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ABSTRACT

Neural radiance fields (NeRFs) refer to a suit of deep neural networks that
are used to learn and represent objects or scenes. Generally speaking,
NeRFs have five main characters: volumetric rendering, novel view syn-
thesis, factorizable embedded space, multi-view consistency and weighted
importance sampling. Recently, NeRFs have drawn great attention and
are now important cornerstones of metaverse and augmented reality
research, as is their stronger efficiency and more imaginative rendering
performance. There have been many reviews of NeRFs, most of them
focus on different applications of NeRFs. In this paper, we provide a
deep review and analysis of recent NeRF related works, according to
the main characters of NeRFs they make further progress in. Then we
introduce some new application innovations of NeRFs, and illustrate
future opportunities of them. We hope this paper can provide an in-
sightful organization of current developments in NeRFs, identify their
limitations, and give suggestions for further research.

∗Corresponding author: Fang Zhu, zhu.fang@sanechips.com.cn. This work was sup-
ported by National Key R&D Project of China (2021YFF0900500).

Received 06 September 2022; Revised 07 December 2022
ISSN 2048-7703; DOI 10.1561/116.00000162
© 2023 F. Zhu, S. Guo, L. Song, K. Xu and J. Hu

http://creativecommons.org/licenses/by-nc/4.0/


2 Zhu et al.

Keywords: NeRF, review, volumetric rendering, factorizable embedding, future
innovations.

1 Introduction

3D scene modeling and prior-based rendering are important directions in
augmented reality, meta-universe and controllable digital twin research. The
first try of a 2D view mapping recording of a 3D world was recorded in the
1920s. John Logie Baird, one of the TV pioneers, demonstrated the idea of
high-quality 3D television [18, 19, 52]. However, the long-running practice of
modeling and physical rendering in computer graphics (CG) scenes is much
more mature for such purposes. The beneficial experience stemmed from mesh
exercises inside the CG domain includes: (i) high quality of rendering result
when the 3D objects have 3D transformations; (ii) low storage consumption of
3D objects and scenes; (iii) controllability of rendering results of 3D scenes
based on the Cartesian Coordinates.

However, mesh modeling of 3D scenes in the CG domain is really man-
made controllable representations, which are based on the rendering pipeline
with specific features such as light, material, occupancy, and so on. The
main bottleneck is content creation, i.e., a vast amount of expensive manual
work by skilled artists is required for the creation of the underlying scene
representations in terms of surface geometry, appearance, light sources, and
animations.

Concurrently, powerful spatial representation related perception methods
have emerged in the computer vision (CV) and machine learning (ML) commu-
nities. The seminal work on multi-view stereo (MVS) by Michael et al. [4] has
evolved in recent years into paradigms of the creation of high-resolution 3D
models of natural scenes, such as structure from motion(SfM) and simultaneous
localization and mapping(SLAM). Furthermore, in order to obtain better space
occupancy representation, including the continuity of representation quantity
and multi-scale self-adaptation, implicit representation technology represented
by implicit surface is gradually attracting more attention from [16, 76]. In
particular, implicit representation based on ML has become a hot topic of
current research and has been widely discussed, such as in these works [48,
66, 73]. However, although high-quality spatial modeling of 3D scenes can be
obtained under such a paradigm, explicit reconstruction of scene properties
is still hard and error-prone and usually leads to artifacts in the rendered
content.

Very recently, the two areas have come together and have been explored
under the topic of neural radiance fields (NeRF) [55]. NeRF brings the promise
of addressing both reconstruction and rendering by using deep networks
to learn complex mappings from captured images to novel image synthesis.
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Furthermore, NeRF combines physical knowledge, e.g., mathematical models
of projection and imaging, with learned components as scene representations,
to yield new and powerful algorithms for controllable content rendering.

Since its first introduction in 2020 [55], NeRFs have received wide attention.
Many scholars have carried out deep research and extension around it. Recently,
many related high-level papers have been presented.

There have been many reviews of NeRFs, most of them focus on different
applications of NeRFs. Tewari et al. [85] review the recent trends on neural
rendering techniques, and discuss the specific applications of neural rendering
and the underlying neural scene representations. Xie et al. [99] focus on neural
field techniques and applications of neural fields to different problems (e.g.,
visual computing, robotics, audio). Gao et al. [21] provide an introduction to
the theory of NeRF based novel view synthesis, and a benchmark comparison
of the performance and speed of key NeRFs. In this paper, we try to distill the
principles of NeRF and review the different breakthroughs based on principles
of NeRFs. The central theme around which we structured this paper is the five
characters of NeRF: volumetric rendering, novel view synthesis, factorizable
embedded space, multi-view consistency and weighted importance sampling.
Based on this, we first review the original NeRF and distill the principles
of NeRF. Then we use five sections to introduce the recent outstanding
works in NeRF research, according to the main character they make further
progress in, as shown in Table 1. Some of the recent works that make
further progress in characters and application innovations of NeRFs are shown
in Figure 1. We think this is the main difference between our paper and
other NeRF reviews. After that, we introduce new application innovations of
NeRFs. Finally, we try to summarize the future development direction of NeRF
research.

Figure 1: Overviews of some recent works that make further progress in characters and
application innovations of NeRFs, including Block-NeRF [83], GRF [86], Nerfactor [112],
Point-NeRF [102], NerfingMVS [94] and A-NeRF [79].
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Table 1: NeRF’s characters and breakthroughs.

Characters Breakthroughs

Volumetric rendering

Faster training NeRFs
Faster inference NeRFs

Sparse NeRFs
Depth-supervised NeRFs

NeRFs for big scene rendering

Novel view synthesis NeRFs with novel view
synthesis paradigms

Factorizable embedded space
Relightable NeRFs
Deformable NeRFs

NeRFs for Scene Editing

Multi-view consistent NeRFs that further explore
multi-view consistency

Weighted importance sampling NeRFs that have novel
sampling methods

2 Neural Radiance Fields

In this section we review the initial release version of NeRF [55]. A NeRF
encodes a static scene θ as a continuous volumetric radiance field gθ of color c
and density σ. Specifically, for a 3D point x and viewing direction unit vector
d, as illustrated in (1), gθ is implicitly expressed by a MLP.

(δ, c) = gθ(x, d). (1)

In such neural implicit functions, the embedded algorithm reflects the color
computing, with respect to local structure, material, and lighting, and works
directly in the representation space. The expansion of such a definition is in
stark contrast to the implicit surface technology.

The scene representation by NeRF is optimized through a differentiable
rendering loss to reproduce the appearance of a set of input images from known
camera poses, as the loss given in (2). Figure 2 is an overview of neural radiance
field scene representation and differentiable rendering procedure. The original
nerf is developed under the assumption of an emit-absorb model and treats ev-
ery sample location as a light source, so that there is no need for explicit model-
ing of geometry, material, lighting, and light transport. We can query the MLP
for the volume density at densely-sampled points between the location and every
light source to estimate the attenuation of light before it reaches that location.
Such novel view synthesis pattern is employed, corresponding to the MAP hint.

L =
∑
r∈R

∥
⌢

C(r)− C(r)∥22. (2)
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Figure 2: Overview of neural radiance field scene representation and differentiable rendering
procedure. This picture is from [55].

In order to calculate the color of any ray passing through the scene, corre-
sponding to a pixel in a target image, classical ray definition and volumetric
rendering principles are used as in (3).

r(t) = o+ td

C(r) =

∫ tf

tn

T (t)δ(r(t)) · c(r(t), d)dt

T (t) = exp(−
∫ tf

tn

σ(r(s))ds).

(3)

The procedure includes the density function(σ) at a point, the reflected
radiance scattered(c)from a point in a direction, and the transmittance function
(T ). Transmittance function T also known as accumulated density, directly
follows Beer’s law, which is the classical solution that relates the attenuation
of light to the properties of the space through which the light is traveling. The
strict form of this process is continuous integral.

Such volumetric rendering procedures under Cartesian coordinates and
embedded volumetric parameters in Euclidean space greatly aid the NeRF.

NeRF makes a great progress towards a graphics pipeline based on real
world imagery, and can be directly used in novel viewpoint synthesis. However,
the original NeRF has two major limitations: (1) since 3D content is encoded
into the weights of an MLP, the trained network can only represent the learned
structure, and is difficult to generalize across novel geometries; (2) the training
process and inference process is very time-consuming. Many follow-up works
try to address the limitations, introduce NeRFs that have better capacity, and
adopt NeRFs to more applications.

We think the original NeRF has five main characters: volumetric rendering,
novel view synthesis, factorizable embedded space, multi-view consistency and
weighted importance sampling. In the following five sections, we review recent
important NeRF-based works according to the character they make further
progress in.
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3 Volumetric Rendering

The volumetric rendering procedure under Cartesian coordinates is the most
important character in the NeRF definition. Many related works make further
progress in this character.

3.1 Faster Training NeRFs

How to effectively construct the reasonable and efficient calculation process of
continuous points rendering is important to NeRFs’ deployment. The gradual
improvement of the calculation process of image pixels and spatial light, based
on different scales or other factors, is the basis for promoting more accurate
volumetric models and more fidelity rendering results. Since the initial design
of NeRF, such a question has gained attention from researchers, a lot of effort
has been put into these areas. The original NeRF is known by the need
of too much training time and inefficiency in rendering new views. Many
follow-up works have shown significant speed up in the training of NeRF.
Yu et al. [106] render 800 × 800 images at more than 150 FPS, 3000 times
faster than conventional NeRFs, by pre-tabulating the NeRF into a PlenOctree.
They showed that PlenOctrees can also lead to equal or better quality. Other
works include Sparse Neural Radiance Grid (SNeRG) [27], and the most recent
and most famous breakthrough, Instant NGP [57]. The main contribution of
Instant NeRF is the introduction of Multi-Resolution Hash Grid Coding, to
help organize the volumetric rendering procedure. Based on such an input
parameter feature space representation method, training completion time is
reduced to seconds from previous hours.

Sun et al. [81] presented a super-fast convergence approach that directly
optimizes the voxel grid, and reduce training time of NeRF from many hours
to 15 minutes. The main contribution of Instant NGP [57], from Nivida, is
the introduction of Multi-Resolution Hash Grid Coding, to help organize the
volumetric rendering procedure, as shown in Figure 3. TensoRF [7] factorize
the 4D scene tensor into multiple compact low-rank tensor components by
applying traditional CP decomposition. As a result, TensoRF achieves fast
reconstruction (<30 min) with better rendering quality and a smaller model size
(<4 MB). Point-NeRF [102] combines the feature vector of 2D plane segments
and the related point set from view depth fusion, to form the initial neural
point cloud (each point has a space position, confidence, and reprojection of
image features), with multi-view consistency. Then the neural point cloud
helps to construct the NeRF’s MLP based on the image feature vectors in the
spatial point neighbors. Point-NeRF models a volumetric radiance field with
a neural point cloud. This enables highly efficient reconstruction with only
20–40min per-scene optimization, while original NeRF requires more than
20 hours.
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Figure 3: With a realtime SLAM implementation estimates camera poses, Instant NGP can
provide training and rendering live feedback. This picture is from [57].

Associated breakthroughs included a series of papers aimed at continuous
innovation, from the original NeRF to Mip-NeRF [2] and the more recent
Mip-NeRF-360 [3]. Under these continuous improvements, ray-color related
spatial MLP outputs evolve from ray casting to linear cone casting and finally
to no-linear cone casting. Different from such optimization in light tracking
maturity, Shafiei et al. [75] proposed neural learning of the transmittance
function. Great efficiency can be gained from such innovation, especially under
complex environmental conditions.

3.2 Faster Inference NeRFs

Synthesizing high-resolution novel view from NeRF often requires time-
consuming optical ray marching. There are many works that focus on acceler-
ation of inference. NSVF [46] consists of a set of voxel-bounded implicit fields
organized in a sparse voxel octree. NSVF is 10 times faster than the original
NeRF [55] while achieving higher quality results. Lindell et al. [45] introduced
automatic integration, a new framework that instantiate the computational
graph for training and reassemble the graph to obtain a network. They im-
proved render times by greater than 10× with a tradeoff of reduced image
quality. Decomposed radiance fields [68] increase the inference efficiency of neu-
ral rendering via spatial Voronoi decomposition, which is compatible with the
Painter’s algorithm and makes inference pipeline GPUfriendly. KiloNeRF [69]
demonstrate that real-time rendering is possible by utilizing thousands of tiny
MLPs instead of one single large MLP. Each individual MLP only needs to
represent parts of the scene. FastNeRF [23] that has a core of graphics-inspired
factorization is the first NeRF-based system capable of rendering high fidelity
photorealistic images at 200Hz on a high-end consumer GPU. Mixture of
Volumetric Primitives (MVP) [51] combines the completeness of volumetric
representations with the efficiency of primitive-based rendering to achieve
quality and runtime performance. Light Field Networks (LFNs) [77] require
only a single network evaluation to render a ray, as it leverage meta-learning
to learn a prior. LFNs [77] represent both geometry and appearance of the
underlying 3D scene in a 360-degree, four-dimensional light field parameterized



8 Zhu et al.

via a neural network. LFNs just need to do single evaluation for each ray. This
results in dramatic reductions in time and memory complexity, and enables
real-time rendering.

3.3 Sparse NeRFs

Some researchers train or inference with their NeRFs using sparse input views
or even a single view.

Instant Neural Radiance Fields (Instant NGP) [57] allow training from an
incremental stream of images and camera poses. AutoRF [56] is a new approach
for learning neural 3D object representations where each object in the training
set is observed by only a single view. To address this challenging problem,
AutoRf learns a normalized, object-centric representation whose embedding
describes and disentangles shape, appearance, and pose. Light Field Neural
Rendering [80] enforces geometric constraints during training and inference,
the scene geometry is implicitly learned from a sparse set of views. Light
Field Neural Rendering performs well on datasets that with larger margins on
scenes with severe view-dependent variations. Neural Point Light Fields [61]
encode a local light field on a point cloud by learning realistic radiance fields
with only a single radiance sample per ray. Neural Point Light Fields are
functions of the ray direction and local point feature neighborhood, which
allows us to interpolate the light field conditioned training images without
densely captured input views. Lin et al. [44] propose to leverage both the global
and local features to form an expressive 3D representation. The global features
are learned from a vision transformer, while the local features are extracted
from a 2D convolutional network. They reduce the inputs to a single unposed
image. Unlike traditional MPI that uses a set of simple RGBα planes in other
NeRFs, NeX [95] propose a hybrid implicit-explicit modeling strategy. NeX
models view-dependent effects by instead parameterizing each pixel as a linear
combination of basis functions learned from a neural network. Törf [1] replace
data-driven priors with measurements from a time-of-flight (ToF) camera. Törf
improves novel-view synthesis for few-view scenes and especially for dynamic
scenes. Among them, Törf works as not only the seminal breakthrough of
incorporating active sensors within the NeRF theoretical framework, but also
the active exploitation of multi-sensor fusion’s advantage under NeRF. With
updating corresponding parts in NeRF for the ToF camera and including
the novel view synthesis optimization, some long-standing problems of the
ToF’s sensing results have been greatly improved, such as the false results
exceeding an unambiguous range, resistance to sensor noise, and multiple
single-scattering events along a ray. Furthermore, with the final collocated
radiance fields, multi-sensor systems can capture scene geometry from a single
view, allowing for higher-fidelity novel-view synthesis of dynamic scenes.
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Other subsequent studies, such as the Sem2NeRF [10] and SinNeRF [100]
methods, investigated the relationship between 2D semantics and NeRF con-
struction in a single view input context. Chen et al. [10] introduced a new
task, Semantic-to-NeRF translation (Sem2NeRF), that aims to reconstruct a
3D scene conditioned on one single-view semantic mask as input. Sem2NeRF
addresses the task by encoding the semantic mask into the latent code that
controls the 3D scene representation of a pre-trained decoder. Single View
NeRF (SinNeRF) [100] uses only a single view as input, and propagate geome-
try pseudo labels and semantic pseudo labels to guide the progressive training
process. At the same time, 2D-3D feature projection capabilities, such as
the Features Line of Sight Projection (FLoSP) introduced in the recent work
MonoScene [6], will strengthen the link between semantics and NeRF in a
unified 3D pattern. MonoScene [6] proposes a 3D Semantic Scene Completion
(SSC) framework, where the dense geometry and semantics of a scene are
inferred from a single monocular RGB image.

3.4 Depth-supervised NeRFs

Concurrent to that, Roessle et al. [71] presented a method for novel view
synthesis using neural radiance fields (NeRF) that leverages dense depth priors.
Depth-supervised NeRF [14] add a loss to encourage the distribution of a
ray’s terminating depth matches a given 3D keypoint, incorporating depth
uncertainty, to render better images with fewer training views.

3.5 NeRFs for Big Scene Rendering

NeRF laid the foundation of space-based content combination and space rep-
resentation combination and decomposition. Related research works can be
referred to Professor Yu’s paper regarding controllable scene content composi-
tion [109], and also Google’s latest breakthrough, Block-NeRF [83], regarding
rendering city-scale scenes spanning multiple blocks. Professor Yu’s paper [109]
generates photo-realistic and editable free-viewpoint videos for dynamic scenes
using a layered neural representation. Block-NeRF [83] decouples rendering
time from scene size, and enables rendering to scale to arbitrarily large envi-
ronments. In particular, KiloNeRF [69] discussed the feasibility of accelerating
innovation by replacing the original MLP (NeRF space representation) with
many micro MLPs in sub spaces. NeRF++ [111] analyzed NeRF’s success in
avoiding shape-radiance ambiguity, and works with 360 capture of large-scale
unbounded 3D scenes. BungeeNeRF [97] performs NeRF in city-scale scene,
with views ranging from an overview of a city to complex architectural details,
as shown in Figure 4. To address this issue, BungeeNeRF fitted distant views
with a shallow base block, new blocks are appended to accommodate the
emerging details in the increasingly closer views.
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Figure 4: Overview of BungeeNeRF. This picture is from [97].

4 Novel View Synthesis

As mentioned in the last section, the neural representation, with the novel
view synthesis training pattern, could improve the storage efficiency and get
high-fidelity prediction through MAP. Since the original NeRF is only limited
to static scenes, a lot of researchers’ works extended the application scenarios
to time interpolation, viewpoint interpolation, and mixed interpolation based
on scenario video records with the help of the novel view synthesis paradigm.
Such works include an early Meta’s research work [96], and later Neural Scene
Flow Fields (NSFF) [42].

The basic principle of such a transformation is straightforward: extend the
original hidden space under 3D Cartesian coordinates in relation to a static
scene to a 4D space-time irradiance field. However, since the input of the
dynamic part should be carefully differentiated, the reconfiguration of the loss
function gains quite some attention in the above studies, as cited in the papers.

Original NeRF can only inference novel view of training objects and scenes.
Many researchers worked to extend NeRF to unseen objects and scenes. General
Radiance Field (GRF) [86] learn local features for each pixel in 2D images
and project these features to 3D points. Experiments demonstrate that
GRF can generate high-quality and realistic novel views for novel objects.
Tancik et al. [84] showed that simply modifying a coordinatebased neural
representation’s initial weight values can result in better generalization when
only partial observations of a given signal are available. Wang et al. [91]
introduced image-based rendering network (IBRNet) that includes a multilayer
perceptron and a ray transformer that estimates radiance and volume density
at continuous 5D locations. IBRNet outperforms recent novel view synthesis
methods that also seek to generalize to novel scenes. Shape-conditioned
Radiance Fields (ShaRF) [70] builds a geometric scaffold for an object and then
uses this for estimating the radiance field. ShaRF is able to generalize to images
outside of the training domain. CodeNeRF [30] learns to disentangle shape and
texture by learning separate embeddings. Unseen objects can be reconstructed
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from a single image, and then rendered from new viewpoints or their shape and
texture edited by varying the latent codes. Neuray [50] constructs the radiance
field that focus on visible image features to improve rendering quality, and uses
a consistency loss to refine the visibility when finetuning on a specific scene.

5 Factorizable Embedded Space

Controllable rendering procedures are the ultimate goal of scene representation
under interactive scenarios. And NeRF’s MLP embeds the algorithm that
reflects image computing in terms of local structure, material, and lighting,
and operates directly in the representation space. Below, the three directions
of controlling the embedded factors in the rendering procedure attract a lot of
exploration.

5.1 Relightable NeRFs

The first is how to factorize the hidden space embedded in NeRF. Relightable
NeRFs aim to get good performance with challenging input images. Recent
NeRFactor [112], NeRV [78], and NeRD [5] work is noteworthy. They adopted
a different rendering model, the absorb-reflect model, which requires explicit
modeling of geometries (surface normal, lighting, material, and light transport).
Among them, NeRFactor [112] factorsizes the appearance of a scene into 3D
neural fields of surface normals, light visibility, albedo, and reflectance with an
ingenious three-phases training design. Neural Reflectance and Visibility Fields
(NeRV) [78] takes a set of images of a scene illuminated by unconstrained
known lighting as input, and produces a 3D representation that can be rendered
from novel viewpoints under arbitrary lighting conditions. NeRD [5] uses
physically-based rendering to decompose the scene into spatially varying
BRDF material properties. The input images can be captured under different
illumination conditions. And NeRF-W uses the generative latent optimization
framework (GLO) to optimize the appearance of each input image into the
shared appearance embedding vector during the entire input photo data set.
This decouples the external view of a photo from the illumination change
and makes the training of scene representation very flexible and robust, even
under the scenario of a changing illumination environment. Hidden variables
in higher dimensions are for the purpose of strongly constraining the non-rigid
deformation of an object under time-varying observation. NeRF for Outdoor
Scene Relighting (NeRF-OSR) [72] is the first neural radiance fields approach
for outdoor scene relighting.

Capturing the geometry and material properties of an object is essential for
several computer vision and graphics applications. Feng et al. [20] created the
first facial albedo evaluation benchmark TRUST where subjects are balanced in
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Figure 5: Overview of TRUST, which is built on the idea that the scene image can be
exploited as a cue to disambiguate light and albedo, resulting in more accurate predictions.
This picture is from [20].

terms of skin color, as shown in Figure 5. It’s an initial step towards unbiased
estimation of facial albedo from images in the wild. NeRF-OSR [72] showed that
the second-order SH lighting model is capable of producing plausible relightings.
NeRF-OSR allows simultaneous editing of illumination and camera viewpoint
using only a collection of outdoor photos shot in uncontrolled settings.

5.2 Deformable NeRFs

And the second one is how to extend hidden space to higher dimensions for the
purpose of more abundant meanings and expressions. Such research focused on
deformable dynamic object modeling, which corresponds to the representation
and construction of volume animation models and the synthesis of related free
angles of view. Oritinal NeRF assume a static scene without moving objects.
Many researchers relaxed this assumption and proposed deformable neural
rendering system that is applicable to dynamic scenes. Hidden variables in
higher dimensions are for the purpose of strongly constraining the non-rigid
deformation of an object under time-varying observation. Related works in the
recent literature cover Hyper-NeRF [64], D-NeRF [67], and HumanNeRF [113].
Dynamic NeRF (D-NeRF) [67] is the first end-to-end work on deformable
NeRF, its key idea is to decompose learning in two modules. Figure 6 is an
overview of D-NeRF. The first model learns a spatial mapping between each
point of the scene at time t and a canonical scene configuration. The second
module regresses the scene radiance emitted in each direction and volume
density given the tuple.

Park et al. introduced their deformable NeRFs [63] that models non-rigidly
deforming scenes. Their key to obtain high quality results is the as-rigid-
as-possible deformation prior, and coarse-to-fine deformation regularization.
The basic principle of such a transformation is straightforward: extend the
original hidden space under 3D Cartesian coordinates in relation to a static
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Figure 6: D-NeRF uses a deformation network to map scene deformations to, and uses a
canonical network to regress volume density and color. This picture is from [67].

scene to a 4D space-time irradiance field. However, since the input of the
dynamic part should be carefully differentiated, the reconfiguration of the
loss function gains quite some attention in the above studies, as cited in the
papers. RawNeRF [54] can reconstruct scenes from extremely noisy images
captured in near-darkness. RawNeRF represents a step toward robust, high
quality capture of real world environments. By the way, similarly, RAWNeRF
incorporated the optical camera imaging model into the principal procedure
and used image raw data (noisy linear raw images) as input. As an interesting
result, the freely novel view synthesis can include controllable factors like
exposure, tonemapping, and focus.

Recently, some human related NeRF methods are also proposed. H-
NeRF [101] is a novel neural network that exploits the power of volumetric
radiance fields to learn complex human structure and appearance, by relying
on statistical implicit human pose and shape signed distance functions for
accurate geometric reconstruction. H-NeRF can be used for the photo-realistic
rendering and the temporal reconstruction of humans in motion. Neural Hu-
man Performer [36] combines a temporal and a multi-view Transformer that
integrates multi-time and multi-view observations, and is constructed based on
a parametric body model that can synthesize free-viewpoint videos for arbitrary
human performers from sparse camera views. MPS-NeRF [22] is a novel-view
and novel-pose human synthesis approach which can be generalizable for un-
seen persons with sparse multiview images as input. Its main innovation is to
leverage a canonical-space NeRF and a volume deformation scheme derived by
human body parametric model to achieve better generalizability.

Human related NeRFs are important in NeRF research. Neural Actor
(NA) [47] is a new method for high-quality synthesis of humans from arbitrary
viewpoints and under arbitrary controllable poses. NA utilizes a coarse para-
metric body model as a 3D proxy to unwarp the 3D space surrounding the
posed body mesh into a canonical pose space. Then NA constructs a neural
radiance field in the canonical pose space to learn pose-induced geometric
deformations as well as both pose-induced and view-induced appearance ef-
fects. Animatable Neural Radiance Fields [65] introduce neural blend weight
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fields to address the challenge of reconstructing an animatable human model
from a multi-view video. Chen et al. [9] introduce their animatable NeRF
for detailed human avatar creation from monocular videos. Their approach
extends NeRF to the dynamic scenes with human movements via introduc-
ing explicit pose-guided deformation while learning the scene representation
network. HumanNeRF [113] enables pausing the video at any frame and
rendering the subject from arbitrary new camera viewpoints or even a full
360-degree camera path for that particular frame and body pose. Neural
Novel Actor can learn a generalized animatable neural human representation
from a sparse set of multi-view imagery of multiple persons. Neural Novel
Actor [92] designs human representation with disentangled geometry and ap-
pearance, and leverage the features at both the spatial points and the surface
points of SMPL to infer pose- and person-dependent geometry and appearance.
HDHumans [26] is the first method for HD human character synthesis that
jointly produces an accurate and temporally coherent 3D deforming surface
and highly photo-realistic images of arbitrary novel views and of motions not
seen at training time. HDHumans use deforming character template to guide
NeRF, and leverage the dense point clouds resulting from NeRF to further
improve the deforming surface via 3D-to-3D supervision.

5.3 NeRFs for Scene Editing

The third one is how to control the hidden space for definitive goals. Classical
works like EditNeRF [49], Neural Scene Graphs [62], and Compositional Gen-
erative Neural Feature Fields (GIRAFFE) [59] are examples. Neural Scene
Graphs [62] is the first approach that tackles the challenge of representing
dynamic, multi-object scenes. Neural Scene Graphs encodes object transfor-
mations and radiance, then learn implicitly encoded scenes. EditNeRF [49]
enables users to edit colors and shapes of objects, using a disentangled repre-
sentation. All of these papers build on the early pioneering work of Generative
Radiance Fields (GRAF) [74], which pioneered the integration of Generative
Adversarial Networks (GAN) and NeRF in training and volumetric rendering
for controllable high-resolution image synthesis.

FENeRF outperforms state-of-the-art methods in various face editing tasks.
Instead of encoding the entire scene as a whole, Yang et al. [103] presented a
novel neural scene rendering system to produce realistic rendering with editing
capability for a clustered and real-world scene, as shown in Figure 7. Face
Editing in Neural Radiance Fields (FENeRF) [82], which not only generated
consistent views and locally edited images but also improved image fidelity.
Face Editing in Neural Radiance Fields [82] is the first locally editable 3D-aware
face generator FENeRF based on implicit scene representation. FENeRF can
jointly render the boundary-aligned image and semantic mask and use the
semantic mask to edit the 3D volume via GAN inversion. Semantic labeling is
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Figure 7: Layered neural representation introduced by Yang et al. [103] can generate photo-
realistic and editable free-viewpoint videos for dynamic scenes. The left two columns are two
rendering results of different viewpoints without editing, the middle column is the edited
results in a novel viewpoint, and the right column is the corresponding 3D illustration. This
picture is from [103].

highly correlated with geometry and radiance reconstruction, as first argued in
the work Semantic-NeRF [114]. Zhi et al. [114] extend NeRF to jointly encode
semantics with appearance and geometry. They demonstrate its advantageous
properties in efficient scene labelling tool, novel semantic view synthesis and
many other applications.

6 Multi-view Consistent

Multi-view consistency is the basement of MVS. The consistent information of
multiple views can be used explicitly to improve the robustness and accuracy
of NeRF training. The typical research includes MVSNeRF [8] and Nerfing-
MVS [94]. MVSNeRF [8] enables high quality radiance field reconstruction
from only three input views and can achieve realistic view synthesis results
from the reconstruction. MVSNeRF is a generalizable radiance field that
works well across diverse datasets. NerfingMVS [94] firstly adapts a monocular
depth network over the target scene by finetuning on its sparse SfM+MVS
reconstruction. Then utilize the learning-based priors to guide the optimization
process of NeRF to get depth images. And a per-pixel confidence map is used
to further improve the depth quality. In comparison to these pixel-domain
studies, DietNeRF [29] recently proposed the concept of high-level semantic
consistency. With a single-view 2D representation as input, DietNeRF ex-
ploited this transferable prior knowledge to solve optimization issues and to
cope with partial observability.

Furthermore, constructing a uniform geometry prior index between 3D
features and 2D features, with multi-view consistency, is also an important di-
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rection for improving the NeRF training procedure. Examples of related works
include PixelNeRF [107], Point-NeRF [102], and SRF [11]. PixelNeRF [107]
introduces an architecture that conditions a NeRF on image inputs in a fully
convolutional manner. PixelNeRF [107] is trained across multiple scenes to
learn a scene prior, then predict a continuous neural scene representation
conditioned on one or few input images. This allows the network to be trained
across multiple scenes to learn a scene prior, enabling it to perform novel view
synthesis in a feed-forward manner from a sparse set of views (as few as one).
Stereo Radiance Field (SRF) [11] is trained end-to-end and generalizes to new
scenes. SRF project each 3D point to multiple views, extract features, and
process them in pairs. SRF only need sparse views at test time.

7 Weighted Importance Sampling

Learning from the traditional Monte Carlo rendering experience, the adoption
of weighted importance sampling (the sampled probability density function
similar to the shape of the integral function) in the volumetric rendering
procedure can reduce the sampling error and accelerate the convergence speed.
With such a hint, related research, including DONeRF [58], DS-NeRF [14],
and MINE [40], used the explicit depth information to improve the related
training of NeRF and generation of visualized content. The typical one,
DONeRF [58], significantly reduces the number of samples required for each
view ray calculation in view rendering when samples are collected around
the space surface of the scene. Inference costs can be reduced by up to 48x
compared to the original NeRF design. Similar efficiency can also be seen
in Point-NeRF [102], the method mentioned above, since the explicit surface
indicator existed. Deng et al. [14] introduced Depth-supervised NeRF that
takes advantage of depth supervision. This method trains 2–3 times faster and
get better results from fewer training views, compared with previous works.
MINE [40], used the explicit depth information to improve the related training
of NeRF and generation of visualized content.

8 Application Innovations of NeRFs

The original NeRF can be used directly in novel view synthesis. In this section,
we review the recent works that inspire new applications of NeRFs.

8.1 NeRFs for Pose Estimation

Inverting Neural Radiance Fields (iNeRF) [105] applies analysis by synthesis
with NeRF for 6DoF pose estimation. Starting from an initial pose estimate,
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the authors use gradient descent to minimize the residual between pixels
rendered from an already-trained NeRF and pixels in an observed image.
Articulated Neural Radiance Field (A-NeRF) [79] learns a generative neural
body model from unlabelled monocular videos. A-NeRF could refine the
initial 3D articulated skeleton pose estimate. NeRF– [93] showed that camera
parameters can be jointly optimised through a photometric reconstruction.
Bundle-Adjusting Neural Radiance Field (BARF) [43] was proposed for training
NeRF from imperfect (or even unknown) camera poses. BARF can learn the
3D scene representations from scratch as well as resolve large camera pose
misalignment. Self-Calibrating Neural Radiance Fields (SCNeRF) [31] is a
camera self-calibration algorithm for generic cameras with arbitrary non-linear
distortions. It can jointly learn the geometry of the scene and the accurate
camera parameters without any calibration objects.

8.2 NeRFs for SLAM

Implicit Mapping and Positioning (iMAP) is the first work that poses dense
SLAM as real-time continual learning. iMAP showed that an MLP can be
trained from scratch as the only scene representation with a hand-held RGB-D
camera. NICE-SLAM [115] combines neural implicit decoders with hierarchical
grid-based representations. NICE-SLAM demonstrate that tiny MLPs + multi-
res feature grids can guarantee fine-detailed mapping, high tracking accuracy,
faster speed and much less computation.

8.3 NeRFs for Reconstruction

The typical research includes MVSNeRF [8] and NerfingMVS [94]. Oechsle
et al. [60] thought that implicit surface models and radiance fields can be
formulated by enabling both surface and volume rendering using the same
model. Their model outperforms previous works in terms of reconstruction
quality. Neural Implicit Surfaces (NeuS) [90] reconstructs objects and scenes
with high fidelity from 2D image inputs. NeuS propose to represent a sur-
face as the zero-level set of a signed distance function (SDF) and develop a
new volume rendering method to train a neural SDF representation. Yariv
et al. [104] thought that geometry extracted using an arbitrary level set of
the density function could lead to low fidelity reconstruction. They modeled
the volume density as a function of the geometry, thus improved geometry
representation and reconstruction in neural volume rendering. NeuRIS [89] can
build highquality reconstruction of indoor scenes. The key idea of NeuRIS is
to integrate estimated normal of indoor scenes as a prior in a neural rendering
framework, and reconstruct large texture-less shapes in an adaptive manner.
MonoSDF [108] demonstrate that depth and normal cues predicted by general-
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purpose monocular estimators can significantly improve reconstruction quality
and optimization time.

8.4 NeRFs for Downstream Tasks

Distilled Feature Field (DFF) [33] distills the knowledge of off-the-shelf, su-
pervised and self-supervised 2D image feature extractors such as CLIP-LSeg
or DINO into a 3D feature field optimized in parallel to the radiance field.
Given a user-specified query of various modalities such as text, an image
patch, or a point-and-click selection, 3D feature fields semantically decompose
3D space without the need for re-training. Neural-Sim [24] is the first fully
differentiable synthetic data pipeline that uses NeRFs in a closed-loop with
a target application’s loss function. And Neural-Sim is successfully used in
real-world object detection tasks. GraspNeRF [13] is the first multiview RGB-
based 6-DoF grasp detection network that leverages the generalizable NeRF
to achieve material-agnostic object grasping in clutter. And GraspNeRF per-
forms zero-shot NeRF construction with sparse RGB inputs and reliably detect
6-DoF grasps, both in realtime. Neural Semantic Fields (NeSFs) [88] is a novel
method for simultaneous 3D scene reconstruction and semantic segmentation
from posed 2D images. At inference time, NeSF construct a dense semantic
segmentation field that can be queried directly in 3D or used to render 2D
semantic maps from novel camera poses. Panoptic Neural Fields (PNF) [35] is
an object aware neural scene representation that decomposes a scene into a
set of objects (things) and background (stuff). Each object is represented by
an oriented 3D bounding box and a multi-layer perceptron (MLP) that takes
position, direction, and time and outputs density and radiance.

8.5 Generative NeRFs

Also, the work, GAN-based Neural Radiance Field without Posed Cam-
era(GNeRF) [53], proved the resistance to noise and disturbance during the
representation field construction by first being guided by high-level semantic
consistence. 3D Generative Neural Radiance Field (GNeRF) models, which
extract implicit 3D representations from 2D images, have recently been shown
to produce realistic images representing rigid/semi-rigid objects, such as human
faces or cars. NeRF-VAE [34] is a 3D scene generative model that incorporates
geometric structure via Neural Radiance Fields (NeRF) and differentiable
volume rendering. NeRF-VAE shares structure across scenes and is able
to infer the structure of a novel scene using amortized inference. 3D-aware
Semantic-Guided Generative model (3D-SGAN) [110] use a generative NeRF
to implicitly represent the 3D human body, and render the 3D representation
into 2D segmentation masks. And the masks are mapped into the final images
using a VAE-conditioned texture generator. GIRAFFE [59] represents scenes
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as compositional generative neural feature fields. The authors disentangle
individual objects from the background as well as their shape and appearance
to yield fast and controllable image synthesis. StyleNeRF [25] is a 3D-aware
generative model for photo-realistic high resolution image synthesis with high
multi-view consistency. StyleNeRF integrates NeRF into a style-based genera-
tor to tackle the aforementioned challenges, i.e., improving rendering efficiency
and 3D consistency for high-resolution image generation. Generative radiance
manifolds (Gram) [15] is proposed for 3d-aware image generation, by regulating
point sampling and radiance learning on 2D manifolds for the radiance genera-
tor. Gram takes a large step towards generating 3D-aware virtual contents for
real applications.

8.6 NeRFs for Robotics

Li et al. [41] proposed to learn viewpoint-invariant 3D-aware scene representa-
tions from visual observations using an autoencoding framework augmented
with a neural radiance field rendering module and time contrastive learning.
The learned 3D representations perform well on the model-based visuomotor
control tasks. Ichnowski et al. [28] propose using NeRFs to detect, localize,
and infer the geometry of transparent objects with sufficient accuracy to find
and grasp them securely. They recover the geometry of transparent objects
through a combination of additional lights and thresholding to find transparent
points that are visible from some view directions. Lee et al. [37] leveraged
NeRF based implicit representations to tackle active robotic 3D reconstruction
of an object.

8.7 NeRFs for Medical Application

Medical Neural Radiance Fields (MedNeRF) [12] is proposed to learn recon-
struct CT projections from a few or even a single-view X-ray. This model is
trained on chest and knee datasets, and demonstrate qualitative and quan-
titative rendering results. Li et al. [39] apply the NeRF algorithm for the
reconstruction of 3D US spine data and to evaluate the spinal curvature mea-
surement from the reconstructed results. NeRFs are also used in Sparse-view
computed tomography (CT) [32].

8.8 NeRFs for Reinforcement Learning

It is a long-standing problem to find effective representations for training
reinforcement learning (RL) agents. Driess et al. [17] demonstrates that
learning state representations with supervision from NeRFs can improve the
performance of RL compared to other learned representations or even low-
dimensional, hand-engineered state information. They propose to train an
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encoder that maps multiple image observations to a latent space describing
the objects in the scene.

8.9 NeRFs for Some Other Scientific Applications

Morphable Facial Neural Radiance Field (MoFaNeRF) [116] takes the coded
facial shape, expression and appearance along with space coordinate and
view direction as input, and can be used for photo-realistic image synthesis.
MoFaNeRF is the first facial parametric model based on neural radiance field,
and can make the face morphable in a large-scale solution space. Ref-NeRF [87]
is introduced to accurately capture and reproduce the appearance of glossy
surfaces. Ref-NeRF replaces NeRF’s parameterization of view-dependent
outgoing radiance with a representation of reflected radiance and structures
this function using a collection of spatially-varying scene properties. Black
Hole NeRF [38] is a novel tomography approach that leverages gravitational
lensing to recover the continuous 3D emission field near a black hole. This
work takes the first steps in showing how future measurements from the Event
Horizon Telescope could be used to recover evolving 3D emission around
the supermassive black hole in our Galactic center. Figure-Ground Neural
Radiance Fields (FiG-NeRF) [98] can be used to separate foreground objects
from their varying backgrounds, and modeling object categories in 3D whilst.

9 Future

After reviewing certain NeRFs’ recent achievements, in this section, future
opportunities with NeRF for the development of scene modeling and content
rendering will be illustrated in detail. In particular, some critical innovation
paradigms can be followed, like principled consistent framework redefinition
and intentional embedding exploration, which will be deeply discussed.

9.1 Frame Redefinition

During the review in the previous section, most exercises of NeRFs use image
sequences from passive sensors as input, although some active sensors can
work as catalysts in the weighted importance sampling. Since multi-sensors
are becoming more and more common in electronic systems nowadays, like
the latest iPhone. If sensor enhancement and multi-sensor fusion can also
be incorporated in the final context, the opportunity for NeRF to bridge the
theoretical and technical domains will be greatly enhanced.

The key principal of NeRF’s original definition is volumetric rendering,
which strictly defines the procedure for creating an image by tracing rays
through the volume and computing the radiance along each ray. In the
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formula, two key sub-concepts reflect the radiance transmission and radiance
generation procedures. So, strictly following the main volumetric rendering
procedure and updating the related sub-procedure will beneficially extend
NeRF’s domain according to the classical radiance generation and transmission
model gathered during long periods of sensors’ development.

Furthermore, as previously stated, novel view synthesis is an important
characteristic of NeRF, which optimizes the final results through the end-to-
end optimization process with high fidelity input data included. All of the
above principles, if followed during the framework redefinition, will eventually
bridge the gap between rapidly emerging sensor-related technology and the
most recent theoretical advancements in NeRFs.

Törf [1] and RAWNeRF [54] have recently demonstrated the possibilities of
the above principal aligned framework definition. Among them, Törf works as
not only the seminal breakthrough of incorporating active sensors within the
NeRF theoretical framework, but also the active exploitation of multi-sensor
fusion’s advantage under NeRF.

With updating corresponding parts in NeRF for the ToF camera and
including the novel view synthesis optimization, some long-standing problems
of the ToF’s sensing results have been greatly improved, such as the false results
exceeding an unambiguous range, resistance to sensor noise, and multiple single-
scattering events along a ray. Furthermore, with the final collocated radiance
fields, multi-sensor systems can capture scene geometry from a single view,
allowing for higher-fidelity novel-view synthesis of dynamic scenes.

By the way, similarly, RAWNeRF incorporated the optical camera imaging
model into the principal procedure and used image raw data (noisy linear raw
images) as input. As an interesting result, the freely novel view synthesis can
include controllable factors like exposure, tonemapping, and focus.

9.2 Embedding Exploration

In addition to enlarging the coverage of NeRF’s dominant domain with the
above paradigm, the intentional embedding exploration can also seem to be a
prospective development direction of NeRF.

First, semantic labeling is highly correlated with geometry and radiance
reconstruction, as first argued in the work Semantic-NeRF [114]. Other
subsequent studies, such as the Sem2NeRF [10] and SinNeRF [100] methods,
investigated the relationship between 2D semantics and NeRF construction
in a single view input context. At the same time, 2D-3D feature projection
capabilities, such as the Features Line of Sight Projection (FLoSP) introduced
in the recent work MonoScene [6], will strengthen the link between semantics
and NeRF in a unified 3D pattern.

Secondly, because of the continuity of the underlying implicit representation
in NeRF and also the virtues brought by the novel view synthesis pattern.
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Semantic prediction combined with NeRF construction, like Semantic-NeRF,
has the virtue of resulting in smooth, compact, continuous, and efficient
de-noising semantic labels.

Thirdly, and most importantly, such an intention can greatly enhance the
perception and understanding of the scenes with hierarchical spatial-semantic
consistency for better 3D scene perception and more fidelity controllable
rendering. Such an advantage can be referred to in the latest work, Face Editing
in Neural Radiance Fields (FENeRF) [82], which not only generated consistent
views and locally edited images but also improved image fidelity. Also, the
work, GAN-based Neural Radiance Field without Posed Camera(GNeRF) [53],
proved the resistance to noise and disturbance during the representation field
construction by first being guided by high-level semantic consistence.

9.3 Problems to Overcome

Although NeRFs have made great progress in recent years, there exist two
main problems to overcome. First, rendering results of NeRFs don’t have
high-enough quality, especially for input images with high resolution and rich
details. Second, although there have been many works that accelerate training
and inference of NeRFs, time consumption of NeRFs are still too high. This
means NeRFs need too much time to adapt to or train on new scenes, and we
can not get real-time rendering result with NeRFs. Other problems of NeRFs
include scalability, generalizability, modeling of refractive objects, and so on.

10 Conclusion

NeRFs have raised a lot of interest in the past few years. This state-of-the-art
report reflects the immense increase in research of this field. It spans a variety
of use-cases that range from representation construction based on dynamic
sequence input, time-spatial up-sampling based rendering, factorization for
hidden space, and controllable scene composition and decomposition. NeRFs
have already enabled applications that were previously intractable, especially
the 6 DoF plus interactivity for immersive purposes, such as the rendering of
digital avatars without any manual modeling. We believe that NeRF will have
a profound impact in making complex multimedia tasks and building bonds
between the digital and real worlds accessible to a much larger audience with
the help of revealing the critical principal factors behind through thoroughly
distillation in this report.
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