancer(DCd), (11)
Rd = Id − Ed, (12)

where Id represents a 2d × 2d training image, Ed is the result of applying the
enhancer module to the DC component of the image, and Rd is the residual
image. During training, the quality booster stores Ei

d and Ri
d, i = 1, . . . ,M

from M training samples. In generation, the quality booster receives image
Ed and uses the LLE algorithm to estimate the residual image for image Ed

based on Ei
d and Ri

d from the training dataset. It approximates the residual
image with a summation of several elements within Ri

d. Readers are referred to
Roweis and Saul [59] for details of LLE computation. Similar to the enhancer
module, the computed Ri

d is masked and added to Ed to boost its quality.
Although the LLE in the quality booster module uses training data residues

during inference, it does not affect the generation diversity for two reasons.
First, the quality booster only adds some residual textures to the image. In
other words, it has a sharpening effect on edges. Since its role is limited to
adding residuals and sharpening, it does not have a significant role in adding or
preventing diversity. Second, the weight prediction mechanism of LLE provides
a method to combine various patch instances and obtain diverse patterns.

3.3 Attribute-Guided Face Image Generation

In attribute-guided face image generation, the goal is to synthesize face images
that have certain properties. Let A ∈ {−1,+1}T denote a set of T binary
attributes. The goal is to synthesize an image that satisfies a query q ∈
{−1, 0,+1}T , where −1, 0, +1 denote negative, don’t care, and positive
attributes. For instance, if the attribute set is {male, smiling}, the query
q = [−1,+1] requests an image of a female smiling person, and the query
q = [0,−1] request an image (of any gender) that is not smiling.

Without loss of generality, we explain the attribute-guided generation
process with T = 7. The attributes selected from attribute labels in CelebA
dataset include “gender”, “smiling”, “blond hair”, “black hair”, “wearing lipstick”,
“bangs” and “young.” Given these seven binary attributes, there are 27 = 128
subsets of data that correspond to each unique set of selected attributes.
However, some of the attribute combinations might not be abundant in the
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training data due to the existing correlation between the attributes. For
instance, “wearing lipstick”, “bangs”, and “gender” are highly correlated. Thus,
instead of considering all 128 combinations, we partition the attributes of
training data into K subsets using k-means clustering (we set K = 10 in our
experiments). Based on the attribute clusters, we create K data subsets and
train a separate PAGER model for each subset.

At generation time, the goal is to synthesize a sample with a given attribute
set, q ∈ {−1, 0,+1}7. To determine which of the 10 models best represents
the requested attribute set, we compute the Cosine distance of q to each of the
cluster centers and select the model that gives the minimum distance. Then, we
draw samples from the corresponding model. Figure 3 shows generated images
corresponding to 15 different attribute vectors. We see that the attribute-based
generation technique can successfully synthesize images with target attributes
while preserving diversity and fidelity.

Figure 3: Examples of attribute-guided generated images for CelebA with various attribute
combinations.

4 Experiments

4.1 Experimental Setup

We perform experiments on three datasets: MNIST, Fashion-MNIST, and
CelebA. They are commonly used for learning unconditional image generative
models. We briefly explain the experimental settings of PAGER for each
dataset below.
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4.1.1 CelebA

The dataset is a set of colored human face images. Suppose that there are
2d × 2d pixels per image. To derive Saab features and their distributions, we
apply d-stage cascaded Saab transforms. At each stage, the Saab filter has a
spatial dimension of 2× 2 with stride 2. The number of GMM components
in the core generator is 500. The core generator synthesizes color images of
size 4× 4. Higher resolution images are generated conditioned on the previous
resolution with the resolution enhancer and the quality booster modules in
cascade (4× 4 → 8× 8 → 16× 16 → 32× 32). The resolution enhancer has
100 GMM components for the DC part and 3 GMM components for the AC
part at each stage. LLE in the quality booster module is performed using 2
nearest neighbors.

4.1.2 MNIST and Fashion-MNIST

The two datasets contain gray-scale images of digits and clothing items, re-
spectively. The generation pipeline for these datasets is similar to CelebA
except that the core generator synthesizes 16× 16 padded gray-scale images
for each of the 10 classes. The 16× 16 images are converted to 32× 32 with
a single stage of resolution enhancer and quality booster. Finally, they are
cropped to 28× 28.

4.2 Evaluation of Generated Image Quality

4.2.1 Subjective Evaluation

We show image samples of resolution 32×32 generated by PAGER for MNIST,
Fashion-MNIST and CelebA in Figure 4. Generated images learned from
MNIST represent the structure of digits accurately and with rich diversity.
Images generated from Fashion-MNIST show diverse examples for all classes
with fine details and textures. Generated images for CelebA are semantically
meaningful and with fine and diverse details in skin tone, eyes, hair and lip
color, gender, hairstyle, smiling, lighting, and angle of view.

Figure 5 compares generated images by GenHop [42], which is an earlier
SSL-based method, and our PAGER for the CelebA dataset. To be compatible
with GenHop, we perform comparison on generated images of resolution 32×32.
As seen, images generated by PAGER are more realistic with finer details than
GenHop.

Next, we compare images generated by our method and those obtained
by prior DL-based generative models in Figure 6. We resort our comparison
to GAN [18], WGAN [1], LSGAN [50], WGAN-GP [19], GLANN [23], and
diffusion-based model [22] of resolution 64×64. Note that these methods along
with the selected resolution are ones that we could find over the Internet so as to
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Figure 4: Examples of PAGER generated images for MNIST (top), Fashion-MNIST (middle),
and CelebA (bottom) datasets.

allow a fair comparison to the best available implementations. Specifically, we
take generated images of GAN, WGAN and LSGAN from celeba-gan-pytorch
github.2 We take those of WGAN-GP from WGAN-GP-DRAGAN-Celeba-
Pytorch github.3 For the diffusion model, we take the pre-trained model
from pytorch-diffusion-model-celebahq github,4 which generates samples of
resolution 256× 256. We resize generated samples to the resolution of 64× 64
to make them comparable with other methods. Figure 6 compares generated
images by prior DL-based generative models and our PAGER for the CelebA
dataset. It can be seen that generated images of PAGER are comparable with

2https://github.com/joeylitalien/celeba-gan-pytorch
3https://github.com/joeylitalien/celeba-gan-pytorch
4https://github.com/FengNiMa/pytorch_diffusion_model_celebahq

https://github.com/joeylitalien/celeba-gan-pytorch
https://github.com/joeylitalien/celeba-gan-pytorch
https://github.com/FengNiMa/pytorch_diffusion_model_celebahq
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Figure 5: Example images generated by PAGER and GenHOP for the CelebA dataset.

those of prior DL-based methods. There are some noise patterns in our results.
Their suppression is an interesting future research topic.

4.2.2 Objective Evalution

We use the Frechet Inception Distance (FID) [20] score to perform quantitative
comparison of our method with prior art. FID is a commonly used metric to
evaluate the performance of generative models. It considers both diversity and
fidelity of generated images. We follow the procedure described in Lucic et al.
[49] to obtain the FID scores; an Inception neural network extracts features
from a set of 10K generated images as well as another set of 10K real (test)
images. Two multivariate Gaussians are fit to the extracted features from two
sets separately. Then, the Frechet distance between their mean vectors and
covariance matrices is calculated. A smaller FID score is more desirable as it
indicates a better match between the synthesized and real test samples.

The FID scores of various methods for MNIST, Fashion-MNIST and CelebA
datasets are compared in Table 1. Methods in the first and second sections
are both based on DL. Methods in the first section are adversarial generative
models while those in the second section are non-adversarial. The results of
the first and second sections are taken from [49] and [23], respectively. For
the Diffusion model, we generated 10K samples using the pre-trained model
from pytorch-diffusion-model-celebahq github5 and measured the FID score.
GenHop in Section 3 does not use a neural network backbone. Its results are
taken from [42]. We see from Table 1 that the FID scores of PAGER are

5https://github.com/FengNiMa/pytorch_diffusion_model_celebahq

https://github.com/FengNiMa/pytorch_diffusion_model_celebahq
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Figure 6: Samples generated by PAGER and prior DL-based generative models for the
CelebA dataset.
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Table 1: Comparison of FID scores for MNIST, Fashion-MNIST and CelebA datasets.

Method MNIST Fashion CelebA

MM GAN [18] 9.8 29.6 65.6
NS GAN [18] 6.8 26.5 55.0
LSGAN [50] 7.8 30.7 53.9
WGAN [1] 6.7 21.5 41.3
WGAN-GP [19] 20.3 24.5 30.0
DRAGAN [35] 7.6 27.7 42.3
BEGAN [3] 13.1 22.9 38.9

VAE [34] 23.8 58.7 85.7
GLO [4] 49.6 57.7 52.4
GLANN [23] 8.6 13.0 46.3
Diffusion [22] N/A N/A 48.8

GenHop [42] 5.1 18.1 40.3

PAGER (Ours) 9.5 19.3 43.8

comparable with those of prior generative models. In training PAGER model
for Table 1, we used 100K training images from CelebA and 60K training
images from MNIST and Fashion-MNIST with no augmentation.

PAGER is still in its preliminary development stage. Although it does not
outperform prior generative models in the FID score, it does have comparable
performance in all three datasets, indicating its potential to be further improved
in the future. In addition, PAGER has several other advantages to be discussed
in the next subsection.

4.3 Other Performance Metrics

In this section, we study additional performance metrics: robustness to the
number of training samples and training time.

4.3.1 Robustness to training dataset sizes

Figure 7 presents the FID score of PAGER and five DL-based generative
models (MM GAN, LSGAN, WGAN, WGAN-GP, and GLANN) when the
number of training samples is set to 1K, 2K, 5K, 10K, 20K, and 60K for MNIST
dataset. To produce the FID scores of the GAN-based related work, we use
the open-source implementation by PyTorch-GAN github.6 For GLANN, we
use the implementation provided by the authors. Since GLANN is not trained

6https://github.com/eriklindernoren/PyTorch-GAN

https://github.com/eriklindernoren/PyTorch-GAN
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Figure 7: Comparison of FID scores of six benchmarking methods with six training sizes
(1K, 2K, 5K, 10K, 20K, and 60K) for the MNIST dataset. The FID scores of PAGER are
significantly less sensitive with respect to smaller training sizes.

with less than 10K samples, its FID scores for 1K, 2K and 5K samples are not
available. It is worth noting that the FID scores for 60K training samples of
some prior work in Figure 7 are different than those in Table 1. This happens
because some of prior generative models (e.g., MM GAN, LSGAN, and WGAN)
are too sensitive to training hyper-parameters and/or data augmentation [49].
The scores reported in Figure 7 are the best FID scores obtained using the
default hyper-parameters in the open-source library. We see from Figure 7 that
PAGER is least affected by the number of training samples. Even with the
number of training samples as small as 1K, PAGER has an FID score of 16.2
which is still better than some prior works’ original FID scores presented in
Table 1, such as WGAN-GP, VAE and GLO. Among prior works, GLANN is
less sensitive to training size but cannot be trained with less than 10K samples.

4.3.2 Comparison on Training Time

The training time of PAGER is compared with prior work in Table 2 on two
platforms.

• CPU (Intel Xeon 6130): The CPU training time of PAGER is slightly
more than 4 minutes, which is significantly less than all other methods
as shown in Table 2. The normalized CPU training times of various
DL-based methods against PAGER are visualized in the left subfigure
of Figure 8. PAGER is 11× faster than WGAN and 325× faster than
LSGAN.

• GPU (NVIDIA Tesla V100): The GPU training time of PAGER is
around 3 minutes, which is again less than all other methods as shown
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in Table 2. The normalized GPU run times of various methods are also
visualized in the right subfigure of Figure 8. PAGER is 9× faster than
WGAN and 48× faster than GLANN.

Table 2: Training time comparison.

Method CPU GPU

MM GAN [18] 93m14s 33m17s
LSGAN [50] 1426m23s 45m52s
WGAN [1] 48m11s 25m55s
WGAN-GP [19] 97m9s 34m7s

GLO [4] 1090m7s 139m18s
GLANN [23] 1096m24s 142m19s

GenHop [42] 6m12s N/A

PAGER (Ours) 4m23s 2m59s

4.3.3 Joint Consideration of FID Scores and Training Time

To provide a better picture of the tradeoff between training time and FID
score, we present both of these metrics in Figure 9. On this figure, points that
are closer to the bottom left are more desirable. As seen, PAGER significantly
outperforms prior art when considering FID scores and training time jointly.

Figure 8: Comparison of normalized training time, where each bar represents the training
time of a DL-based model corresponding to those shown in Table 2 and normalized by
training time of PAGER.
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Figure 9: Comparison of joint FID scores and GPU training time of PAGER with DL-based
related work in the generation of MNIST-like images. PAGER provides the best overall
performance since it is closest to the left-bottom corner.

4.4 Discussion

Based on the above experimental results, we can draw the following conclusions.

• Quality image generation. The FID scores of PAGER are comparable
with those of prior DL-based image generation techniques on common
datasets. This indicates that PAGER can generate images of similar
quality to prior art.

• Efficient training. PAGER can be trained in a fraction of the time
required by DL-based techniques. For example, our MNIST generative
model is trained in 4 minutes on a personal computer’s CPU while the
fastest prior work demands 25-minute training time on an industrial
GPU. The efficiency of PAGER is achieved by the development of a non-
iterative training scheme. CPU-based efficient training implies smaller
energy consumption and carbon footprint than GPU-based DL methods.
This is a major advantage of PAGER.

• Robustness to training sample size. PAGER can still yield images of
reasonable quality even when the number of training samples is drastically
reduced. For example, in Figure 10 we show that the number of training
samples can be reduced from 100K to 5K with only a negligible drop in
the generated image quality for the CelebA dataset.

• Improvements over prior SSL-based generative model - GenHop.
While PAGER is the second SSL-based generative model, it is worthwhile
to review its improvements over the prior SSL-based generative model
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known as GenHop [42]. First, the great majority of CelebA generated
samples by GenHop suffer from over-smoothing which blurs details
and even fades out the facial components in many samples as shown
in Figure 5. This is because GenHop heavily relies on LLE which
has a smoothing effect and limits synthesis diversity. On the other
hand, PAGER generates diverse samples with visible facial components.
Note that PAGER only uses LLE to add residuals to already generated
samples. It serves as a sharpening technique and does not affect synthesis
diversity. Second, GenHop limits the resolution of generated samples to
32×32. This prevents GenHop to be extendable to high-resolution image
generation or other generative applications like super-resolution. Third,
GenHop takes longer time that PAGER to train and it is not implemented
for GPU training. Fourth, GenHop only conducts unconditional image
generation while PAGER has further applications such as attribute-
guided image generation and super-resolution.

Figure 10: Comparison of PAGER’s FID scores with six training sample sizes for CelebA,
Fashion-MNIST and MNIST datasets. We see that the FID scores do not increase significantly
as the training samples number is as low as 5K for CelebA and 1K for MNIST and Fashion-
MNIST.

5 Comments on Extendability

In this section, we comment on another advantage of PAGER. That is, PAGER
can be easily tailored to other contexts without re-training. We elaborate on
three applications at the conceptual level.

• Super Resolution. PAGER’s two conditional image generation modules
(i.e., the resolution enhancer and the quality booster) can be directly used
for image super resolution with no additional training. These modules
enhance the image resolution from an arbitrary dimension 2d × 2d to
2d+k × 2d+k, where k is the number of consecutive resolution enhancer
and quality booster modules needed to achieve this task. Figure 11



22 Azizi and Kuo

Figure 11: Illustration of PAGER’s application in image super-resolution for CelebA images:
Two top rows starting from resolution 4× 4 (left block) and 8× 8 (right block) and ending at
resolution 32× 32. Two middle rows starting from resolution 8× 8 (left block) and 16× 16
(right block) and ending at resolution 64× 64. Two bottom rows starting from resolution
16× 16 (left block) and 32× 32 (right block) and ending at resolution 128× 128.

shows several examples starting from different resolutions and ending at
resolutions 32× 32, 64× 64 and 128× 128.

• Attribute-guided Face Image Generation. To generate human face
images with certain characteristics (e.g., a certain gender, hair color,
etc.) we partition the training data based on the underlying attributes
and construct subsets of data (Section 3.3). Each subset is used to
train a different core generator that represents the underlying attributes.
Examples of such attribute-guided face generation are presented in
Figure 3. The feasibility of training PAGER using a subset of training
data is a direct result of its robustness to the training dataset size. It was
empirically evaluated in Figure 10. The mean FID score of CelebA-like
image generation changes only 6% when the number of training samples
is reduced from 100K to as low as 5K.

• High-Resolution Image Generation. PAGER can be easily extended
to generate images of higher resolution. To achieve this objective, we can
have more resolution enhancer and quality booster units in cascade to
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(a) Resolution 128× 128

(b) Resolution 256× 256

Figure 12: Examples of generated CelebA-like images of resolution 128× 128 and 256× 256.

reach the desired resolution. We present several generated CelebA-like
samples of resolution 128× 128 and 256× 256 in Figure 12. This gives
some evidence that the current design of PAGER is extendable to higher
resolution generation. On the other hand, to generate results comparable
with state-of-the-art generative models like ProGAN [29], StyleGAN
[31–33], VQ-VAE-2 [54] or diffusion-based models [13, 21], we need to
further optimize our method. Further improvement on PAGER could
lead to enhanced quality of generated images in higher resolutions.

6 Conclusion and Future Work

A non-DL-based generative model for visual data generation called PAGER
was proposed in this work. PAGER adopts the successive subspace learning
framework to extract multi-scale features and learns unconditional and condi-
tional probability density functions of extracted features for image generation.
The unconditional probability model is used in the core generator module
to generate low-resolution images to control the model complexity. Two con-
ditional image generation modules, the resolution enhancer and the quality
booster, are used to enhance the resolution and quality of generated images
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progressively. PAGER is mathematically transparent due to its modular design.
We showed that PAGER can be trained in a fraction of the time required by
DL-based models. We also demonstrated PAGER’s generation quality as the
number of training samples decreases. We then showed the extendibility of
PAGER to image super resolution, attribute-guided face image generation,
and high resolution image generation.

The model size of PAGER is primarily determined by the sizes of the
quality booster. The number of parameters is about 46 million. The large
quality booster size is due to the use of LLE in predicting residual details.
We do not optimize the LLE component in the current implementation. As
a future topic, we would like to replace it with a lightweight counterpart for
model size reduction. For example, We might replace LLE with GMMs to
learn the distribution of residual textures, to reduce the model size significantly.
With these techniques, we aim to reduce to the model size to less than 10
million parameters.
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