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ABSTRACT
As an important data selection schema, active learning emerges as the
essential component when iterating an Artificial Intelligence (AI) model.
It becomes even more critical given the dominance of deep neural network
based models, which are composed of a large number of parameters and
data hungry, in application. Despite its indispensable role for developing
AI models, research on active learning is not as intensive as other research
directions. In this paper, we present a review of active learning through
deep active learning approaches from the following perspectives: (1)
technical advancements in active learning, (2) applications of active
learning in computer vision, (3) industrial systems leveraging or with
potential to leverage active learning for data iteration, (4) current
limitations and future research directions. We expect this paper to clarify
the significance of active learning in a modern AI model manufacturing
process and to bring additional research attention to active learning.
By addressing data automation challenges and coping with automated
machine learning systems, active learning will facilitate democratization
of AI technologies by boosting model production at scale.
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1 Introduction

To democratize Artificial Intelligence (AI) for all industry verticals, researchers
have been working on automating the machine learning design process com-
monly known as AutoML. Through techniques like neural network architecture
search [69, 99], automated hyper-parameter optimization [3, 32], meta-learning
[35, 36], etc., AutoML eases the requirements of domain knowledge and facili-
tates the building of high-quality machine learning models for developers from
academia and industry.

Different from academia where the common practice is to use a fixed and
pre-defined dataset for model iteration, the life cycle of developing an industrial
model involves both model iteration and data iteration. Advances in deep
learning have made it such that even standard deep models without careful
design can perform decently. In contrast to the breadth of works advancing
deep learning for developing sophisticated application-specific models, the
investment in data iteration technologies is limited. However, robust data is
pivotal to developing strong real-world models. The dataset largely determines
the model’s precision upper bound as well as its generalization capability when
applied to novel scenes. In some scenarios, collecting more data is equally impor-
tant, comparing with employing a more powerful machine learning algorithm.
Therefore, the traditional paradigm of machine learning model development
is arguably shifting from Model-centric to Data-centric approaches [5]. In
our technology development process, a vast majority of efforts were spent on
the curation of the right data, comparing to inventing better models when
conducting AI model production. Therefore, automating or accelerating the
data iteration process is the key for rapidly developing AI solutions.

In this paper, we focus on the process of data selection automation. Active
learning (AL) is one of the core data selection automation technologies and has
gained traction in recent decades. The goal of AL is to alleviate the expensive
data labeling process and construct a resource-efficient yet robust training set
by selecting the most valuable samples for human annotation. Specifically,
AL operates in an iterative fashion. At each step, AL algorithms select and
annotate informative samples from an unlabeled data pool, which are then
used to train and update machine learning models. Although only a subset
of the total data may be used, research suggests that this resource-efficient
AL approach can still yield desired results. For example, models using AL
identified data can use only 40% of the training data to achieve performance
on par with that of using all data [18]. Furthermore, the improvement of AL
may be even more significant in real-world industrial applications where data
come from open-world scenarios and contain unavoidable noise, necessitating
costly professional involvement.

Active learning methodologies are also evolving as deep learning is paving
its way for all different kinds of applications. With millions or billions of
parameters, training deep models requires much more data compared to that
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of traditional machine learning algorithms, which makes efficient data selection
technology increasingly critical. Deep Active Learning (DeepAL), an approach
combining DL and AL to maximize task performance while minimizing the
cost of data labeling, has attracted attention and shown great promise for
various tasks such as image classification [115, 119], object detection [85, 88],
text classification [4, 121], and sentiment analysis [11, 123].

There exist some efforts reviewing active learning related literature. [81]
conducted a broad literature review for DeepAL in general AI applications and
included relevant developments until 2020. In contrast, Wu et al. [109] pro-
vided a thorough survey concentrated on multi-label active learning for image
classification tasks. More recently, Zhan et al. [118] delivered a comparative
survey with an emphasis on the performance comparison of different DeepAL
methods under varying tasks. While existing surveys either discuss active
learning from the perspective of broad AI research including vision, nature
language processing and machine learning, or dive deep into a specific vision
task, there lacks a survey reviewing broader vision-based DeepAL methods.
Moreover, active learning has the potential to significantly accelerate the data
iteration or annotation in industrial systems. However, there is no discussion
about how active learning is integrated into modern deep model manufacturing
software and machine learning operations.

This paper provides a comprehensive survey about deep active learning in
the context of computer vision from both academia and industry perspectives.
Existing deep active learning research is far from mature and its application
in practical systems is far from well explored. Through reviewing current tech-
nique developments, explaining and illustrating their applications in advanced
artificial intelligence systems, and discussing unresolved problems, we hope
this paper will serve as a succinct and relevant summary for the community.

The rest of the paper is organized as follows. First, we explain the basics
of AL and present an overview of recent developments in DeepAL methods.
Second, we discuss the usage of DeepAL algorithms for computer vision
tasks, including image recognition, object detection, semantic segmentation,
and video recognition. Third, we provide an introduction to the practical
applications of DeepAL methods in industry software or systems. Lastly, to
promote the prosperity of DeepAL, we discuss current limitations and potential
directions in this field.

2 Overview of Active Learning

2.1 What is Active Learning?

Active learning is the task of choosing the most valuable data for a learning algo-
rithm so that it can perform similarly or even better with the resulting less train-
ing data. More practically, an active learning system selects the most valuable
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unlabeled samples by a query strategy, then sends them to a human for labeling
or curation. The labeled data is then adopted for next stage model training.

There are arguably three commonly studied active learning scenarios in ex-
isting literature, including stream-based selective sampling, membership query
synthesis, and pool-based sampling, respectively as shown in Figure 1. Stream-
based selective sampling processes every unlabeled sample independently, so
the resulting number of samples for labeling is not fixed. This sampling rule
is suitable for sequentially provided online data, e.g. Robot-Assisted AL [98].
In this scenario, it is hard to calibrate the threshold to determine whether a
sample should be selected or not. Membership query synthesis generates new
data to be annotated. It is efficient in the interpretable feature space, but may
suffer from low-quality generation because of the limited knowledge of data
distribution in unseen domains. Pool-based sampling chooses the best query
samples among the entire unlabeled set. It commonly computes a score func-
tion for each unlabeled sample and makes the selection according to the score,
e.g., samples with the highest scores are sent for annotation. The vast majority
of DeepAL methods in the literature use pool-based sampling and they try to
select the most valuable data from the unlabeled pool. Some DeepAL methods
adopt membership query synthesis with deep image generation methods.

Figure 1: Three scenarios of active learning. ’Pool-based Sampling’ is used in most DeepAL
settings.

2.2 Deep Learning-based Methods

2.2.1 Generic Deep Active Learning Framework

The advent of deep learning has made DeepAL a popular topic. The primary
characteristic of DeepAL is that it heavily relies on batch-based sample query-
ing. Traditional per-sample query methods lead to frequent model retraining.
Since each retraining of the model is computationally expensive, the one-by-one
query method is inefficient for deep learning. Batch mode query strategies are
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frequently employed in DeepAL to strike a balance between sampling (for anno-
tation) cost and training cost. In a cycle of active learning, the first step is to get
the optimal deep model using existing labeled data. Then, the most valuable
batch from the unlabeled pool is selected using active learning based on features
extracted by the resulting deep model. The performance of the deep model is
expected to converge after several rounds of model training and active learning.

In each cycle, one can choose to retrain the deep model or just perform
fine-tuning solely using newly collected data. While retraining a model could
be very costly, fine-tuning a model could cause divergence or drifting from
the original model. Except for a few works, e.g. CEAL [105], which fine-tune
the model, most deep active learning methods retrain the deep model from
scratch at each active learning cycle, to ensure the model performance is not
compromised. With the fast growth of GPU computation power, the cost of
training a deep model is also decreasing. The number of active cycles depends
on the computation budget and time budget of a project. A project could last
for weeks or years.

A generic deep active learning framework can be formulated as follows.
Assuming the whole active training procedure consists of T cycles, where each
cycle is further divided into two steps: the exploitation step and the exploration
step. The exploitation step trains a deep model f(·; θt) from the initial state
with labeled samples Dl = {(xi, yi)}Mi=1, where θt are the parameters of the
deep model to be optimized in the t-th cycle. The exploration step selects
a subset of unlabeled samples for labeling. First, each sample from the
unlabeled pool x ∈ Du = {(xj)}Nj=1 receives an informativeness score denoted
as Score(x, θ). It is obtained based on extracted sample features or predictions
by the deep model with the parameters θ. Then, a batch of samples with the
highest scores are selected and sent to the labeling experts. Finally, the labeled
batch joins the existing labeled set to formulate a new training set. Therefore,
the t-th cycle in a typical active learning process can be formulated as

θt = argmin
θ

∑
{x,y}∈Dt

l

L(f(x; θ), y)

Bt = argmax
B⊂Dt

u

∑
x∈B

Score(x, θt)

Dt+1
l = Dt

l ∪ Bt,

(1)

where Dt
l and Dt

u denote the labeled set and the unlabeled pool in the t-th cycle.
L is the loss function employed to train the deep model f(·; θ), and Score(·) is
the function measuring the information obtained from each unlabeled sample.

Most existing DeepAL research focuses on solving the following two prob-
lems: (1) selecting the most valuable batch and (2) training a deep model with
insufficient labeled data. Related methods will be discussed in the following
two parts.
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Figure 2: A typical deep active learning framework for vision tasks.

2.2.2 Selecting the Most Valuable Batch

DeepAL aims to achieve high performance with limited annotation budgets.
To make full use of the annotation budget, it is critical to select a batch
of informative samples to maximize performance gain. To achieve this goal,
different methods have been proposed to measure the informativeness of each
sample. These methods mainly identify informative samples by two criteria:
samples that the model is uncertain about and samples that have a different
feature distribution with respect to already labeled data. Some works also
combine these two criteria to perform sample selection.

Model Uncertainty-based Approaches: The uncertain samples can be
regarded as hard-to-learn samples for the current model. Using uncertain
samples in the training loop can let the model focus on the task that it is not
good at, instead of continuing to learn from simple samples. The uncertainty
can be evaluated using the model’s predictions. The following part reviews
classic methods that are widely used in traditional AL.

Least Confidence (LeastConf) [65] selects data points whose predicted
labels ŷ have the lowest posterior probability, i.e.,

Score(x, θ) = −p(ŷ|x, θ), (2)

where θ denotes the model parameters, p(y|x, θ) is the posterior probability
that the sample x is predicted to class y by θ.
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Margin [82] selects data points, where the difference between the highest
predicted probability and the second-highest predicted probability is small.
The corresponding score function can be denoted as,

Score(x, θ) = −[p(ŷ1|x, θ)− p(ŷ2|x, θ)], (3)

where ŷ1 and ŷ2 are the first and second predictions with the highest probability.
A small difference indicates that the model is not able to distinguish one class
from the other.

Entropy [56] selects data points that maximize the predictive entropy:

Score(x, θ) = H[y|x, θ]

= −
∑
c

p(yc|x, θ) log p(yc|x, θ). (4)

Compared with LeastConf and Margin, which only consider predictions with the
highest probability, Entropy utilizes the whole posterior probability distribution
to measure the uncertainty. A larger entropy hence suggests a higher sample
uncertainty.

Bayesian Active Learning by Disagreements (BALD) [52] aims to minimize
the uncertainty of parameters. It can be approximated as selecting data points
expected to maximize the conditional mutual information between model
predictions and model parameters. The uncertainty score can be denoted as,

Score(x, θ) = I[y, θ|x,Dl]

= H[y|x,Dl]− Ep(θ|Dl)[H[y|x, θ]].
(5)

Maximizing Equation (5) leads to seeking the data points where the model
is most uncertain about the average predictions y of the probabilistic model.
Meanwhile, predictions of these data points under a certain setting, e.g. data
augmentation, are confident.

Mean Standard Deviation (Mean STD) [58] measures the model uncertainty
by the mean standard deviation of the posterior probabilities over all classes:

Score(x, θ) =
1

C

∑
c

√
V arq(θ)[p(yc|x, θ)]. (6)

Most of these score functions perform well in traditional active learning,
but can not be extended to DeepAL. One of the reasons is that many score
functions rely on model prediction, which easily become overconfident due to
the characteristic of the softmax layer in a CNN model. In order to adapt
the above methods to the DeepAL, Gal et al. [39] proposes Deep Bayesian
Active Learning (DBAL) that combines Bayesian Convolutional Neural Net-
works (Bayesian CNNs) into the active learning framework. Bayesian CNNs
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perform variational inference to approximate the true model posterior, which
provides model uncertainty cues that can be used in the score functions. In
practice, DBAL makes use of Monte-Carlo dropout (MC dropout) stochastic
regularisation technique to perform approximate inference.

Similarly, another work [9] proposes Ensembles which uses an ensemble of
CNNs to estimate prediction uncertainty. Specifically, Ensembles trains an
ensemble of N classifiers with the same Dl and same network architecture,
but with different random weight initializations. It uses the average softmax
vectors of N classifiers as the output. The score functions can be applied to
Ensembles as well. Ensembles generally perform better than DBAL due to
the larger model capacity and the diversity of ensemble models.

In addition to estimating the uncertainty from outputs statistically, there
also exist some methods that estimate the uncertainty from other perspectives.
Ducoffe and Precioso [30] argue that commonly-used methods might be over-
confident since a small modification on a sample can lead to an unexpected
misclassification. They, therefore, propose Deep-Fool based Active learning
(DFAL) to select data points near the decision boundary. DFAL approximates
the distance between a sample and the decision boundary by the distance
between this sample and its nearest adversarial sample. The selected and
adversarial samples are added to the training set.

Another kind of method tries to generate samples with the highest uncer-
tainty instead of selecting from available samples. They are more similar to
active learning by query synthesis than standard pool-based active learning.
Zhu and Bento [124] propose Generative Adversarial Active Learning (GAAL)
which combines GAN and active learning. They generate query samples with
the largest uncertainty to get good performance with the least number of labeled
data. Tran et al. [101] introduce more data generation methods like Bayesian
data augmentation to generate samples in the intersection of different classes.

According to the proposed influence function by Koh and Liang [63] and
Wang et al. [107] have theoretically proven that selecting data points of higher
gradient norm leads to a lower upper-bound of test loss, resulting in better test
performance. However, the loss cannot be computed with a lack of labeled data.
To address this issue, Ash et al. [6] proposes Batch Active learning by Diverse
Gradient Embeddings (BADGE) that assigns pseudo labels based on model pre-
dictions, and Wang et al. [107] propose two schemes named expected-gradnorm
and entropy-gradnorm, respectively. These schemes calculate expected loss
and entropy as a proxy.

Since computing gradient norms needs to estimate the loss first, Yoo and
Kweon [115] propose a task-agnostic method that directly predicts loss to
measure the uncertainty. This method is called Learning Loss for Active
Learning (LL4AL). LL4AL attaches a small parametric loss prediction module
to the task model, and jointly trains both models. The loss prediction module
is trained to predict the losses of the task model for unlabeled samples. Samples
with high loss will be selected for annotation and training.
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Feature Distribution-based Approaches: Another category of methods
selects samples that are different from labeled ones in the feature space. Once
a sample is labeled, it can be regarded as a representative of the feature
distribution. This makes it no longer necessary to annotate similar samples.
The key intuition is that if selected features are able to represent the true data
distribution, the model trained with AL will perform similarly to the model
trained with the full data.

A straightforward method is to utilize the distance or similarity between
data points in the feature space and avoid selecting similar samples. Yin et al.
[114] propose a similarity-based method consisting of two stages: exploitation
and exploration. The exploitation stage selects samples with maximum un-
certainty and minimum redundancy, where the redundancy is measured by
the similarity within the selected set. The exploration stage selects samples
farthest from the labeled set to find diverse samples. Bıyık et al. [14] employ
k-Determinantal Point Processes (k-DPPs), a class of repulsive point processes
that select a batch of samples with probability proportional, to the determinant
of their similarity matrix.

Geifman and El-Yaniv [42] and Sener and Savarese [88] define the problem
as core-set selection, where the goal is to find a subset such that a model
learned on it can achieve comparable performance with learning on the entire
dataset. Sener and Savarese [88] theoretically prove that the objective is
equivalent to the k-center clustering problem. Since the problem is NP-
Hard, Sener and Savarese [88] use the Farthest-First (FF) traversal to get
a greedy approximation in practice. Given a set of unlabeled samples, FF
traversal iteratively picks samples farthest from the labeled samples in the
feature space generated by the representation layer of the neural network.

Adversarial learning has also been adopted in AL for querying samples.
Specifically, adversarial learning can be conducted between a classifier and a
sample selection model. Gissin and Shalev-Shwartz [43] propose Discriminative
Active Learning (DAL), which poses active learning as a binary classification
task between labeled and unlabeled classes. Choosing samples to label in
this way makes the labeled and unlabeled data indistinguishable. Similarly,
Sinha et al. [96] propose Variational Adversarial Active Learning (VAAL),
which uses a β-variational autoencoder (β-VAE) to map labeled and unla-
beled data into the same latent space and trains an adversarial network to
distinguish the encoded features. The β-VAE and the adversarial network
are learned together in an adversarial fashion. Shui et al. [93] further propose
Wasserstein Adversarial Active Learning (WAAL) that adopts Wasserstein
distance for distribution matching. They reveal that Wasserstein distance can
better capture the diversity.

Hybrid Approaches: It is reasonable to combine the above two criteria
for active learning, i.e., utilizing both model prediction and model features
for sample selection. The model prediction is helpful for identifying difficult
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data points but might ignore the correlation among them. The model feature
makes it easier to identify representative data points by considering feature
relationships but suffers from degraded effectiveness when the query batch
is small. A variety of hybrid strategies have been proposed to leverage both
complementary criteria, and have demonstrated better performance.

A simple hybrid approach is to divide the query procedure into two stages,
and different types of samples are selected at each stage. BADGE [6] computes
the gradient embedding for each unlabeled sample in the first stage, then uses
the k-means++ seeding algorithm for sampling in the second stage. BADGE
tends to select samples with both high diversity and magnitude. Zhdanov [122]
first prefilter top βk (β ≥ 1) informative samples based on Margin, then cluster
them to k clusters with (weighted) k-means. Finally, k samples closest to
the cluster center are selected. In contrast, Cluster-Margin [23] first performs
Hierarchical Agglomerative Clustering (HAC) as a preprocessing step. For
subsequent sampling iterations, Cluster-Margin retrieves clusters on which
the model is least confident, and uses a round-robin scheme for sampling.
Compared with other methods that need to run a diversification algorithm at
each sampling iteration, Cluster-Margin enjoys better efficiency because HAC
is only executed one time.

Another commonly used approach is to design a unified score function that
considers both uncertainty and diversity. Yin et al. [114] propose a linear
combination of two criteria as the score function for the exploitation step, i.e.,

Score(x, θ) = H[y|x, θ]− α Sim(x, S), (7)

where Sim(·) computes the similarity between one sample and the selected set,
and α denotes a parameter to balance uncertainty and diversity. During the
acquisition process, the uncertain samples different from the selected set are
chosen one by one.

Kirsch et al. [62] extend BALD [52] to BatchBALD to compute the mutual
information between a batch of data points and model parameters, instead of
independently computing for each single sample,

Score(x1:b, θ) = I[y1:b, θ|x1:b, Dl]

= H[y1:b, |x1:b, Dl]− Ep(θ|Dl)[H[y1:b, |x1:b, θ]],
(8)

where x1:b and y1:b denote b selected data points and their predictions. BALD
may overestimate the joint mutual information due to double counting of
overlaps between data points in the feature space. BatchBALD takes this issue
into account and makes itself more likely to acquire a diverse cover.

Those methods need to compute the correlation between samples. This
constraint suppresses the capability of computing representativeness scores indi-
vidually for each sample. WAAL [93] tackles this issue by using a discriminator
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to directly estimate the probability that a sample comes from the unlabeled
pool.

Moreover, compared with explicitly considering the hybrid query strategy,
some works aim to balance uncertainty and representativeness in an implicit
way. Zhang et al. [119] propose a State Relabeling Adversarial Active Learning
model (SRAAL) which is motivated by the fact that previous works such as
VAAL [96] consider all the unlabeled samples of the same quality. They build
the discriminator that maps data to a hard label, i.e., 0 and 1 for unlabeled
and labeled data, respectively. To alleviate the issue of hard labels, an online
uncertainty indicator in the discriminator is designed to relabel the state
information of unlabeled data according to different importance. Task-Aware
Variational Adversarial Active Learning (TA-VAAL) [60] is another extension
based on VAAL [96], which combines with LL4AL [115]. By exploiting RankC-
GAN [86], the goal of LL4AL is relaxed from predicting the accurate loss value
to estimating ranking loss cues.

2.2.3 Training with Insufficient Data

Deep learning is data-hungry, and its high performance relies heavily on nu-
merous training data. Standard active learning methods train deep models on
the labeled sample set and ignore the unlabeled pool. Therefore, many semi-
supervised methods have been proposed to alleviate the issue of insufficient
training data. Semi-supervised learning and active learning are the two sides of
the same coin in that, both pursue to achieve good performance with the fewest
labeled data. The former focuses on the utilization of unlabeled data, while
the latter focuses on selecting and annotating the most valuable data. The
combination of semi-supervised learning and active learning has the potential
to significantly increase the variety of training data. Semi-supervised learning
methods in active learning can be achieved by three means: Pseudo-label,
self-supervised learning and data generation.

Pseudo-label methods assign pseudo labels to samples in the unlabeled
pool. Wang et al. [105] propose CEAL to assign pseudo labels according to
model predictions. They progressively select two types of samples from the
unlabeled set to fine-tune the deep model. Samples with high uncertainty
are selected for labeling. Samples with high confidence are assigned pseudo
labels without human cost. Siméoni et al. [95] propose a transductive way
to generate pseudo labels. Following [54], the prediction of the unlabeled
data is made according to the label propagation on their nearest neighbors.
Model predictions of the unlabeled data are used to compute the certainty
of pseudo labels. Gorriz et al. [45] propose a similar cost-efficient method to
leverage unlabeled samples in active medical segmentation. They reduce the
uncertainty map to a single uncertainty value for active sample selection and
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pseudo label assignment. Samples with the lowest uncertainty are added to
the training set along with their predicted masks.

Self-supervised methods utilize the unlabeled samples for training. Liu
et al. [70] propose an unsupervised feature learning on all datasets to improve
the training efficiency of Deep Belief Network (DBN). Gao et al. [40] propose
a consistency-based unsupervised training to learn from unlabeled data by
optimizing the feature distance between unlabeled samples and their augmen-
tations. In addition, they also propose a consistency-based sample selection
strategy to choose augmented samples with the largest inconsistency. Yu
et al. [116] use a similar consistency-based training which considers both box
regression and classification in detection tasks at the same time. Kim et al. [61]
use Mixup [120] to generate augmented samples during training and propose an
acquisition function which looks ahead at the effect of data augmentation. As
data augmentation has exhibited great potential in semi-supervised training,
future active learning works can integrate with more powerful data augmen-
tation strategies to alleviate the expensive data annotation, and improve the
performance of training with insufficient data.

3 Vision Tasks Empowered by DeepAL

Thanks to its capability of selecting the most valuable samples and saving
annotation costs, active learning has been widely used in deep model training
for various vision tasks. This section proceeds to introduce active learning
methods applied in different vision tasks.

3.1 Image Classification and Recognition

Image classification and recognition is the cornerstone of many vision tasks. The
majority of studies on active learning in the vision community are conducted
on this task.

Traditional active learning methods for image classification can be sum-
marized into three categories: uncertainty-based approaches, diversity-based
approaches, and expected model change, respectively. In the category of
uncertainty-based approaches, LeastConf, Margin and Entropy are simple and
effective ways to query informative samples. Also, distances to the decision
boundary of the classifier can be used to evaluate the uncertainty [66, 100].
Some other authors [76, 90] train multiple models to construct a committee
and measure the uncertainty by disagreement between different members of
the committee. In the diversity-based approaches, [77] cluster the data pool
to select representative samples. [31, 47, 112] optimize the data selection in a
discrete space. [13, 48, 74] consider the distance to surrounding data points and
choose a subset to represent the global distribution. Expected model change
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aims to find samples that can cause substantial changes to the current model.
It can be estimated from different perspectives, such as gradient length [89],
future errors [83] and output changes [38, 57], respectively.

Traditional methods introduced above cannot scale well to large-scale data
and deep neural networks. Recent years have witnessed many active learning
methods designed for deep learning. For example, [25, 68, 70] study the hyper-
spectral image classification for remote sensing. Liu et al. [70] train a DBN that
includes two stages: unsupervised feature learning and supervised fine-tuning.
The first stage can be used to estimate the representativeness, while the second
stage is used to estimate the uncertainty. Medical image analysis requires medi-
cal experts for labeling, thus also faces the difficulty of obtaining well-annotated
data. Many works attempt to introduce active learning to reduce the annota-
tion cost [15, 28, 37, 87]. Stark et al. [97] solve the CAPTCHA recognition by
performing active learning. Their method does not require oracles to annotate a
large training set. Once the classifier solves a CAPTCHA correctly, the label is
automatically obtained. Since using all correctly classified data for re-training
would be inefficient, only the most uncertain samples are selected for training.

3.2 Object Detection

Object detection requires the model to locate and classify objects simultane-
ously, thus it is more complicated than image classification. The demand for
instance-level annotation imposes a higher annotation cost than labeling image
categories, making active learning for object detection valuable. In recent years,
active learning for object detection has attracted more attention. According to
their motivations, those works can be divided into two categories: proposing
specific query strategies for object detection and reducing annotation costs.

3.2.1 Query Strategy

Query strategy for object detection denotes the way of selecting samples for
annotating object bounding boxes. Most existing works follow the setting that
queries the whole image and annotates all objects in those images. Although
various query strategies have been proposed in image classification to find
valuable samples, these methods do not perform well when directly applied to
object detection. One reason is that those methods make image-level queries
based on instance-level predictions, which leads to inconsistency.

First, we introduce traditional active learning methods for object detection.
Yao et al. [113] use Hough forests as the detector, which detects objects using
the generalized Hough transform and randomized decision trees. They estimate
an optimal detection threshold based on the distribution of detection scores,
which is hence used to model the annotation cost. Images with the highest
annotation cost are selected because they are considered as most informative
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samples. Bietti [12] use a linear SVM in a sliding window as the detector, and
query points closest to the decision boundary. Roy et al. [84] model the object
detection as a structured regression problem, and develop an active learning
algorithm using the principled version space approach in the “difference of
feature” space for structured prediction. The algorithm selects points for
labeling such that the version space is maximally reduced.

With the development of CNN, deep active learning for object detection
has been extensively studied. The uncertainty-based methods are widely used
for querying samples. Feng et al. [33] use MC dropout and Deep Ensembles to
obtain uncertainty estimations and select the most uncertain samples by various
score functions, e.g., entropy, mutual information. Wang et al. [104] estimate
the uncertainty by performing the cross image validation, i.e., pasting proposals
from the unlabeled image into a certain annotated image, then evaluating
the prediction consistency under different image contexts. Region proposals
with low consistency will be asked for annotation. Roy et al. [85] propose a
query by committee paradigm based on the SSD detector. The disagreement
for a particular candidate bounding box among different convolution layers
is used for selecting samples. The intuition is that a detection network is
likely to have similar predictions in a local region. Similarly, Aghdam et al. [2]
compute pixel-level uncertainty scores by the divergence among predictions at
different levels of decoder for each pixel and their neighborhoods. Furthermore,
the pixel-level scores are aggregated into an image-level score, which is used
to select informative samples. Brust et al. [16] evaluate a set of aggregation
functions, including calculating the sum, the average and the maximum over
all detection results. Yuan et al. [117] argue that many methods ignore the
interference from a large number of noisy instances in object detection, which
leads to the inconsistency between instance-level and image-level uncertainty.
Therefore, they introduce a multiple instance learning module to re-weight
instance uncertainty. This method is expected to highlight the informative
instances and depress noisy ones.

The above-mentioned methods mainly focus on the classification part in
object detection for selecting samples. Some other works also consider the
bounding box regression for selecting informative samples. Choi et al. [22]
learn a Gaussian Mixture Model (GMM) for the network outputs including
both localization and classification. Consequently, both aleatoric and epistemic
uncertainties are computed by parameters of the GMM, which include mean,
variance and mixture weights. Kao et al. [59] introduce two metrics of localiza-
tion uncertainty: Localization Tightness with the Classification Information
(LT/C) and Localization Stability with the Classification Information (LS+C).
LT/C is based on the overlap ratio between the region proposal and the final
prediction. LS+C is based on the variation of predicted object locations when
input images are corrupted by noises. Yu et al. [116] apply data augmentations
to unlabeled images, and measure the consistency between predictions of the
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original and augmented images. In contrast to LS+C, which considers box re-
gression and classification independently, [116] unify them with a single metric.

The diversity-based method has also been explored in object detection.
Since the large receptive fields in deep CNNs may cause confusion among
spatially neighboring classes, Agarwal et al. [1] propose contextual diversity
to measure the confusion associated with spatially co-occurring classes. Such
a measure helps to select samples with diverse spatial contexts. Moreover,
[110] presents a hybrid method that considers both uncertainty and diversity.
The uncertainty is estimated by basic detection entropy and the instance
diversity can be divided into intra-image diversity and inter-image diversity.
For the intra-image diversity, entropy-based Non-Maximum Suppression is
performed to remove redundant instances within images. For the inter-image
diversity, the class-specific prototypes of each image can help to improve the
intra-class diversity, and the adaptive budget size for each class can enhance
the inter-class diversity.

3.2.2 Annotation Reduction

In addition to the above works studying query strategies, there are other works
aiming to further reduce the annotation cost. Desai et al. [27] propose an
adaptive supervision framework that combines active learning with weakly
supervised learning. All selected samples are first annotated with weak labels,
i.e., center locations of objects. Those weak labels are then used to generate
pseudo labels. Accurate bounding box annotations are required only for objects
where the model can not produce confident predictions. The cost of different
annotation types is measured by median annotation times in statistics. Pardo
et al. [80] also consider a hybrid training set consisting of both weak and strong
labels. Given a fixed budget, appropriate annotation action is chosen for each
image based on certain measurements such as the uncertainty score. Then
a teacher-student model is trained to make use of both types of annotations.
Since the annotation cost of each image depends on the number of objects
present in the image, Desai and Balasubramanian [26] propose a fine-grained
sampling strategy to selectively pick the most informative subset of bounding
boxes rather than whole images.

3.3 Image Segmentation

Image segmentation is also a fundamental task in computer vision with wide
applications like scene understanding, medical image analysis, robotic percep-
tion, and autonomous driving. Image segmentation classifies each pixel in an
image into a specific class. Annotating ground-truth for segmentation is hence
more expensive than labeling image semantics and categories. Therefore, it is
appealing to use active learning to relieve the annotation burden.
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Existing active learning methods for image segmentation can be divided into
image-based methods and region-based methods according to the granularity
of selected data for annotation. Image-based approaches consider each image
as a sample while region-based approaches divide unlabeled images into non-
overlapping regions and consider each region as a sample.

3.3.1 Image-based Active Segmentation

Image-based approaches for segmentation share the same intuition as stan-
dard pool-based batch-mode active learning. Suggestive Annotation [111] is
a milestone work in deep active segmentation. It presents a new deep active
learning framework by combining FCNs and active learning. Samples are
first sorted by uncertainty and then the Core-set [88] is applied to select the
batch for annotation. Instead of using another image descriptor network, it
computes the overall uncertainty of each training sample with the mean of
uncertainty of all pixels and calculates feature descriptors for the core-set by
average pooling the output of the last convolution layer. Ozdemir et al. [79]
propose a Borda-count based sample querying strategy, which considers both
uncertainty and representativeness. Uncertainty is measured by the variance
of predictions in their model. Representativeness is measured by “Content
Distance”, which is computed on the whole outputs of the last convolution
layer before spatial pooling. Wang et al. [108] propose a Nodule R-CNN model
that attains state of-the-art pulmonary nodule segmentation performance. In
addition, they train the model with a weakly-supervised method to leverage
both labeled and unlabeled samples.

VAAL [96] proposes another framework for active image segmentation. It
learns a VAE together with an adversarial network trained to discriminate
unlabeled and labeled data. The proposed method implicitly learns the un-
certainty for samples from the unlabeled pool. SRAAL [119] designs an online
uncertainty indicator, which endues unlabeled samples with different impor-
tance. Unlabeled samples with high confidence are treated as simple samples,
and will not be selected for annotation. TA-VAAL [60] proposes to incorporate
LL4AL and RankCGAN into VAAL by relaxing loss prediction with a ranker
for ranking loss information. Agarwal et al. [1] introduce a novel information-
theoretic distance measurement named Contextual Diversity (CD) to capture
the diversity in spatial and semantic contexts of various object categories.

3.3.2 Region-based Active Segmentation

Different from image-based approaches, many active segmentation methods
belong to region-based approaches. Region-based active learning is efficient
since only a small number of regions is required to be labeled for each time.
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In addition, since the Region of Interest (ROI) and confusing areas may only
occupy a small percentage of the whole image, segmenting the whole image is
not necessary. Those properties make region-based approaches perform better
than image-based approaches under the same annotation budge.

One kind of region-based active segmentation methods divides the image
into mesh. Mackowiak et al. [75] propose CEREALS, which only needs human
to label a few automatically selected blocks. Casanova et al. [19] propose a
novel modification to the deep Q-network to select regions based on predictions
and uncertainties.

Another kind of region-based active segmentation method utilizes superpix-
els to simplify the annotation. Superpixels are non-overlapping local regions
generated by grouping similar pixels together. Object boundaries can be pre-
served among superpixels and pixels within each superpixel commonly share
the same class. In this way, annotators only need to classify the selected super-
pixels instead of annotating each pixel on the image. Among those methods,
[94] select samples according to viewpoint entropy and superpixel uncertainty.
Golestaneh and Kitani [44] enforce pixel-wise self-consistency computed on
outputs of segmentation network between each image and its transformation.
Cai et al. [17] propose a class-balanced score function to further boost the
performance of the superpixel-based approach by favoring the selection of
informative samples from under-represented object categories. Another kind
of works [92] design a labeling system which assists workers to label certain
superpixels on the selected images.

3.4 Video Recognition

Compared with image recognition, video recognition needs to consider both
spatial cues and temporal correlations. Active learning for video recognition
also shows great potential to save the labeling cost.

Vondrick and Ramanan [102] propose an AL framework for object motion
track prediction. The proposed framework selects frames with the largest
difference in the predicted track of an object, if the frame is labeled. A
large difference is generally caused by distractions like occlusions or cluttered
backgrounds. This approach automatically labels tracks of stationary objects
and leaves visually ambiguous tracks for manual annotation. Hossain et al.
[51] study human activity recognition and propose a deep and active learning
enabled model (DeActive) that adopts a simple k-means clustering AL approach.
DeActive clusters features and selects the most informative samples according
to a density-weighted heuristic. Samples found within the most dense regions
are generally more representative.

Active learning has also been employed by person re-identification task, too.
Person re-id matches query person images or tracklets across videos recorded
by different cameras. An increasing demand for the accurate identification
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of persons from varying camera angles and times has attracted attention to
person re-id. One fundamental challenge faced by person re-id is the difficulty
of data annotation. Human annotators need to identify the same person across
myriad non-overlapping cameras. This procedure is also easily affected by
factors like varied camera viewpoints, lighting change, and similar-appearance
imposters, making traditional supervised learning hard to generalize to real
applications. Many works have thus proposed AL frameworks for person re-id.
Those methods have achieved comparable performance to supervised learning
while maintaining a substantially lower annotation cost.

Early AL approaches for person re-id maintains a gallery of labeled images
for each person, and matches unlabeled images to those galleries. Wang et al.
[103] follow this paradigm and propose a Highly Efficient Regression (HER)
model for scalable person re-id. HER+, an incremental version of the batch-
based HER, is also introduced. A trichotomous joint exploration-exploitation
active sampling criteria is applied. Three components of this criteria are
(1) appearance diversity exploration that values unlabeled samples farthest
away from labeled data, (2) matching uncertainty exploitation that values
samples that do not closely resemble any galleries, and (3) ranking uncertainty
exploitation that values samples resembling multiple galleries. These criteria
balances uncertainty and diversity to select a representative subset of data.

Above methods for person re-id require an annotated gallery for each person,
hence are still costly to some extent. Some other active learning methods do
not require a labeled dataset for initialization, thus is gaining more popularity.
Liu et al. [72] propose an active learning framework with pairwise constraint
(EALPC). EALPC enforces similar samples closer to each other, thereby facili-
tates the selection of a more representative set. Liu et al. [71] further introduce
another active learning method with pairwise diversity maximization (EAL-
PDM). Unlike EALPC, EAL-PDM selects the most diverse and informative
pairs instead of instances for annotation. Pairwise uncertainty estimation and
pairwise diversity maximization are used during the selection procedure.

Wang et al. [106] also select pairs of data instead of instances to build
AL algorithms. Specifically, they chose tracklets for annotation, which are
successive bounding boxes of a tracked person. Their AL algorithm selects
the most confident tracklets as true positives. This criterion is supported by
their experimental results that, true positive matches are significantly more
informative than other relations. Once tracklet pairs are chosen, an oracle is
involved to confirm their relation and merge corresponding tracklet pairs. In
addition, a view-aware approach is adopted to quickly identify true positives
and filter false positives to enlighten the workload.

Liu et al. [73] leverage Reinforcement Learning (RL) in AL framework and
introduce a Deep Reinforcement Active Learning (DRAL) method. In DRAL,
the agent for AL sampling and the CNN for re-id are optimized independently.
The agent has an AL policy that is updated iteratively based on hard triplet
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loss computed from binary pairwise relation produced by the oracle. As the
AL policy is refined, the agent is able to select more informative samples that
are then annotated and used to incrementally update the CNN.

In addition to the aforementioned approaches, a clustering approach like
that used in [51] is also applied for person re-id. Gao et al. [41] use a clustering
approach to generate a base cluster to provide pseudo labels. Annotations for
inter-centroid relations are then used to split and merge clusters to refine the
clustering accuracy. The refined cluster then guides the refinement of the re-id
CNN. Similarly, Jin et al. [55] propose Support Pair Active Learning (SPAL)
that also starts with an unsupervised clustering. In SPAL, a dual certainty
selection strategy searches for pairs with the highest likelihood of being a false
negative or a false positive. After annotation, inter-support pair relations are
used to derive Must-Link and Cannot-Link sets that propagate new labels to
the rest of the cluster, as well as to update the re-id CNN.

Related works that we have discussed are summarized and categorized in
Table 1.

4 Industrial Applications

This section commences by highlighting the importance of DeepAL in real
applications. It then discusses about incorporating DeepAL into the industrial-
level model production process, namely deep fusion of DeepAL with GUI-based
model production software.

4.1 Importance of DeepAL in Industry

For a typical AI model manufacturing process in industry, the initial steps are
to assign annotators to label data and construct a training set. An intuitive
way is to label all available samples from the unlabeled data pool. This is not
sustainable and scalable for industry, since it is prohibitive to label millions of
samples.

A more appealing alternative is to form an iterative loop where each step
randomly labels a subset of samples to train the model. In practical vision
applications, most of the collected datasets exhibit a long-tailed distribution.
In other words, many head categories occupy the majority of samples, while
lots of tail categories have a small number of samples. The consequence of
random sample selection is that most of the selected samples are from several
dominant categories and samples in tail categories are scarcely selected and
annotated. This largely degrades the performance of the trained model.

DeepAL has the potential to alleviate the long-tailed distribution issue in
the raw dataset by selecting the most informative samples, hence significantly
reducing labeling costs. Equipped with DeepAL, both the quality of the
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Table 1: Taxology of the described DeepAL methods.
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[39] ✓ ✓ ✓ ✓
[9] ✓ ✓ ✓ ✓
[88] ✓ ✓ ✓ ✓
[115] ✓ ✓ ✓ ✓
[96] ✓ ✓ ✓ ✓ ✓
[6] ✓ ✓ ✓
[62] ✓ ✓ ✓
[105] ✓ ✓ ✓
[95] ✓ ✓ ✓
[70] ✓ ✓ ✓
[40] ✓ ✓ ✓
[61] ✓ ✓ ✓
[59] ✓ ✓
[85] ✓ ✓
[27] ✓ ✓
[16] ✓ ✓
[1] ✓ ✓
[117] ✓ ✓ ✓
[22] ✓ ✓
[116] ✓ ✓ ✓ ✓
[110] ✓ ✓ ✓
[45] ✓ ✓ ✓
[111] ✓ ✓ ✓
[79] ✓ ✓ ✓
[108] ✓ ✓ ✓ ✓
[1] ✓ ✓ ✓
[75] ✓ ✓ ✓
[19] ✓ ✓ ✓
[94] ✓ ✓ ✓
[44] ✓ ✓ ✓
[17] ✓ ✓ ✓ ✓
[92] ✓ ✓ ✓ ✓
[72] ✓ ✓
[51] ✓ ✓ ✓
[73] ✓ ✓
[71] ✓ ✓ ✓
[41] ✓ ✓ ✓ ✓
[55] ✓ ✓ ✓
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training set and model performance can be enhanced by the iterative annotation
and training loop. Moreover, a closed loop of the AutoML systems can
be established by integrating DeepAL and incremental model enhancement
algorithms to greatly expand the model production efficiency. One possible
solution to easily use DeepAL in the industry is to cope with DeepAL with
GUI-based model production software.

4.2 Coping DeepAL with GUI-based Model Production Software

This part starts by discussing the necessity of building GUI-based model
production software. GUI-based AI model production software mostly supports
the full cycle of the AI model development, including data preparation, model
design, training, and deployment. As active learning is closely related to data
preparation, data annotation, and model training, it can be easily incorporated
into those systems to decrease the cost of data annotation and accelerate the
model development. DeepAL thus has shown great potential to be applied in
GUI-based production software.

When developing AI-based industrial applications, the process of interaction
between customers and AI companies is usually tedious and time-consuming.
For example, some customers may not have clear goals for the AI-empowered
products they want to develop, and thus the algorithm experts need to interact
repetitively with users to bring things to light. In addition, customers are
often hesitant to invest heavily in a product until they see how effective it is.
This could make for a slow and low-quality development process.

To tackle the challenge and put the initiative in the hands of users, GUI-
based model production software has emerged to help public sector and enter-
prise customers build AI-empowered solutions for their data science problems [8,
24]. Typically, the software supports the full life cycle of a model development
process. The implementation details of the software components, such as data
preprocessing and model training, are usually hidden. Users can implement
their ideas with just clicks of a mouse. The appearance of such easy-to-use
software fundamentally advances the democratization of AI technologies and
realizes the transformation of model production from fragmentation to scale.

There are many well-known software developed by tech giants or AI star-
tups. We divide these software into two categories, depending on whether they
integrate DeepAL component into them. Next, we first introduce some repre-
sentative non-DeepAL-based model production software, such as SageMaker
Studio1, ModelArts2, and EasyDL3, to help readers understand the specific
functionalities supported by the modern software. Then we elaborate YMIR4,

1https://aws.amazon.com/sagemaker/data-scientist
2https://www.huaweicloud.com/intl/en-us/product/modelarts.html
3https://ai.baidu.com/easydl/
4http://www.viesc.com, https://github.com/IndustryEssentials/ymir

https://aws.amazon.com/sagemaker/data-scientist
https://www.huaweicloud.com/intl/en-us/product/modelarts.html
https://ai.baidu.com/easydl/
http://www.viesc.com
https://github.com/IndustryEssentials/ymir
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a DeepAL-based software that can greatly facilitate the production of models
at scale.

4.2.1 SageMaker Studio

SageMaker Studio, developed by Amazon, provides a single, web-based visual
interface for data science team to perform all machine learning steps. As shown
in Figure 3, it consists of four main components. During data preparation,
users are allowed to prepare and label both structured and unstructured data
at large scale. Afterwards, SageMaker not only provides all the tools to
build machine learning models, but also relieves users of the need to manage
infrastructure, allowing the models to be trained and tuned at scale. After
users obtain satisfactory models, SageMaker makes it easy to deploy models
and monitors the prediction results.

Figure 3: The main components of Amazon SageMaker Studio.

4.2.2 ModelArts

ModelArts, developed by Huawei, is a one-stop GUI-based AI model production
software that enables developers and data scientists of any skill level to quickly
build, train, and deploy models anywhere, from the cloud to the edge. In
addition to the basic components in machine learning life cycle, ModelArts
offers unique features such as automatic labeling, neural architecture search,
built-in large pretrained models, large-scale distributed training, and support
for diverse training paradigms such as deep learning, reinforcement learning,
and federated learning.

4.2.3 EasyDL

EasyDL is an AI development software developed by Baidu. It highlights two
unique properties. First, the design of EasyDL is simple and extremely easy
to understand, which is suitable for enterprise users who have zero algorithm
foundation in AI. Second, EasyDL integrates Baidu Wenxin super large-scale
pretraining model and self-developed AutoDL technology, so it can train a
high-precision model based on a small amount of data.
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4.2.4 YMIR

Although the above software are powerful, they currently do not support
DeepAL and users have to randomly select data for annotation, resulting in
poor performance in actual use. Fortunately, Huang et al. [53] introduces
an open source GUI-based and DeepAL-based model production software
You Mine In Recursion (YMIR) to enable the swift development of computer
vision applications. The following part briefly reviews the pipeline of YMIR,
and highlight its differences with previous model production software. More
detailed descriptions to YMIR can be found in [53].

YMIR is an implementation of data-centric AI, which puts more emphasis
on the quality of data procurement/mining instead of model optimization. It is
the first AI algorithm development tool that integrates active learning methods
with data version control in the process of developing AI algorithm. In addition,
YMIR is completely code-free which lowers the technical requirements of its
users to develop algorithms for industry application. In essence, YMIR is
designed with the idea of easy development of AI algorithms for everybody
while conforming to the industry standard and scale.

YMIR prioritizes the development of datasets in the product and system
design. Therefore, the main components of YMIR are aligned with the typical
steps in DeepAL, i.e., YMIR iteratively builds datasets and models through
DeepAL mining, data labeling, and model training modules. It also borrows
ideas from code version control to better track and manage data and models
at different stages, and utilizes concepts such as projects to enable fast parallel
iteration of multiple task-specific datasets. The included components are
implemented through GUI interaction with explicit process guidance. Given a
typical industrial example in the development of AI models, YMIR starts with
few samples for the initialization of training data set, normally 100 samples
for training, the validation will setup at the beginning of DeepAL circle and
remain unchanged. The model start with a low accuracy (about 50% of map50
in the validation set) YMIR gradually boost the model performance during
the process of DeepAL, it starts with 100 samples for the first iteration and
gather 500 samples during each iteration through DeepAL selection until the
model performance match the requirement of the developer. In real industrial
applications developers suffer from gathering enough training samples to start
the AL model training due to the expensive labeling cost. YMIR introduces a
new AI model production pipeline for user to start the model development
with few samples and gain valuable data during each DeepAL iteration.

The advent of YMIR changes the responsibilities of annotators and al-
gorithm engineers in the model production process, as shown in Figure 4.
Traditionally, for a typical model production requirement in the industry, the
algorithm engineer first hands over the obtained raw data to the annotators.
Because the magnitude of data is usually in the thousands or tens of thousands,
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Figure 4: Comparisons between traditional model production workflow and YMIR model
production workflow. The green and blue colors stand for the responsibilities for the
annotator and the algorithm engineer, respectively. Here we assume there are three labelers
and one algorithm engineer. In (a), labelers are assigned to annotate all samples in one
task, and the algorithm engineer is responsible for the following steps. While in (b), each
labeler is able to produce a model independently. They even can work on different tasks.
The algorithm engineer only needs to review the produced models in this workflow.

it takes the annotators lots of time to label all the data. After the annotation
is completed, the algorithm engineer is responsible for training, tuning, and
releasing the model. In contrast, by using YMIR, the annotators are able to
independently produce models thanks to the GUI interface. More importantly,
the integration of DeepAL in YMIR forms a cycle that includes data labeling,
model training, model tuning, and DeepAL-based sample mining. In such a
workflow, the algorithm engineer only needs to review the produced models
and can concentrate on designing more advanced model architectures. The
benefits of using DeepAL are twofold, namely a remarkable reduction in la-
beling efforts and a significant increase in model performance with similar
manpower.

5 Discussion of Future Directions

The effectiveness of DeepAL in computer vision has been demonstrated through
extensive efforts. However, there are still many open problems to be coped
with. We present six potential future directions in this section, the first three
of which are more related to the training strategy of DeepAL and the latter
three are more relevant to DeepAL algorithms.
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5.1 Universal Benchmark for DeepAL

After reviewing the literature, we find that the reported performance of the
random sampling baseline and some DeepAL methods differ significantly across
works. For example, experimental evaluations in [116] show that the method
proposed in [59] is inferior to the random selection baseline, which contradicts
with results presented in [59].

Moreover, another issue is that different studies apply different settings
when conducting experiments, making their performance not directly com-
parable. For instance, [115] and [59] select a different number of samples in
the initial training sets. [117] and [116] use different stop criteria, resulting
in a different number of training samples in total. It is obvious that training
with more data helps the final performance, which makes the improvements
reported in the papers indefinite.

The above problems point to an urgent need to develop a fair performance
assessment platform for determining a standard accuracy for the random
sampling baseline and evaluating various DeepAL approaches. Fortunately,
some researchers have noticed this issue and developed a benchmark named
ALBench [34]. In ALBench, different DeepAL algorithms share the same
training and testing settings, effectively ensuring equitable comparisons. We
believe ALBench will greatly facilitate the research in the community. While
effective, ALBench is now only for object detection tasks. A further study may
conduct to incorporate more computer vision tasks and the latest DeepAL
algorithms.

5.2 Integrating SSL with DeepAL

Self-supervised learning (SSL) becomes very popular in these two years. It
obtains supervisory signals from the tremendous unlabeled data itself and
aims to learn generalizable and robust representations. The mainstream SSL
approaches fall into the categories of contrastive-based and generative-based
methods. Some well-known contrastive learning methods include SimCLR
[21], MoCo [50], and BYOL [46]. More recently, generative-based methods,
e.g., MAE [49], BEiT [7], and MST [67], have become the most successful
self-supervised methods in the vision community and they have surpassed the
promising performance achieved by contrastive learning methods.

A potential future direction is to combine SSL with DeepAL in order
to further reduce the efforts of human labeling. The reason is that after
pretraining by SSL methods, the model itself can already generalize well on
downstream tasks. At this time, selecting few samples by DeepAL may be
enough for enabling the model to achieve competitive performance. However,
Chan et al. [20] have conducted extensive experiments on integrating SSL with
DeepAL and found that the enhancement from DeepAL is marginal. They
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further performed ablation study to explore the reason. The results showed that
data augmentation could be the source of this phenomena, as augmentation
itself has strong capability in improving label efficiency. Bengar et al. [10]
also attempt to investigate whether SSL and DeepAL can be combined in a
complementary way and they find that DeepAL can be beneficial for SSL only
when the budget size is high. Therefore, the benefits of integrating SSL with
DeepAL remain an open problem that deserves further exploration.

5.3 Incremental Training in DeepAL

Generally, existing methods require training a new model from scratch at each
iteration of the DeepAL process. This training paradigm partially offsets the
advantages of DeepAL, since retraining large-scale deep learning models is
computationally expensive and time-consuming.

In order to tackle this issue and speed up model training, intuitively,
we can combine the newly annotated samples with the initial training set
and then fine-tune the model from the previous round [91]. However, some
researchers have pointed out that such a method introduces bias and degrades
the model performance [78]. Specifically, the model tends to fit the new data
and overwrites the learned knowledge. ActiveLink [78] delivers an unbiased
incremental training approach to alleviate this problem and thus offers a
balance between the new and old annotation samples. Since this method is
targeting for the link prediction in graphs, future research can be conducted
to adapt ActiveLink or develop novel methods for vision tasks.

5.4 Task Independent DeepAL

Most DeepAL methods only target one or part of the subtasks in the computer
vision domain. This trend is becoming more pronounced as researchers expect
better performance on a certain subtask. For example in the object detection
task, MI-AOD [117] argue that there is a gap between instance-level uncertainty
and image-level uncertainty due to noisy instances in the background. They
propose to apply a multiple instance learning module to force these two levels
of uncertainty to be consistent.

The disadvantage of this fragmented situation is that the DeepAL algorithm
is overly focused on specific subtasks and lacks generalization ability. Then
a natural question is whether a unified DeepAL algorithm framework can be
used to solve all mainstream computer vision tasks. This expectation of a
unified algorithm is consistent with the current pursuit of unifying computer
vision and natural language processing by using the same model architecture.
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5.5 DeepAL with Real-world Data

Existing DeepAL methods are generally tested on crafted benchmark datasets,
e.g., MS COCO and Pascal VOC in object detection, which are clean and
balanced. However, they may fall short in dealing with complicated data
distribution in real-world applications, e.g., out-of-distribution (OOD) samples
and imbalanced data distribution. In industry, for example, we can get a lot
of data from surveillance cameras. By looking closely at the data, we see that
pedestrians, motor vehicles, and non-motor vehicles are present most of the
time, while other objects to be detected are rarely present. This results in the
collected datasets often exhibiting long-tailed distributions. Therefore, it is
crucial to make DeepAL methods robust to these factors.

There has been some pioneering work to concentrate on this issue. For
example, Contrastive Coding Active Learning (CCAL) [29] point out that
existing DeepAL methods often assume that labeled and unlabeled data come
from the same class distribution. This assumption, however, does not hold when
the unlabeled datasets contain many OOD samples. To address this, CCAL
utilizes contrastive learning to extract both semantic and distinctive features
and combines them in the query strategy to choose the unlabeled samples
with matched categories. Another notable effort is Submodular Information
Measures Based Active Learning (SIMILAR) [64], which works to develop a
unified DeepAL framework that takes care of many realistic scenarios such as
OOD samples, rare classes, redundancy, and imbalanced datasets. Research in
this direction is still at an early stage, and we hope that more research will
focus on this direction in the future.

5.6 Hierarchical Annotation for DeepAL

Annotating the selected samples is an important step in the DeepAL process.
Since DeepAL typically involves only a small fraction of data, the quality of
the annotations determines the upper bound on the performance the models
can achieve.

In some applications that require domain knowledge to label data, such as
medical image analysis, the cost of hiring domain experts can be high. One
possible direction to save cost is that, in addition to just selecting samples,
DeepAL approaches also provide recommendations of the expertise required
by samples, thus building a hierarchical annotation system.

For example, some brain tumor magnetic resonance imaging (MRI) labels
can be difficult for junior doctors to judge, but easier for doctors with decades
of experience. Moreover, the cost of hiring doctors of different specialties
varies widely. If the DeepAL methods can provide the required expertise of
the selected samples, we can save costs by only providing difficult samples to
experienced doctors and easy samples to junior doctors.
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5.7 Industrial Integration of DeepAL

Development Operations (DevOps) is a popular technique in the field of
software engineering, whose purpose is to enable better communication and
collaboration between developers and operations staff, and to deliver applica-
tions and services at high velocity and reliability through automated processes.
With the advent of the AI era, the concept of MLOps has inevitably emerged.
Similar to DevOps, MLOps unifies machine learning systems development and
deployment, so as to standardize the model production process and enable
continuous delivery of high-performance production models.

Many MLOps systems have been proposed for public use. For example,
Amazon SageMaker MLOps5 helps machine learning engineers easily train, test,
troubleshoot, deploy, and govern machine learning models at scale to increase
productivity while maintaining model performance in production. Current
systems have not integrated with DeepAL components. Since data-centric AI
has attracted increasing attention and DeepAL is a key technology for enabling
data iteration, integrating DeepAL into the MLOps workflow is an important
direction for the future industrial application.

6 Conclusion

In this paper, we present a comprehensive review of DeepAL applied in com-
puter vision. We first give a brief overview of AL and systematically summarize
the recent developments in DeepAL. Then we describe the applications of
DeepAL in common computer vision tasks, including image classification and
recognition, object detection, image segmentation and video recognition, and
show how DeepAL is adopted to industrial-level software and systems to ac-
celerate model production. Lastly, we discuss the limitations of DeepAL and
propose interesting directions and challenges for the future development of
DeepAL.
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