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ABSTRACT

It is an established fact that malicious users in networks are able to
mislead other users since the presence of herding behaviors, which will
further amplify the hazards of these malicious behaviors. Due to the
aforementioned scenarios in many practical applications, the study of
decision fusion in the presence of such malicious users (often called
Byzantines) is receiving increasing attention. In this paper, we propose
an evolutionary game theoretical framework to model the human decision
making process, which is based on the statistical signal processing
framework. Specifically, we derive the analytical formulation of the
evolutionary dynamics and the corresponding numerical evolutionary
stable states, which can be utilized to infer the hazard of Byzantines
on the network. Based on the above model and the Markov nature
of the evolutionary dynamics, the fusion mechanism with maximum a
posteriori estimation is proposed. Finally, simulation experiments are
conducted to analyze the performance of the proposed human decision-
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making model and the effectiveness of the fusion mechanism under a
variety of parameter settings.

Keywords: Adversarial signal processing, Decision fusion, Byzantine nodes,
Graphical evolutionary game theory.

1 Introduction

Decision fusion in the presence of malicious users, often referred to as Byzan-
tines [26], has been a classical signal processing problem. In most scenarios, the
users on a multi-sensor network are required to make a local binary decision
report based on his/her observations and send it to the fusion center. The
fusion center fuses these reports according to some preferred fusion rule to
minimize the fusion error probability, while the byzantine users deliberately
provide false information to mislead the center. This scenario is first abstracted
from distributed spectrum sensing in cognitive radio networks [5], where the
fusion center infers the spectrum state from the data returned by sensors.

Much attention has been drawn to decision fusion with byzantine data due
to its practicality in many applications, including wireless sensor networks,
environmental monitoring, multimedia forensics, etc. Traditional decision
fusion problems mainly focus on a system with multiple sensors, which consists
entirely of machines. However, with the rapid development of human-computer
interaction technology, most systems now contain humans and are greatly
influenced by human factors. In emerging applications like [7], it is often
humans who become the most critical factor in decision-making, where humans
may serve as “sensors” to contribute information towards an inference task.
Especially due to the presence of byzantine data, the security issues of such
distributed networks become increasingly important and the distributed nature
of this system makes the network vulnerable to attacks. It is an established
fact that Byzantines in the networks are able to mislead ordinary users with
the help of herding behaviors [19], which will further amplify the hazards of
these malicious behaviors. A real-life example is quality evaluation for online
products, which, for consumers, mainly depends on the reviews (the reports in
the above description) given by previous buyers. The Byzantines who create
fake reviews could have a heavy impact on consumers’ shopping choices, which
will lead to the disruption of normal market competition and cause many
undesirable consequences [22]. Another example is the presidential election
in a democratic country, where voters often post their opinions or comments
on some social media, and the election team often develops corresponding
propaganda strategies based on the trend of public opinion. This process can
be very disruptive to the election team’s decision-making if there are hackers
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who belong to the opposing side or just want to interfere with the election
trying to post fake information and fuel the spread of rumors on the Internet.
In this case, it is very significant for the election team to be able to infer the
true will of the voters. Unlike simple sensors towards distributed inference,
humans are subjective in their decision-making process, which leaves a gap for
malicious users. Therefore, it is of great importance to model the behavior of
Byzantines and figure out the optimum fusion rule.

Early research on decision fusion did not take the Byzantines into consid-
eration, and the system local observation error is the main factor to affect the
fusion results. In this case, the works in [4] and [24] determined the optimum
algorithm to combine the local reports based on the Bayesian approach, which
is referred to as Chair-Varshney rule [18]. This lemma is intended to maximize
the detection probability under the constraint of the false alarm probability by
calculating the likelihood ratio test of the two hypotheses. After starting to
consider the presence of certain Byzantine users in the network, the authors
in [20] modeled the interplay between the Byzantines and the fusion center as
a zero-sum game. They proposed a simple but effective mitigation scheme to
identify the Byzantines by collecting reports from different time windows and
comprehensively analyzed the reports to assign a reputation measure, which is
used to isolate Byzantines whose reputation is below a certain threshold, also
is known as Hard Isolation. In this process, the real system status is inferred
using the K-out-of-N rule. Another mitigation strategy based on an adaptive
three-tier scheme was described in [25], where the observed behavior of the
users was compared with the expected behavior of honest users to identify the
Byzantines. Then the three-tier scheme estimated the behavioral parameters
of Byzantine users, which are used in the subsequent adaptive fusion rule. In
particular, the model in [25] can work for any fraction of Byzantines. But
it required very long states to observe, which limited its capabilities. [2]
and [1] used a game-theoretic framework to study the equilibrium point of
the strategy adopted by the attacker and the defender(FC). The work in [2]
proposed a Soft Isolation scheme to identify Byzantines based on [20], and
used game theory to verify the optimal strategy for Byzantines, where the
probability of lying (Pmal) is always equal to 1. In [12], a simplified and widely
adopted version of decision fusion was considered, which is a discrete model
contains only two system states 0 and 1. Besides, a decision fusion method
based on the maximum posterior probability criterion was proposed in [1],
and its performance with different types of prior knowledge was also analyzed.
And this work considered that each user was independent and did not have a
mutual influence relationship. Furthermore, in recent studies [6, 8, 28], this
statistical signal processing framework has been used to study human decision
making processes or some human-machine networks. For example, the work in
[6] used prospect Theoretic Utility theory to consider human behaviors in the
decision fusion process. And the work in [28] used this framework to describe
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a human-machine system that integrates human decisions with signals from
physical sensors.

Previous works have all assumed that users report their observations
independently and are not influenced by others’ decisions. However, things
can change when users are not simply sensors, but humans with autonomous
consciousness. With more information flooding into the population, individual
decisions now rarely depend solely on themselves, and the opinions of others
are playing an increasingly dominant role. In addition, this influence is not
a simple aggregation but depends on crowd interaction. At this point, the
relationship between users can be represented by a network and the impact
of user interaction on the final fusion result must be taken into account. But
few scholars have studied the corresponding influence on the decision fusion
results in this distributed detection system with Byzantines under complex
networks, such as social media networks. In the real world, when there are a
large number of talks about an event, an ordinary person is likely to follow
the crowd rather than make independent decisions, which causes him/her to
sometimes ignore their own information or preferences. This phenomenon is
also known as herding behavior [19]. In other words, the originally honest
users may be influenced by malicious users around and report false information
despite their original conclusions being correct, thus making the decision fusion
process more challenging for the Fusion Center (FC). For example, the work
in [27] quantified herding effects in crowd wisdom and in [29] illustrated with
real data that the herding effect exists in e-commerce evaluation systems. All
of these works have shown that it is necessary to consider herding effects in
distributed detection systems but it is a vacancy before our work in this paper.

To address this challenge, we study the interplay between different users
and analyze its impact on the fusion center. We use graphical evolutionary
game theory [10, 11] to analyze the microscopic interactions among users and
to study the impact of Byzantines on other users as well as the fusion center.
Graphical evolutionary game theory has been used to study herding behavior
in many scenarios, such as information diffusion over social networks [30],
crowd dynamic analysis in emergency evacuation [17], and antagonistic crowd
behaviors in cases of serious conflict [14]. The results in this literature suggest
that graphical evolutionary game theory is a powerful tool for studying the
impact of Byzantines on other users’ behavior in such distributed detection
problems.

Our contributions include:

1. Different from all prior works in decision fusion, we consider the scenario
where users may influence each other’s decisions and propose a graphical
evolutionary game theoretic framework to study their interactions. We
analyze the evolutionary dynamics and quantify the impact of Byzantines
on other users. In addition, we conducted a large number of experiments
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to analyze the influence of different parameters on the steady state of
the network and the influence of different attack strategies of malicious
users on the network in the presence of the herding effect.

2. We then study the impact of such “herding” behavior among users on
the fusion center and introduce a fusion method based on the maximum
a posterior probability (MAP) criterion. We compute the posterior
probabilities for malicious and ordinary users respectively and consider
the Markov nature of the reporting process for ordinary users. We
show that our proposed fusion mechanism is more effective in resisting
byzantine attacks than any existing ones in the presence of the herding
behavior.

A shorter conference version of this paper appeared in [16]. Most of the
analysis of user behavior in the initial paper was numerical and lacked further
theoretical investigations. This paper derives additional analytic formulations
and revises some issues of the model accordingly. For the fusion algorithm, the
initial paper approximated the values of MAP for each epoch with the results
at steady state, however in this version we exploit the Markov nature of the
evolutionary dynamics to obtain the exact values of these intermediate states
and also obtain better fusion results. Finally, in the experiment sections, this
paper analyses additional network structures (e.g. ER networks) and examines
the influences of a wider range of parameters on the results, including lying
probability for Byzantines, network size, and payoff matrix.

The rest of the paper is organized as follows. In Section 2, the problem
studied is formalized, adopting an evolutionary game theoretical framework. In
Section 3, we model the human decision making process and the corresponding
evolutionary stable states (ESSs), which could predict the dynamic changes
of the user’s decision and measure the hazard of Byzantines. In Section 4,
we propose a fusion mechanism to integrate the humans’ decision towards an
inference task based on the MAP criterion. We conduct simulation results in
Section 5 and conclude our work in Section 6.

2 Problem Formulation

In the rest of the paper, we specify the following rules for symbolic representa-
tion: capital letters will be used to denote random variables, while lowercase
letters will be used to represent corresponding instantiations, and bold in them
stands for vectors (Greek letters) or matrices (English letters), while ordinary
fonts are for scalars. In addition, the superscripts indicate the epoch, while
the subscripts give the corresponding user’s id.
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2.1 Decision Fusion Problem Formulation

The problem studied in this paper can be formulated into a scenario described
in Figure 1, which consists of three parts: the system state, the users’ network,
and the fusion center. In the settings considered in our work, the system
state is represented by a sequence of independent and identically distributed
(i.i.d.) random variables Θ = (Θ1,Θ2 . . .ΘT ). The t-th elements of Θt may
correspond to system states at different epochs. To simplify the problem, we
assume that Θ is a binary vector, which means that Θt ∈ {0, 1}. And let all
states are equiprobable P (Θt = 0) = P (Θt = 1) = 0.5, which is widely adopted
in previous research [1]. And θ = (θ1, θ2 . . . θT ) is a specific instantiation of Θ.

Figure 1: Decision fusion under adversarial conditions. The orange circles represent the
ordinary users who are affected by the surrounding Byzantines.

As shown in Figure 1, each user in the network makes an observation of the
system state at each epoch to obtain its local result, which can be expressed
as an observation random matrix U = {U t

i }, i = 1 . . . N, t = 1 . . . T and at t-th
epoch the i-th users’ observation random variable U t

i ∈ {0, 1}. We take the
system errors in the observation process into consideration, which means that
the user may observe a wrong system state (the user cannot know whether
the observed result is correct). In this paper, we assume that the system
error occurs with a fixed probability P (U t

i ̸= Θt
i) = ε, and the errors in each

observation are i.i.d.



Integrating Human Decisions in the Presence of Byzantines 7

Similarly, each user returns a report to the fusion center, which can be
expressed as a report random matrix R = {Rt

i} and r = {rti} is one of its
specific instantiations. In this step, the report returned to the center may be
intentionally modified with a fixed probability P (Rt

mal ̸= U t
mal) = Pmal by

Byzantines whose purpose is to mislead the center. Another case where the
returned report is different from the observed value is that an ordinary user is
affected by the aforementioned herding effect and makes a decision to lie. For
example, if a user finds that the reports of all surrounding users are different
from his/hers, he/she will doubt the authenticity of his/her observations and
may choose to modify his/her report to be consistent with those around
him/her for his/her own benefit.

The fusion center needs to perform decision fusion based on the reports
received, so as to infer the true system status as much as possible. For
the second case of reports modification mentioned above, we use graphical
evolutionary game theory to describe the interaction between ordinary users
and their neighbors, including ordinary and malicious ones.

Note that our model translates to many real-world scenarios, such as com-
munities of game or movie fans. The friendships in the community correspond
to our user network, while the quality of a product (recommendable or not)
can be taken as the system state Θt. Some malicious users’ comments will not
only directly affect the product rating, but will also amplify it through the
herding effect. In order to make the community healthy, the platform usually
tries to identify and mitigate such impacts, which corresponds to the behavior
of the fusion center.

2.2 Graphical Evolutionary Game Theory

Generally, the graphical evolutionary game theory contains the following basic
elements: users, focal users, graph structure, strategy, fitness, time units, and
evolutionary stable states (ESS).

2.2.1 Users and Graph Structure

The user network is represented using an undirected and connected graph,
where each node represents a user, and each edge represents the mutual
relationship between a pair of users. The graph consists of ordinary users,
who adopt a specific strategy updating rule, and Byzantines, who use a fixed
probability attack strategy. For the convenience of math derivation, we use β
to represent the ratio of Byzantines to ordinary users.
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2.2.2 Strategies

Different strategies are used for ordinary users and malicious users. For
ordinary users, each user has two strategies to choose from when reporting
to FC: to lie (Sl) or to be honest (Sn). Specifically, under the definition of
our binary system state, adopting the lying strategy means user i’s reported
value rti = ūt

i where ·̄ is the NOT logic operator; while adopting the Sn

strategy means rti = ut
i and user i reports his/her original observation to the

fusion center. And he/she may change his/her strategy at any epoch. Let ptl
represents the percentage of ordinary users who adopt the Sl strategy. Thus,
the percentage of ordinary users who adopt the Sn strategy is (1 − ptl). To
avoid redundancy, we abbreviate it to pl before Section 4 because there is no
discussion in the time dimension. For Byzantines, we assume that there is a
fixed probability Pmal to adopt the Sl strategy and the malicious behaviors in
each reporting process are i.i.d.

Due to the existence of system error, a user’s reported value is not only
related to his/her own strategy but also related to whether there are errors
(ut

i ̸= θt) in its observation. Considering both system errors and users’ possible
lying behavior, we observe the following change in users’ reported values, as
illustrated in Figure 2.

Figure 2: An illustration of how the system error influences the users’ decisions.

Among the k neighbors of a focal user, assume kl of them use strategy Sl

and flip their observation results, and kn = k − kl they choose strategy Sn

and report their observations to the fusion center. Given the system error
probability ε, let kSn be the number of neighbors whose reported values are the
same as the true system state, and kSl = k − kSn is the number of neighbors
whose reported values are different from the true system state. Then, we have

kSl = (1− ε)kl + εkn, (1)

kSn = (1− ε)kn + εkl. (2)
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2.2.3 Fitness

In EGT, the fitness represents the utility of the players. The strategy of the
players who have higher fitness tends to have more advantage to be adopted.
Generally, the evolutionary game theory defines users’ fitness as follows

π = (1− α)B + αU, (3)

where B is the baseline fitness. The baseline fitness B represents the player’s
inherent property. For example, if a player is less susceptible to others, then
his/her baseline fitness will also be greater. In homogeneous networks, the
baseline is considered to be identical for all users, and we let B = 1 in our work.
α is a weak selection coefficient. In the literature of graphical evolutionary
game theory [3, 9, 15], α is usually considered to be very small and we also
make this assumption in our work. U is the payoff matrix quantifying the
payoff users receive by interacting with their neighbors. In our work, we
assume that users do not know their neighbors’ adopted strategies but can
observe their neighbors’ reported values. So here we define two symbols: Ss

stands for the central user’s and neighbor’s report values are the same in the
last epoch; on the contrary, Sd stands for different. Depending on whether
their reported values are the same and the focal user’s strategy adopted in the
last epoch, he/she receives different payoffs as shown below

Ss Sd

Sl

Sn

(
uls uld

uns und

)
.

(4)

The evolutionary game theory is similar to the traditional game theory in the
interaction of players and the getting of payoffs. In Equation (4), at epoch t,
when user i adopts strategy Sl and rti = ūt

i, if neighbor j’s reported value is
the same as his/her flipped observation, that is, rti = rtj , then user i receives
payoff uls during this interaction with user j; while when rti ̸= rtj user i receives
payoff uld during this interaction. Similarly, when user i adopts strategy Sn

and reports the original observation, he/she receives payoff uns and und when
rti = rtj and rti ≠ rtj , respectively. Specifically, we assume that the payoffs
of ordinary users must satisfy the following conditions: uns > uls/und > uld

in Equation (4). The payoff matrix will be applied between the focal user
and all his/her neighbors. And each of these edges will help the focal user
obtains the payoff. Note that the payoff here is not limited to money, but may
also be something abstract as a reputation value (number of followers, etc.).
We calculate the total fitness of the user in one time slot, and update user’s
strategy afterwards. Considering the herding effect, we believe the benefit
of keeping consistent with others without lying uns is the greatest choice for
ordinary users, and the benefit uld of being inconsistent with others by lying
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is the smallest. And the value of uls and und are between the above values,
while the specific relation is related to the actual situation.

Given the above definition, the next step is to define the fitness function.
Note that users do not know whether their observations include system errors.
Therefore, we first consider the scenario where user i’s observation is error
free and is the same as the true system state, that is, ut

i = θt. Therefore, if
user i adopts strategy Sl and rti = ūt

i ≠ θt, then user i receives payoff uld

when interacting with each of the kSn neighbors whose reported values are the
same as θt, and user i receives payoff uls when interacting with each of the
kSl neighbors whose reported values are different from θt. Therefore, user i’s
fitness is Equation (5). Similarly, when user i adopts strategy Sn and reports
the original observation with rti = ut

i = θt, and his/her fitness is Equation (6).
In the second scenario, user i’s observation includes error and ut

i = θ̄t. Using
the same analysis as above, user i’s fitness when adopting strategy Sl and Sn

are Equations (7) and (8), respectively.
As shown in Figure 3, assuming that the system state is H0, there are two

scenarios regarding the state observed by the user: Scenario A is where his/her
observation is correct (H0), and Scenario B is the opposite (H1). When the
focal user observes H0 and chooses Sn, he/she will gain a payoff uns interacting
with the neighbor who sends a report of H0 and gain a payoff und interacting
with the neighbor who sends a report of H1. By contrast, if he/she observes
H1 and chooses Sn, then the aforementioned discussion of payoff would be the
opposite.

Figure 3: Calculation of the fitness π in two scenarios (with or without system error).
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Therefore, we divide the scenarios into two types according to whether
system error occurs and calculate the fitness of users who adopt the strategy
Sl and the strategy Sn when system errors exist and the fitness of users who
adopt the strategy Sl and the strategy Sn when the observation is error-free
respectively. The above process can be derived as follows:

• Scenario A: observation is correct

πA
l = 1− α+ α

[
kSl uls +

(
k − kSl

)
uld

]
, (5)

πA
n = 1− α+ α

[
kSnuns +

(
k − kSn

)
und

]
, (6)

• Scenario B: observation is incorrect

πB
l = 1− α+ α

[
kSnuls +

(
k − kSn

)
uld

]
, (7)

πB
n = 1− α+ α

[
kSl uns +

(
k − kSl

)
und

]
. (8)

2.2.4 Strategy Update Rule

In the long iteration process, ordinary users may be affected by their neighbors
to update their strategies. In evolutionary game theory, there are three most
prevalent strategy update rules, namely birth-death (BD), death-birth (DB),
and imitation (IM). Same as [3], we adopt the Death-Birth update rule and
adjust it to our scenario. For the DB strategy update rule, a random player
is chosen to abandon his/her current strategy (Death process). Then, the
chosen player adopts one of his/her neighbors’ strategies with the probability
being proportional to their fitness (Birth process). In these settings, users can
only observe others’ reported values but not their strategies. Therefore, in our
research, each user can only infer the strategies adopted by others through
comprehensively considering the reports of others and their own observations.
The specific details of this process will be elaborated on in Section 3. And the
analysis of the other update rules is similar and omitted here.

2.2.5 ESS

ESS is defined as an evolutionary stable state [23]. After the evolutionary
process reaches ESS, even if some mutant populations appear (mutants can be
understood as decision-makers taking new different strategies), the system can
automatically eliminate these small disturbances and return to the stable state.
At the ESS, the evolution dynamics satisfy ṗl = 0, that is, the proportion of
ordinary users with strategy Sl does not change. Let (p∗l , p

∗
n) be the percentage

of users adopting strategy Sl and Sn, respectively, at the ESS.
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3 Evolutionary Dynamics of the User Network with Byzantines

In this section, we will find the dynamics of lying strategy proportion pl in
users’ network and the corresponding evolutionary stable states (ESS). The
obtained evolutionary dynamic equation and ESS link the user’s strategy-
making process and the final evolutionary stable state with the user’s payoff
matrix, system error, and proportion of Byzantines.

The study of the dynamic evolution process in this section is based on the
following two assumptions: (a) each user does not know whether other users
are Byzantines and (b) the user only knows all of his/her neighbors’ previous
reports.

At each epoch during the evolution process, each ordinary user in the
network will be the focal user to update the strategy. According to the DB
update rule, the focal user will adopt the strategy of its neighbors, and the
probability of adopting is proportional to the users’ fitness. However, since
the user does not know whether there is an observation error, it has no way
of knowing whether the neighbor has an observation error. What needs to
be clarified is that the user’s fitness calculation is performed locally based on
his/her observations. Specifically, each user believes that his/her observation is
correct and uses it as a reference to calculate the fitness of their neighbors. In
the fitness calculation process of the focal user, the neighbors whose reports are
consistent with his/her own observation results are considered to have adopted
the strategy Sn, and neighbors whose reports inconsistent are considered to
have adopted strategy Sl.

As shown in the left part of Figure 4, suppose the focal user has no error
in his/her observation H0 (Scenario A) at the previous epoch and adopts the
Sn strategy (reported as H0). At this point, the user who reported as H1 in
his/her neighbors will be regarded as adopting the Sl strategy by the focal
user. It is possible for the focal user to switch from the Sn to the Sl strategy
by the influence of these users, as shown in the right part of Figure 4. However,
if the focal user has errors in his/her observation (Scenario B), those who
report as H0 in his/her view then are instead the users adopting Sl, which
makes everything the opposite.

According to the DB update rule, the probability of users changing to a
new strategy is proportional to the fitness of all users adopting that strategy.
To be elaborated, the probability of the user strategy changing from Sn to Sl

will be expressed as follows: the numerators are the sum of the fitness of the
neighbors adopting Sl, and the denominators are the sum of the fitness of all
neighbors. Therefore, the probability that the central user changes his/her
strategy from Sn to Sl is as follows:
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Figure 4: An example of the strategy updating process for the central user who has a correct
observation and adopts strategy Sl.

• Scenario A: Focal user has no observation error

PA
n→l =

kl(1− ε) · πA
l + knε · πB

n[
kn(1− ε) · πA

n + εkl · πB
l

]
+
[
kl(1− ε) · πA

l + εkn · πB
n

] . (9)

• Scenario B: Focal user has observation error

PB
n→l =

kn(1− ε) · πA
n + klε · πB

l[
kn(1− ε) · πA

n + εkl · πB
l

]
+
[
kl(1− ε) · πA

l + εkn · πB
n

] . (10)

Pn→l = (1− ε) · PA
n→l + ε · PB

n→l

=
ε ·
[
kn(1− ε) · πA

n + klε · πB
l

]
+ (1− ε) ·

[
kl(1− ε) · πA

l + knε · πB
n

][
kn(1− ε) · πA

n + εkl · πB
l

]
+
[
kl(1− ε) · πA

l + εkn · πB
n

]
=

(
2(1− ε)ε+ (1− 2ε)2

kl
k

)
·
1 + α

(
auns+bund+culs+duld

(1−2ε)2kl+2ε(1−ε)k − 1

)
1 + α

(
euns+fund+guls+huld

k − 1
) (11)

where the forms of a, b, c, d, e, f, g, h can be viewed in Equation (A.18)

Combining Equations (9) and (10), we yields the probability that any
ordinary user in the network changes strategy from Sn to Sl, which is shown as
Equation (11) at the bottom of the next page. And taking Equations (5)–(8)
into the formula, we could simplify it to derive the second equation. Besides,
in the last equation, we invoke the fact that 1+µx

1+νx = 1 + (µ − ν)x + O(x2)
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for small x. And because α is a weak selection coefficient, which is a small
quantity, we will omit the O(x2) term in the following. And we replaced some
coefficients with letters to express conciseness.

Note that in Equations (9) and (10), we need to know kl and kn, the number
of neighbors adopting strategy Sl and Sn, respectively. Assume an ordinary
user has k neighbors, which contains ko ordinary neighbors and kb byzantine
neighbors. From Section 2, we assume that the ratio of Byzantines to ordinary
users is β, and we assume that byzantine users are uniformly distributed
throughout the entire network. Therefore, we use the approximation kb =

β
1+βk

in the following analysis. Among the ko ordinary neighbors, kol of them adopt
strategy Sl and the rest kon = ko − kol adopt strategy Sn. Note that pl is
the percentage of ordinary users adopting strategy Sl among all ordinary
users. In summary, among the ko ordinary neighbors and kb byzantines,
kl = kol + kbl = kol + βkoPmal of them adopt strategy Sl and kn = k − kl of
them adopt strategy Sn.

Afterward, we will derive the dynamics of the proportion of liars for ordinary
users based on the probability obtained above. In our model, at each epoch,
all users will determine whether they need to update their strategies through
all the reports they received at the last epoch. Therefore, each user may have
an influence on ṗl. First, we calculate the contribution of the i-th ordinary
user to ṗl. For the i-th user, the probability that he/she adopted the strategy
Sn at the last epoch is (1− pl) and the probability that he/she changes from
the strategy Sn to the strategy Sl is Pn→l (koi, koli). Assume that there are N
users in the users’ network, where the number of ordinary users is No and the
malicious user is Nb. At this time, the number of ordinary users who adopt
the strategy Sl will increase by 1, and pl will increase by 1/No, which happens
with the probability as follow

P
(
∆pli =

1

No

)
= (1− pl)Pn→l (koi, kli) , (12)

where ∆ indicates the increment. With a similar argument as above, one can
compute the probability that the i-th user changes its strategy from Sl to Sn.
We thus obtain

P
(
∆pli = − 1

No

)
= pl(1− Pn→l (koi, kli)), (13)

Hence, we yield the contribution of the i-th ordinary user to expected change
pl

ṗli =
1

No
(1− pl)Pn→l (koi, kli)−

1

No
pl (1− Pn→l (koi, kli)) , (14)
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Since here it is all for each epoch t, the time axis superscript t is omitted. And
the dynamic of pl is equal to the sum of all users’ contributions

ṗl =

No∑
i=1

1

No
(1− pl)Pn→l (koi, kli)−

1

No
pl (1− Pn→l (koi, kli)) ,

= (1− pl)E [Pn→l (ko, kol)])− pl(1− E [Pn→l (ko, kol)]).

(15)

where E [Pn→l (ko, kol)]) represents the expectation of Equation (11) which
will be calculated in the following. And we assume that N0 is sufficiently large
since the number of users is usually huge for social networks.

Therefore, given ko, kol is a binomial random variable with the probability
mass function

θ (ko, kol) =

(
ko
kol

)
pkol

l (1− pl)
ko−kol . (16)

and we have the following:

E [kol|ko] = kopl,

E
[
k2ol|ko

]
= k2op

2
l − kop

2
l + kopl,

E
[
k3ol|ko

]
= ko(ko − 1)(ko − 2)p3l + 3(ko − 1)kop

2
l + kopl.

(17)

The neighbor nodes of ordinary users who adopt the strategy Sl can be
divided into two types: one is the Byzantines and the number is kbl; the
other is the ordinary people who use the strategy Sl, and the number is kol.
Obviously kl = kbl + kol. We assume that the number of ordinary users in its
neighbors is k, and the proportion of ordinary users to Byzantines is β, thus
kbl = β · k. Since the proportion of ordinary users using the strategy Sl is pl
in the entire network, each ordinary neighbor has a probability pl of adopting
strategy Sl.

Summarizing the above analysis, taking the expectation of Equation (11)
(note that k, ko are also random variables and we need to take the expectation
of it further) , we can get the expression of E [Pn→l (ko, kol)]. In a non-uniform
network structure, we need to analyze the network structure first, and then
calculate the average value of the relevant degree parameters of the network.
Substituting the expressions of E [Pn→l (ko, kol)] into Equation (15), we thus
obtain the expression in ṗl as Equation (19) at the bottom of the next page.

It is worth noting that Equation (19) is an important conclusion of this
paper, which shows the dynamic changes of the network. Under different
parameter settings, this formula could directly predict the next trend of the
network. Therefore, the value of pl can be obtained by the difference formula

pt+1
l = ptl + ṗtl , ∀t = 1, 2 . . . (18)

which is the proportion of liars pl in the ordinary users over epoch t.
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Through the above analysis, we have obtained the most critical parameter
pl and its dynamics in the model, which means that we could predict the harm
caused by malicious users to ordinary users in the evolution process. Due to
the influence of group effects, their behavior made them unconsciously become
‘Byzantines’. Then let ṗl = 0 to get the proportion of ordinary users who use
the strategy Sl when the user network is in a stable state (ESS) using Wolfram
Mathematica 12.1 software. And we will mainly analyze the numerical solution
of this part in the simulation section. It can be seen that the dynamics of pl
is a cubic polynomial with respect to pl. Therefore ESS has three roots, but
in this scenario, two of the roots are always imaginary numbers, so only one
real root is retained. The solution of ESS is the expected proportion of users
who lie in the network, which will be fixed at a certain proportion when it
stabilizes over time.

After studying the impact of malicious users on the network in the presence
of the herding effect, we can use the model to better study the adversarial
strategies in such multi-agent systems, such as an effective fusion mechanism
to integrate human decisions for fusion center.

ṗl = (1− pl)E [Pn→l (ko, kol)])− pl(1− E [Pn→l (ko, kol)])

= −pl + 2(1− ε)ε+ (1− 2ε)2
pl + βPmal

1 + β
+ α(1− 2ε)2

·
[

A∆

(1 + β)3

(
(2

1

ko
− 3 + ko)p

3
l + 3(− 1

ko
+ koβPmal + 1− βPmal)p

2
l

+ (
1

ko
+ 3koβ

2P 2
mal + 3βPmal)pl + koβ

3P 3
mal

)
+

B∆

(1 + β)2

(
(−1 + ko)p

2
l + (1 + 2koβPmal)pl + koβ

2P 2
mal

)
+

C∆

1 + β

(
kopl + koβPmal

)
+D∆

]
+O(α2),

(19)

where

A∆ = (1− 2ε)2 ∆, B∆ = −2
(
1− 2ε+ 2ε2

)
∆−∆l + 4(1− ε)ε∆n,

C∆ =
(
1− ε+ ε2

)
∆+∆l − 4(1− ε)ε∆n, D∆ = (1− ε)ε∆n,

∆ = uld − uls + und − uns, ∆l = uls − und, ∆n = und − uns.

4 Decision Fusion in the Affected Network by Byzantines

In this section, we derive the optimal fusion rule which takes into account the
correlation between users’ reports based on the evolutionary game theoretical
analysis on the harm of the Byzantines. Previous works [1, 16] have considered
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each user’s report independently when calculating the posterior probability.
Instead, we consider the influence of a user’s surroundings on his decision
making in an asynchronous manner and introduce relevant variables in the time
dimension to rederive the maximum posterior probability fusion mechanism.

4.1 The Optimum Decision Rule

The optimum decision rule by adopting the maximum a posterior probability
criterion has been first proposed in [1]. We also conduct MAP criterion while
considering that ordinary users may change their strategies due to the herding
effect and behave like a malicious user, who will send rti ̸= ut

i. Given the
received reports vector r = {rti}, i = 1 . . . N, t = 1 . . . T , the optimum decision
fusion rule θ∗ minimizing the error probability is shown as follows

θ∗ = argmax
θ

P (θ|r) , (20)

By applying the Bayes rule and using the fact that all state sequences have
equal probabilities, we get

θ∗ = argmax
θ

P (r|θ) , (21)

Similar to [1], let ξ = (ξ1, ξ2 . . . ξN ) be a binary random sequence in which
ξi = 0 if node i is an ordinary user, and ξi = 1 when user i is a byzantine user,
and let P (ξ) be the probability distribution of Byzantines across the entire
network. We expand the equation of θ∗ on ξ as follows

θ∗ = argmax
θ

∑
ξ

P (r | θ, ξ)P (ξ) , (22)

4.2 Measuring the Hazard of Byzantines

In this subsection, we calculate the posterior probability P (r | θ, ξ) using
the evolutionary game theoretical model proposed in Sections 2 and 3. Note
that in the scenario this paper considers, Byzantines can not only directly
compromise the information fusion process by submitting false reports, but
amplify their attack by misleading the decisions of ordinary users around them
in the next round thanks to the herding effect. Since the two groups have
different update strategies, they need to be calculated separately.

4.2.1 The Malicious Users

We measure the direct hazard to FC of the false reports submitted by the
Byzantines here. As described, it is assumed that the reports sent by the
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Byzantines are independent of each other and affected only by the real system
state, observation error, and the attack probability Pmal. Thus, Equation (22)
can be expressed as follows

θ∗ = argmax
θ

∑
ξ

(
N∏
i=1

T∏
t=1

P
(
rti |θt, ξi

))
P (ξ) . (23)

Combined with the system error ε and malicious users’ probability of lying
is Pmal, the probability δ that the FC receives a wrong report is

δ = ε (1− Pmal) + (1− ε)Pmal. (24)

In order to go on, we conclude the value of P (rti |θt, ξi) in two values
according to whether the report is consistent with the real system state θt

P
(
rti |θt, ξi = 1

)
=

{
δ with error,
1− δ error free.

(25)

4.2.2 The Ordinary Users

Note that with the existence of herding effect and the mutual influence between
ordinary users, users’ reports are not independent which is different from the
previous works in [1, 16]. To elaborate, since the user’s decision is only
related to the reports of the surrounding users at the last epoch and their own
observed system status at this epoch. It can be seen that the process is Markov.
Considering the Markov property of the stochastic process, P (r | θ, ξ) can be
expanded in the time dimension to

P (r | θ, ξ) =
T∏

t=1

P
(
rt+1 | rt, θt, ξ

)
P
(
r1 | θ1, ξ

)
(26)

where rt represents the report vector of all users at epoch t. This formula
leads to two situations from the epoch t: At the initial epoch, since there are
no previous reports, the reports sent by ordinary users are only related to their
observed system status. At non-initial epochs, in addition to their observations,
ordinary users will also compare the reports of the surrounding users with their
last observations to infer the decision-making strategy of surrounding users.
Finally, the ordinary users comprehensively consider these two aspects to make
their decision on what to report at this epoch. The detailed decision-making
process of the ordinary user has been described in Section 2. According to
whether epoch t is the initial epoch, the state transition probability of ordinary
users can be divided into the following two situations:
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At the initial epoch, ordinary users will not be affected by surrounding
users and depend on whether there is a systematic error ε in the observation
at this epoch

P
(
r1i |ξi = 0, θ1

)
=

{
ε with error,
1− ε error free.

(27)

At non-initial epochs, ordinary users are affected by the lying users around.
Specifically, ordinary users may use lying strategies to achieve consistency
with those around them, which is also known as the herding effect. In this
case, whether the ordinary user’s report is consistent with the real system
state depends on two factors: the systematic error in the observation, and the
strategy he/she adopted. Therefore, at epoch t, the probability that the FC
receives a wrong report from an ordinary user is:

γt = (1− ε)ptl + ε(1− ptl). (28)

where the calculation of specific values ptl can be obtained from Section 2.
In this way, we can derive the posterior probability of sending reports from
the ordinary users at a non-initial epoch t according to whether the report is
consistent with the real system state θt

P
(
rt | rt−1, θt, ξi = 0

)
=

{
γt with error,
1− γt error free.

(29)

Finally, we merge the calculations of the two types of users and introduce
a binary hidden matrix QN×T . If qi(t) = 1, it represents that the report of
the i-th user at epoch t is consistent with the real state of the system at epoch
t, that is rti = θt. Conversely, if qi(t) = 0, it means that rti ̸= θt. Combined
with the above discussion, the optimum decision rule in this scenario can be
written as:

θ∗ = argmax
θ

∑
ξ

T∏
t=1

 ∏
i:ξi=1

(1− δ)qi(t)δ1−qi(t)
∏

i:ξi=0

(1− γt)qi(t)(γt)1−qi(t)

P (ξ) ,

(30)
Same as in [1], we consider the distribution of Byzantines and find the

optimal fusion mechanism accordingly. To simplify the analysis, we assume
the FC knows the expected fraction of Byzantines users in the network. Let’s
first take an assistant function f(ξi):

f(ξi) =

T∏
t=1

 ∏
i:ξi=1

(1− δ)qi(t)δ1−qi(t)
∏

i:ξi=0

(1− γt)qi(t)(γt)1−qi(t)


=

{∏T
t=1(1− δ)qi(t)δ1−qi(t), ξi = 1∏T
t=1(1− γt)qi(t)(γt)1−qi(t), ξi = 0

(31)
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Noticing that ξis are i.i.d, we can get the probability that a user is malicious
is β

1+β and the probability that a user is ordinary is 1
1+β . Then we can obtain

the expectation for each f(ξi):

E[f(ξi)] =
β

1 + β

T∏
t=1

(1− δ)qi(t)δ1−qi(t) +
1

1 + β

T∏
t=1

(1− γt)qi(t)(γt)1−qi(t) (32)

Exploiting the property of expectation of i.i.d variables, we can obtain:

E[f(ξ1), f(ξ2), . . . , f(ξN )] =

N∏
i=1

E[f(ξi)] (33)

Taking Equations (32) and (33) together we can rewrite Equation (30) as:

θ∗ = argmax
θ

N∏
i=1

(
β

1 + β

T∏
t=1

(1− δ)qi(t)δ1−qi(t) +
1

1 + β

T∏
t=1

(1− γt)qi(t)(γt)1−qi(t)

)
.

(34)

Other discussions on the distribution of Byzantines are similar to those
in [1], so we will not repeat them here. Besides, since the complexity of the
algorithm increases exponentially with time T , we calculate the total time
separately according to the period of every τ epoch, so that it can also become
a real-time processing algorithm. In addition, due to the large scale of the
general social network, when the number of users is large, the algorithm may
have computational accuracy problems because the posterior probability may
be very small. It is only necessary to nest the logarithmic operation in the
outermost layer of the calculation by computer. Given the above, we yield the
optimum decision fusion rule in the affected network by Byzantines due to
herding behaviors.

5 Simulation Results

In this section, our simulation is divided into two parts. First, we verify
and analyze the theoretical analysis in Section 3 to measure the hazard of
Byzantines. In addition, we conduct a large number of experiments to analyze
the influence of different parameters on the steady state of the network and
the influence of different attack strategies of malicious users on the network
in the presence of herding effect. Then we use the analytical results of the
proposed fusion method in Section 4 to perform decision fusion on a random
network that takes herding behavior into consideration.
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5.1 Evolutionary Dynamics of Byzantine Users

We first verify the effectiveness of the theoretical analysis on the hazards
of Byzantine users through Monte Carlo simulation. Three commonly used
network structures are considered in the experiment: the uniform degree
(regular) network, the Barabási-Albert (BA) scale-free network, and Erdős-
Rényi (ER) network. The default parameters set in our simulations are as
follows: the size of the network is 1000, the degree for regular networks
and average degree for scale-free networks and ER networks are k = 30,
and the weak selection coefficient α is 0.001. The payoff matrix is set to
uns = 0.8, und = 0.6, uls = 0.6, uld = 0.4. And the initial lying proportion pl is
set to 0. For each type of network, 5 graphs are randomly generated, and 128
simulations are conducted for each graph. Besides, the number of iterations
for graphical EGT is set to 300.

Figure 5: The evolutionary dynamics of pl on regular networks (k̄ = 30) with (a) different
system errors ε = 0.1, 0.15, 0.20, and (b) different percentages of byzantines β = 0.3, 0.5, 0.8
and on (c) BA scale-free networks (k̄ = 30) and (d) ER random networks (k̄ = 30).
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Figure 5 shows the evolutionary dynamics of pl on the regular network where
all users adopt the DB update rule. We can see that the theoretical results
can fit well with simulation results under different experimental parameter
settings, and the number of ordinary users adopting the Sl strategy gradually
increases to a stable value (ESS) over time due to the influence of byzantine
users. Besides, we evaluate the performance under different parameters on
networks. Figure 5(a) shows that as the system observation error increases,
the number of users who adopt the two strategies in the group tends to be
similar, that is, the proportion of users who adopt the Sl strategy tends to
be 0.5. Figure 5(b) shows that as the number of Byzantines increases, the
number of users adopting Sl strategies will also increase. These findings are
also reflected in Figure 6.

Figure 5(c) and (d) show the evolutionary dynamics of pl on the BA scale-
free network and the ER network, and the parameter settings are consistent

Figure 6: The ESS (p∗l ) on regular networks (k̄ = 30) with (a) different system errors
ε = 0.1, 0.15, 0.20, (b) different payoff matrix setting, (c) different percentages of byzantines
β = 0.4, 0.6, 0.8, and (d) different users network size.
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with (b). It can be seen that (b), (c), and (d) have almost the same results,
which indicates the network structure has little effect on our simulation results
on pl. Therefore, without loss of generality, we conduct the experiments only
on regular networks in the rest of this section.

Then we evaluate the ESS of pl under different parameters respectively,
including system error, payoff matrix, the proportion of Byzantines on the
ordinary user group, and the users’ network size. From Figure 6(a), we can
conclude that as the system error rate increases, the proportion of ordinary
users influenced by Byzantines (p∗l ) gradually approaches 0.5. This is due to
the fact that users cannot make any meaningful decisions when the system
error is too large and thus adopt a strategy similar to “tossing a coin”. In
Figure 6(b), we set up three different payoff matrices, and believe that the
payoffs of ordinary users satisfy the following conditions: uns > uls/und > uld

in Equation (4). The implication is that the benefit of keeping consistent with
others without lying uns is the greatest for ordinary users, and the benefit of
being inconsistent with others by lying uld is the smallest. Then we discuss
the relationship between the remaining uls and und, and set up three different
sets of payoff matrices: PM1 uns = 0.8, uls = 0.6, und = 0.6, uld = 0.4; PM2
uns = 0.8, uls = 0.5, und = 0.7, uld = 0.4; PM3 uns = 0.8, uls = 0.7, und =
0.5, uld = 0.4. It can be seen from Figure 6(b) that there is very little difference
between the results of three different payoff matrices when uns > uls/und > uld

is satisfied. In this way, it can be shown that the prediction result of our model
is robust to the payoff matrix parameter when the relationship is satisfied, so
it can be roughly estimated when setting the parameters.

Notice that the result of PM3 is slightly larger than PM1 and PM2 if
we take a closer look, and this is because the uls of PM3 is relatively large.
From Figure 6(c), it can be seen that when the system error rate is small, the
number of Byzantines has a greater impact on the network and vice versa,
which is also consistent with the conclusions of previous experiments. Finally,
we study the influence of different network sizes on the model and the results
are shown in Figure 6(d), where N is the total number of users of the network
size. And here it is assumed that the degree of the network has a relationship
with the total number of users in the network, where k = 0.05N . From Figure
6(d), we also find that the network size has little effect on the model except
for some minor deviations between the theoretical and simulation results when
the size of the network is small.

Figure 7 shows the ESS of pl on the regular network which reflects the
hazards on the network by malicious users. First, we can see that the theoretical
results can fit well with the simulation results under different experimental
parameter settings. Because at the initial epoch the proportion of liars pl is
set to 0, it can be seen from the plotted trend in Figure 7 that regardless of
how the attack strategy varies over a fairly large range, the average user will
still be influenced by the malicious node to adopt a lying strategy. Figure
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Figure 7: The hazard (p∗l ) on regular networks (k̄ = 30) with (a) different attack strategies
on lying probability Pmal = 0.25, 0.5, 1.0, and (b) different attack strategies on proportion
of byzantines and ordinary users β = 0.2, 0.4, 0.8.

7(a) also shows that the trend of steady-state pl with respect to β varies
with Pmal value. Specifically, when the lying probability of malicious users
Pmal > 0.5, the proportion of lying users pl in the ESS will increase with
the increase of malicious users. Conversely, when the lying probability of
a malicious user Pmal < 0.5, the number of lying users in the network will
decrease as the number of malicious users increases. When the lying probability
of a malicious user Pmal = 0.5, no matter how the number of malicious users
changes, approximately there will always be a half-to-halt situation between
the lying user and the honest user in the network. From Figure 7(b), it
can be seen that as the lying probability Pmal of malicious users increases,
the proportion of lying users pl will increase regardless of the proportion of
malicious users β. Meanwhile, comparing the slopes of the plots in Figure 7(b),
we can conclude that when the β increases, the probability of lying caused by
the attack becomes more severe as the Pmal increases.

In addition, the experimental results show that Byzantines are very harmful
to the network. When the system error is small, it takes only a small proportion
of attackers to affect the majority of ordinary users, which is also consistent
with the conclusion in [30]. Meanwhile, the increase in system error rate will
mitigate this phenomenon, but the proportion of ordinary users will still be
affected by more than 50%, hence it is valuable to study effective methods to
resist byzantine attacks.

5.2 Decision Fusion with Herding Behavior

After validating the correctness of our analysis in our model in Section 3, we
further use this model to verify the performance of the proposed decision fusion
algorithm. The default experimental settings are the same as before, and since
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it was demonstrated in the last subsection that the graph structure has little
effect on the network, for simplicity we use a random uniform network to
perform the following fusion experiments. Besides, we still run 300 iterations
each trial, but the fusion time window T is 6, and the average value of the fusion
accuracy rate is obtained by repeating 1000 trials in the Monte Carlo method.

In the presence of herding behavior, we first compare the accuracy of the
existing commonly used fusion strategy [1] with our newly proposed fusion
strategy. Previous works have shown that Pmal = 1 is a dominant strategy [21]
for Byzantines in game theory framework experiments [13], so we have adopted
it as well in our experiments. In addition, we consider two scenarios to compare
our work and the previous works: in Scenario 1 (SC1) ordinary users will always
submit honest reports; Scenario 2 (SC2) is the main study object of this paper,
where we introduce the herding effect, a phenomenon in which users’ decisions
are affected by the other users around them. Comparing the accuracy of the
OPT method in [1] and the EGTM-DFB method in different scenes, we prove
the effectiveness of the proposed EGTM-DFB method proposed in this paper.

From Tables 1 and 2, we can see that the original method (OPT) proposed in
[1] had remarkable fusion accuracy when ordinary users were not influenced by
others and submitted their observations independently in scenario (SC1), but it
fails to get accurate estimates of the system states in SC2, which indicates that
the erosion of the herding effect on the average user will significantly reduce
the accuracy of the OPT method. The proposed fusion strategy (EGTM-DFB)
can achieve high estimation accuracy under the situation of ordinary users

Table 1: Accuracy of the fusion algorithms in two scenarios with ε = 0.1.

Method Scenario
β 0.3 0.5 0.7 0.9

OPT [1] SC1 1.0000 1.0000 1.0000 1.0000

OPT [1] SC2 0.020 0.0033 0.0033 0.0033

EGTM-DFB SC2 0.9998 0.9967 0.9967 0.9967

Table 2: Accuracy of the fusion algorithms in two scenarios with ε = 0.2.

Method Scenario
β 0.3 0.5 0.7 0.9

OPT [1] SC1 1.0000 1.0000 1.0000 0.9999

OPT [1] SC2 0.0172 0.0033 0.0033 0.0033

EGTM-DFB SC2 0.9967 0.9967 0.9967 0.9967
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being affected by Byzantines. In Tables 1 and 2, our models can reach a very
high fusion rate 0.9967 and are quite insensitive to the parameters β and ε.
The results show that although Byzantines can be very detrimental to the
network through herding behavior, we can still predict the hazards of the
network through our graphical EGT model and adjust the fusion strategy to
achieve productive decision fusion results.

Under the same experimental settings except that β is fixed to 0.3, we
explored the performance of the algorithm under different system error rates,
and the results are shown in Table 3. From Table 3 we can conclude that the
system error rate has little effect on the fusion accuracy. Overall, the fusion
mechanism we proposed can achieve a good fusion effect in the scenario where
there is the herding effect.

Table 3: Accuracy of the fusion algorithms in two scenarios with β = 0.3.

Method Scenario
ε 0.05 0.10 0.15 0.20

OPT [1] SC1 1.0000 1.0000 1.0000 1.0000

OPT [1] SC2 0.0200 0.0200 0.0199 0.0172

EGTM-DFB SC2 1.0000 0.9998 0.9967 0.9967

6 Conclusions

In this paper, we delve into a new scenario of decision fusion, where ordinary
users will be affected by Byzantines due to the existence of herding behaviors
and may use the same strategy as the Byzantines. Firstly, we utilize graphical
evolutionary game theory to analyze users’ behavior and measure the hazard
of Byzantines. And we derive the analytical formulation of the evolutionary
dynamics and the corresponding numerical evolutionary stable states. Secondly,
we propose an effective fusion mechanism for the FC based on our human
decision making model and the maximum a posteriori estimation. Finally,
simulation results show that our theoretical model works well to characterize
and predict users’ behavior and the hazards of Byzantines. In addition,
we conduct experiments to verify our fusion strategy can effectively resist
Byzantines even when malicious users may greatly influence others’ decisions
in the presence of herding behaviors.
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Appendix

A Details of Derivations in Pn−l, E [Pn→l(ko, kol)], and ṗl

Taking Equations (1)–(2) into Equations(5)–(8), we get:

πA
l = 1− α+ α

{
[(1− ε)kl + εkn]uls + [k − (1− ε)kl − εkn]uld

}
, (A.1)

πA
n = 1− α+ α

{
[(1− ε)kn + εkl]uns + [k − (1− ε)kn − εkl]und

}
, (A.2)

πB
l = 1− α+ α

{
[(1− ε)kn + εkl]uls + [k − (1− ε)kn − εkl]uld

}
, (A.3)

πB
n = 1− α+ α

{
[(1− ε)kl + εkn]uns + [k − (1− ε)kl − εkn]und

}
. (A.4)

The equation we are addressing is:

Pn→l = (1− ε) · PA
n→l + ε · PB

n→l (A.5)

Taking Equations (9)–(10) into Equation (A.5), we get:

Pn→l =
ε ·
[
kn(1− ε) · πA

n + klε · πB
l

]
+ (1− ε) ·

[
kl(1− ε) · πA

l + knε · πB
n

][
kn(1− ε) · πA

n + εkl · πB
l

]
+
[
kl(1− ε) · πA

l + εkn · πB
n

]
(A.6)

To facilitate simplification, we introduce the following notations:

A = ε

B = 1− ε

C = kl

D = kn = k − kl

(A.7)

Taking Equation (A.7) into Equation (A.6) and expanding the contents of
the brackets, we get:

Pn→l =
B2CπA

l +A2CπB
l +ABDπB

n +ABDπA
n

BDπA
n +ADπB

n +BCπA
l +ACπB

l

(A.8)

Note that Equations (A.1)–(A.4) have a common part 1− α, which we can
separate out to obtain:

Pn→l =
(1− α)

(
B2C +A2C + 2ABD

)
+ α

{
1
}

(1− α) (BD +AD +BC +AC) + α
{

2
} (A.9)
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where 1 and 2 are expressions as follows, which will be addressed later:

1 = B2C
{
[(1− ε)kl + εkn]uls + [k − (1− ε)kl − εkn]uld

}
+A2C

{
[(1− ε)kn + εkl]uls + [k − (1− ε)kn − εkl]uld

}
+ABD

{
[(1− ε)kl + εkn]uns + [k − (1− ε)kl − εkn]und

}
+ABD

{
[(1− ε)kn + εkl]uns + [k − (1− ε)kn − εkl]und

}
(A.10)

2 = BC
{
[(1− ε)kl + εkn]uls + [k − (1− ε)kl − εkn]uld

}
+AC

{
[(1− ε)kn + εkl]uls + [k − (1− ε)kn − εkl]uld

}
+AD

{
[(1− ε)kl + εkn]uns + [k − (1− ε)kl − εkn]und

}
+BD

{
[(1− ε)kn + εkl]uns + [k − (1− ε)kn − εkl]und

}
(A.11)

For now we extract the factors containing A,B,C,D from the numerator
and denominator, and obtain:

Pn→l =
B2C +A2C + 2ABD

BD +AD +BC +AC
·
1 + α

( {
1

}
B2C+A2C+2ABD − 1

)

1 + α

( {
2

}
BD+AD+BC+AC − 1

) (A.12)

From Equation (A.7), we can get:

BD +AD +BC +AC = k

B2C +A2C + 2ABD = (1− 2ε)
2
kl + 2ε(1− ε)k

(A.13)

Hence, Equation (A.12) can be simplified as:

Pn→l =

(
2(1− ε)ε+ (1− 2ε)2

kl
k

)
·
1 + α

( {
1

}
(1−2ε)2kl+2ε(1−ε)k

− 1

)

1 + α

({
2

}
k − 1

) (A.14)

Now let’s deal with expressions 1 and 2 .
For 1 , let the coefficients of uns, und, uls, uld be a, b, c, d, which means:

1 = auns + bund + culs + duld (A.15)
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Similarly, for 2 we can set the coefficients as follows:

2 = euns + fund + guls + huld (A.16)

Replace A,B,C,D in Equations (A.10) and (A.11) with equation Equation
(A.7), and collect the terms according to uns, und, uls, uld, we can calculate
that:

a = (1− ε)εk2 − (1− ε)εkkl

b = a

c = (1− ε)εkkl

d =
(
1− 3ε+ 3ε2

)
kkl − (1− 2ε)2k2l

e = k2(1− 2ε+ 2ε2)− 2kkl(1− 3ε+ 3ε2) + (1− 2ε)2k2l

f = 2(1− ε)εk2 + (1− 6ε+ 6ε2)kkl

g = 2(1− ε)εkkl + (1− 2ε)2k2l

h = (1− 2ε+ 2ε2)kkl − (1− 2ε)2k2l

(A.17)

Noting that f and g are identical to other variables, we re-organize the
above results and bring them into 1 and 2 to obtain:

Pn→l =

(
2(1− ε)ε+ (1− 2ε)2

kl
k

)
·
1 + α

(
auns+bund+culs+duld

(1−2ε)2kl+2ε(1−ε)k − 1

)
1 + α

(
euns+fund+guls+huld

k − 1
)

where

a = (1− ε)εk2 − (1− ε)εkkl

b = a

c = (1− ε)εkkl

d =
(
1− 3ε+ 3ε2

)
kkl − (1− 2ε)2k2l

e = k2(1− 2ε+ 2ε2)− 2kkl(1− 3ε+ 3ε2) + (1− 2ε)2k2l

f = 2(1− ε)εk2 + (1− 6ε+ 6ε2)kkl

g = 2(1− ε)εkkl + (1− 2ε)2k2l

h = (1− 2ε+ 2ε2)kkl − (1− 2ε)2k2l .

(A.18)
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Exploiting the fact that 1+µx
1+νx = 1 + (µ− ν)x+O(x2) for small x, we can

simplify Equation (A.18) as follows:

Pn→l =

(
2(1− ε)ε+ (1− 2ε)2

kl
k

)
·

(
1 + α

(
1

(1− 2ε)
2
kl + 2ε(1− ε)k

− 2
k

)
+O(α2)

)

= 2(1− ε)ε+ (1− 2ε)2
kl
k

+
α

k2

(
k 1 −

(
(1− 2ε)

2
kl + 2ε(1− ε)k

)
2
)

+O(α2) (A.19)

For the complex part of Equation (A.19), we perform straightforward
calculations and collect the terms according to uns, und, uls, uld:

3 =
α

k2

[
k 1 −

(
(1− 2ε)

2
kl + 2ε(1− ε)k

)
2
]

=
α(1− 2ε)2

k2

{
+ kl

[
(1− ε)εk2 + (1− 2ε)2klk − (1− 2ε)2k2l

]
uls

+ kl
[
(1− ε+ ε2)k2 − 2(1− 2ε+ 2ε2)klk + (1− 2ε)2k2l

]
uld

+ (k − kl)
[
(ε− 1)εk2 − (1− 2ε)2kl + (1− 2ε)2k2l

]
uns

+ (k − kl)
[
(1− ε)εk2 − 4(1− ε)εklk − (1− 2ε)2k2l

]
und

}
(A.20)

To facilitate further calculations, we structure the results in powers of kl

k
as follows.

3 = α(1− 2ε)2k
{
− (−1 + ε)ε(und − uns)

+ (1− 2ε)2
k3l
k3

(uld − uls + und − uns)

+
k2l
k2

{[−2− 4 (−1 + ε)]uld + uls − und + 2uns

+4(−1 + ε)ε(uls − 2und + 2uns)}

+
kl
k
{[1 + (−1 + ε)ε]uld − uus − (−1 + ε)ε (uls − 5und + 5uns)}

}
(A.21)

To further simplify, replace uns, und, uls, uld with the following variables:

∆ = uld − uls + und − uns

∆l = uls − und

∆n = und − uns

(A.22)
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Taking Equation (A.22) into Equation (A.21), we get:

3 =α(1− 2ε)2k
{

(
kl
k

)3 [
(1− 2ε)

2
∆
]
+(

kl
k

)2 [
−2
(
1− 2ε+ 2ε2

)
∆−∆l + 4(1− ε)ε

]
+(

kl
k

)[(
1− ε+ ε2

)
∆+∆l − 4(1− ε)ε∆n

]
+

(1− ε)ε∆n

}
(A.23)

Taking it a step further, we introduce the following variables to denote the
coefficients of kl

k :

A∆ = (1− 2ε)2∆

B∆ = −2
(
1− 2ε+ 2ε2

)
∆−∆l + 4(1− ε)ε∆n

C∆ =
(
1− ε+ ε2

)
∆+∆l − 4(1− ε)ε∆n

D∆ = (1− ε)ε∆n

(A.24)

Using Equation (A.24) to replace the variables in Equation (A.23) and
taking them into Equation (A.19), we end up with:

Pn→l =2(1− ε)ε+ (1− 2ε)2
kl
k
+

α(1− 2ε)2k
{(kl

k

)3

A∆ +

(
kl
k

)2

B∆ +

(
kl
k

)
C∆ +D∆

}
+O(α2)

(A.25)

According to the Section 3, we can obtain:

k = ko + kb = (1 + β) ko

kl = kol + kbl = kol + βkoPmal

k2l = k2ol + 2kolβkoPmal + β2k2oPmal

k3l = k3ol + 3k2olβkoPmal + 3ko (βkoPmal)
2
+ (βkoPmal)

3

(A.26)
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Then we derive the expectation for Pn→l by bringing E(kol|k), E(k2ol|k),
and E(k3ol|k) from Equations (17) to (A.26):

E [Pn→l(ko, kol)]

= 2(1− ε)ε+ (1− 2ε)2
pl + βPmal

1 + β
+ α(1− 2ε)2

·
[

A∆

(1 + β)3

(
(2

1

ko
− 3 + ko)p

3
l + 3(− 1

ko
+ koβPmal + 1− βPmal)p

2
l

+ (
1

ko
+ 3koβ

2P 2
mal + 3βPmal)pl + koβ

3P 3
mal

)
+

B∆

(1 + β)2

(
(−1 + ko)p

2
l + (1 + 2koβPmal)pl + koβ

2P 2
mal

)
+

C∆

1 + β

(
kopl + koβPmal

)
+D∆

]
+O(α2)

(A.27)
Then it is straightforward to obtain Equation (19):

ṗl = (1− pl)E [Pn→l (ko, kol)])− pl(1− E [Pn→l (ko, kol)])

= −pl + 2(1− ε)ε+ (1− 2ε)2
pl + βPmal

1 + β
+ α(1− 2ε)2

·
[

A∆

(1 + β)3

(
(2

1

ko
− 3 + ko)p

3
l + 3(− 1

ko
+ koβPmal + 1− βPmal)p

2
l

+ (
1

ko
+ 3koβ

2P 2
mal + 3βPmal)pl + koβ

3P 3
mal

)
+

B∆

(1 + β)2

(
(−1 + ko)p

2
l + (1 + 2koβPmal)pl + koβ

2P 2
mal

)
+

C∆

1 + β

(
kopl + koβPmal

)
+D∆

]
+O(α2),

where
A∆ = (1− 2ε)2 ∆, B∆ = −2

(
1− 2ε+ 2ε2

)
∆−∆l + 4(1− ε)ε∆n,

C∆ =
(
1− ε+ ε2

)
∆+∆l − 4(1− ε)ε∆n, D∆ = (1− ε)ε∆n,

∆ = uld − uls + und − uns, ∆l = uls − und, ∆n = und − uns.
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