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ABSTRACT

A self-supervised adaptive low-light video enhancement method, called
SALVE, is proposed in this work. SALVE first enhances a few keyframes
of an input low-light video using a retinex-based low-light image en-
hancement technique. For each keyframe, it learns a mapping from
low-light image patches to enhanced ones via ridge regression. These
mappings are then used to enhance the remaining frames in the low-light
video. The combination of traditional retinex-based image enhance-
ment and learning-based ridge regression leads to a robust, adaptive
and computationally inexpensive solution to enhance low-light videos.
Our extensive experiments along with a user study show that 87% of
participants prefer SALVE over prior work. Our codes are available at:
https://github.com/zohrehazizi/SALVE.

Keywords: Low light image enhancement, Low light video enhancement, Retinex
model.

1 Introduction

Videos captured under low light conditions are often noisy and of poor visibility.
Low-light video enhancement aims to improve viewers’ experience by increasing
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brightness, suppressing noise, and amplifying detailed texture. The perfor-
mance of computer vision tasks such as object tracking and face recognition
can be severely affected under low-light noisy environments. Hence, low-light
video enhancement is needed to ensure the robustness of computer vision
systems. Besides, the technology is highly demanded in consumer electronics
such as video capturing by smart phones.

While mature methods for low-light image enhancement have been devel-
oped in recent years, low light video enhancement is still a standing challenge
and open for further improvement. A trivial solution to low light video en-
hancement is to enhance each frame with an image enhancement method
independently. However, since this solution disregards temporal consistency, it
tends to result in flickering videos [19]. Also, frame-by-frame low light video
processing can be too computationally expensive for practical applications.

Several methods utilized deep learning (DL) to preserve the temporal
consistency of video frames. For instance, 3D CNNs are trained to process a
number of frames simultaneously in order to take temporal consistency into
account [14, 27]. Some papers enforce similarity between pairs of frames with
a temporal loss function or loss function regularization in training [6, 9]. Other
works extract the motion information and leverage redundancy among frames
to ensure the temporal consistency of enhanced videos [19, 38].

On one hand, the efforts mentioned above lead to high-performance models
with a range of acceptable to excellent quality results. On the other hand,
their performance is dependent on the training dataset. Differences between
the training and testing environments can degrade the performance of low
light video enhancement severely. In other words, when deployed in the real
world, the DL-based models cannot be trusted and utilized without fine-tuning.
Considering the fact that paired low-light/normal-light video datasets are very
scarce, fine-tuning these models can be challenging.

In this paper, we propose an alternative low-light video enhancement
method to address the above-mentioned challenges. Our proposed method
is called the self-supervised adaptive low-light video enhancement (SALVE)
method. By self-supervision, we mean that SALVE directly learns to enhance
an arbitrary input video without requiring to be trained on other training
videos.

SALVE offers a robust solution that is highly adaptive to new real-world
conditions. SALVE selects a couple of keyframes from the input video and
enhances them using an effective retinex-based image enhancement method
called NATLE [2]. Given NATLE-enhanced keyframes of the input video,
SALVE learns a mapping from low-light frames to enhanced ones via ridge
regression. Finally, SALVE uses this mapping to enhance the remaining
frames. SALVE does not need low- and normal-light paired videos in training.
Therefore, it can be an attractive choice for non-public environments such as
warehouses and diversified environments captured by phone cameras.
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SALVE is a hybrid method that combines components from a retinex-
based image enhancement method and a learning-based method. The former
component leads to a robust solution which is highly adaptive to new real-world
environments. The latter component offers a fast, computationally inexpensive
and temporally consistent solution. We conduct extensive experiments to
show the superior performance of SALVE. Our user study shows that 87% of
participants prefer SALVE over prior work.

The rest of this paper is organized as follows. Related work is discussed in
Section 2. The low light image enhancement method, NATLE, is reviewed and
then the proposed low light video enhancement method, SALVE, is explained in
Section 3. Experimental results are presented in Section 4. Finally, concluding
remarks are given in Section 5.

2 Related Work

2.1 Low Light Image Enhancement

There are two categories of traditional low-light image enhancement methods:
histogram equalization and retinex decomposition. Histogram equalization
stretches the color histogram to increase the image contrast. Although it is
simple and fast, it often yields unnatural colors, amplifies noise, and under/over-
exposes areas inside an image. To address these artifacts, more complex
priors are adopted for histogram-based image enhancement [1, 5, 12, 22,
28]. Specific penalty terms were designed and used to control the level of
contrast enhancement, noise, and mean brightness in [1]. Inter-pixel contextual
information was used for non-linear data mapping in [5]. To preserve the mean
brightness, histogram equalization was applied to different dynamic ranges of a
smoothed image in [12]. The gray-level differences between adjacent pixels were
amplified to enhance image contrast based on layered difference representation
of 2D histograms in [22]. Differential gray-level histogram equalization was
proposed in [28] based on the concept of differential histograms.

Inspired by the human vision system (HVS), it is assumed in the retinex
theory [20] that each image can be decomposed into two components: a
reflectance (R) term containing inherent properties and an illumination (L)
term containing the lightness condition. Along this line, another approach
for low light image enhancement is to decompose an input image into R and
L terms and adjust the L term to the normal-light condition. Earlier work
focused on R and L decomposition and attempted to acquire R and L more
accurately [16, 17] using a Single-Scale Retinex (SSR) representation. Later,
SSR was extended to a MultiScale Retinex (MSR) representation, which can
be used for color image restoration. An adaptive MSR was proposed in [21],
which computes the weights of an SSR according to the content of the input
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image. More recently, optimization functions were carefully designed in [2,
30] to determine the R and L terms. They attempted to find a balance in
suppressing noise and preserving texture through the optimization functions.

Recently, the deep-learning (DL) paradigm has been proposed for low-light
image enhancement based on retinex theory [34, 37, 40]. A decomposition
network and an illumination network were trained to perform retinex decompo-
sition and enhancement, respectively, in [37]. The work in [40] added another
network, called reflectance restoration, to mitigate color distortion and noise.
A generative adversarial network (GAN) [10] was employed in [34] to generate
decomposed and enhanced images. Another GAN work [15] was trained with-
out paired data. The application of auto-encoders to image enhancement was
investigated in [25]. A multi-branch network was proposed in [27] to extract
rich features in different levels for enhancement via multiple subnets. An
end-to-end network for raw camera image enhancement was proposed in [7].

2.2 Low Light Video Enhancement

While low-light image enhancement is a well-studied topic, low-light video
enhancement is still an ongoing and challenging research topic. Applying
image-based algorithms to each frame of a video yields flickering artifacts due
to inconsistent enhancement results along time [19]. It is essential to take
both temporal and spatial information into account in video processing. One
approach is to extend 2D convolutional neural networks (CNNs) to 3D CNNs
[27], which includes the 2D spatial domain and the 1D temporal domain. A 3D
U-net [31] was proposed in [14] to enhance raw camera images. However, these
3D DL-based methods have huge model sizes and extremely high computational
costs.

Another approach is to exploit self-consistency [6, 9]. The resulting methods
operate on single frames of video but impose the similarity constraint on image
pairs to improve the performance and stability of their models. A new static
video dataset was proposed in [6], containing short- and long-exposure images
of the same scene. They took two random frames from the same sequence in
training and utilized the self-consistency temporal loss to make the network
robust against noise and small changes in the scene. Different motion types
were accounted for by imposing temporal stability using a regularized cost
function in [9]. Another family of self-consistency-based methods [19, 38]
used the optical flow to estimate the motion information in a sequence. They
utilized the FlowNet [13] to predict the optical flow between two frames, and
warped the frames based on the predicted flow to avoid inconsistent frame
processing. An image segmentation network was exploited to detect the moving
object regions before optical flow prediction in [38]. A model to reduce noise
and estimate illumination was proposed in [35] based on the retinex theory.
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It took each frame along with two past and two future frames as input to
enhance the middle frame.

All existing methods on low-light video enhancement employ deep neural
networks (DNNs) as their backbone. In this work, we propose an effective and
high performance method called SALVE to achieve the same goal without the
use of DNNs. Our method contributes to green video processing with a lower
carbon footprint [3, 18, 32]. Additionally, SALVE does not need a training
dataset; it is a self-supervised approach which utilizes the frames of the test
video and adapts its enhancement strategy accordingly. As such, our approach
does not rely on massive training datasets and is robust against environmental
changes.

3 Proposed Method

Figure 1 presents an overview of our proposed method. The top row shows the
steps taken to enhance an input frame, which we discuss in Section 3.1. The
bottom row shows the extension to videos, i.e. it shows how we treat different
frames of the video. We discuss this process in Section 3.2.

Figure 1: An overview of the proposed SALVE method. For intra-coded frames (I frames),
it estimates the illumination (L̂) component and the reflectance (R̂) components using the
NATLE method. For inter-coded frames (P/B frames), it predicts these components using a
ridge regression learned from the last low-light and enhanced I frame pairs.

3.1 NATLE

In order to propose our method in Section 3.2, we need to first review NATLE
[2], which is an effective method for low light image enhancement. NATLE
is a retinex-based low light image enhancement method. A classic retinex
model decomposes an input image S into the element-wise multiplication of
two components; a reflectance map (R) and an illumination (L) map:

S = R ◦ L, (1)

where R represents the inherent features within an image which remain the
same in different lightness conditions. L shows the lightning condition. Ideally,
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R contains all the texture and details within the image and L is a piece-wise
smooth map with significant edges. NATLE presents a methodology to find
solutions for R and L. It then enhances L to a normal light condition, and
follows the retinex model to combine the enhanced L with R and obtain the
enhanced image. In what follows, we explain the steps NATLE takes to find
solutions for R and L.

Step 1. Calculate an initial estimation of L, namely L̂, which is a weighted
average of RGB color channels:

L̂ = 0.299R+ 0.587G+ 0.114B. (2)

Step 2. Form an optimization function to find a piece-wise smooth solution
for L as

argmin
L

∥L− L̂∥2F + α∥∇L∥1, (3)

where α is set to 0.015 and ∥∇L∥1 is approximated with

lim
ϵ→0+

∑
x

∑
d∈{h,v}

(∇dL(x))
2

| ∇dL̂(x) | +ϵ
= ∥∇L∥1, (4)

and where d is the gradient direction and v and h indicate the vertical and
horizontal directions, respectively. Eq. (3) can be rewritten as

argmin
L

∥L− L̂∥2F +
∑
x

∑
d∈{h,v}

Ad(x)(∇dL(x))
2, (5)

where
Ad(x) =

α

| ∇dL̂(x) | +ϵ
. (6)

Finally, Eq. (5) is solved by differentiating with respect to L and setting the
derivative to zero. The final solution is derived in closed form as

l = (I +
∑

d∈{h,v}

DT
d Diag(ad)Dd)

−1 l̂, (7)

where Diag(ad) is a matrix with ad on its diagonal, Dd is a discrete differential
operator matrix that plays the role of ∇ and I is the identity matrix. Once
vector l is determined, it is reshaped to matrix L.

Step 3. Calculate an estimate of R in form of

R̂ = S ⊘ (L+ ε)−N, (8)

where S is the input image, L is the estimated illumination obtained in Step
2, −N shows a median filter denoising followed by a bilateral filter denoising,
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⊘ denotes element-wise division and ε is a small value to prevent division by
zero.

Step 4. Form an optimization function to find R via

argmin
R

∥R− R̂∥2F + β∥∇R−G∥2F , (9)

where β is set to 3 in our experiments. The first term in Eq. (9) ensures that
R is noise-free and consistent with the retinex model. The second term has a
noise-removal and texture-preserving dual role. Then, we get

G =

{
0, ∇S < ϵg

λ∇S,
(10)

where ϵg is the threshold to filter out small gradients, which are viewed as
noise, and λ controls the degree of texture amplification. The values of ϵg and
λ are set to 0.05 and 1.1, respectively. Finally, the optimization problem in
Eq. (9) is solved by differentiating with respect to R and setting the derivative
to zero. The final solution can be derived in closed form as

r = (I + β
∑

d∈{h,v}

D2
d)

−1(r̂ + β
∑

d∈{h,v}

, DT
d gd), (11)

where Dd, ∇ and I are defined the same as those in Eq. (7). Once vector r is
determined, it is reformed to matrix R.

Step 5. Apply gamma correction to L for illumination adjustment. The
ultimate enhanced image is computed as

S
′
= R ◦ L

1
γ , (12)

where γ is set to 2.2 in the experiment.

3.2 Video Enhancement

We showed the performance of NATLE in low light image enhancement in
[2]. NATLE suppresses noise and preserves texture while enhancing low-light
images. In order to extend the application of NATLE to videos, the trivial
idea would be to apply NATLE separately on all the frames within a video.
However, a series of consecutive frames within a video usually have significant
correlations in structure, color, and light. We may leverage this temporal
similarity in order to lower the costs of the video enhancement from a series of
repetitive image enhancements.

Here, we propose a self-supervised method for low light video enhancement
based on learning from NATLE. By applying NATLE on selected frames
within a video, we acquire pairs of low-light and enhanced frames, from which
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we learn a mapping from low-light to enhanced frames. We then apply the
learnt mapping to the rest of the frames to accomplish the low light video
enhancement. In particular, we approximate Eqs. (7) and (11) in NATLE,
which take the major portion of NATLEś runtime. Thus, our proposed video
enhancement method is significantly faster and computationally less expensive
than applying frame-by-frame NATLE.

In order to decide the frame on which we apply NATLE, we use the
FFMPEG compression technique. In FFMPEG, there are three types of
frames, namely identity (I ), bidirectional (B), and predicted (P) frames. The
I frames are the keyframes which indicate a significant spatial or temporal
change within the video. More precisely, an I frame is placed where one of
the following conditions is met:

• The frame remarkably differs from the previous frame.

• One second has passed from the previous I frame.

We explain the steps to obtain enhanced video frames using SALVE below.
Step 1. Apply NATLE to an I frame:

Ienhanced, L̂I , LI , R̂I , RI = NATLE (I ), (13)

where I and Ienhanced are the low-light and enhanced keyframes, respectively.
The rest of the parameters, i.e., L̂I , LI , R̂I and RI , are the results of interme-
diate steps in NATLE as described in Section 3.1.

Step 2. Learn two ridge regressions mapping L̂I and R̂I to LI and RI ,
respectively. To be more precise, we look for WL and WR to solve the following
optimization problems:

min
Wl

||lI − l̂IWl||22 + α||Wl||22, (14)

min
Wr

||rI − r̂IWr||22 + α||Wr||22, (15)

where lI ∈ Rn×1 is the vectorized form of LI with n pixels. l̂I ∈ Rn×25 denotes
5× 5 neighborhoods of each pixel in L̂I . The solution, Wl ∈ R25×1, maps each
5× 5 patch in L̂I to the corresponding center pixel in LI . The same process
and notation is used for Eq. (15).

Step 3. Compute L̂P of B/P frames using Eq. (2). Obtaining L̂ by
NATLE is computationally inexpensive. Hence, we keep it the same while
enhancing B/P frames.

Step 4. Compute LP using the ridge regressor Wl learned in Step 2:

lP = l̂PWl, (16)
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where l̂P ∈ Rn×25 denotes 5× 5 neighborhoods of each pixel in L̂P . lP ∈ Rn×1

is the vectorized form of LP with n pixels. We reshape lP vector to obtain
LP matrix.

Step 5. Compute R̂P for B/P frames using Eq. (8).
Step 6. Compute RP using the ridge regressor Wr learned in Step 2;

namely,
rP = r̂PWr, (17)

where r̂P ∈ Rn×25 denotes a neighborhood window of size 5× 5 of each pixel
in R̂P . rP ∈ Rn×1 is the vectorized form of RP with n pixels. We reshape rP
to obtain RP .

Step 7. Apply gamma correction to LP for illumination adjustment. The
final enhanced B/P frame is computed using Eq. (12).

We perform Steps 1 and 2 on the I frames and Steps 3 to 7 on the subsequent
B/P frames. Once a new I frame is encountered, we repeat Steps 1 and 2 and
continue. This setting ensures that the self-supervised learning from NATLE
is being updated frequently enough to keep up with any significant temporal
changes.

4 Experiments

4.1 Experimental Setup

We conduct extensive qualitative and quantitative experiments to evaluate our
method and show its effectiveness. In our experiments, we use the DAVIS video
dataset [4, 29] as the ground truth. DAVIS offers two resolutions, 480P and
full resolution. We use all full resolution videos from 2017 and 2019 challenges.
Following [26], we synthesize dark videos by darkening the normal-light frames
of DAVIS dataset with gamma correction and linear scaling:

x = B × (A× y)γ , (18)

where y is the ground-truth (normal light) frame, x is the darkened frame,
A and B are linear scaling factors and sampled from uniform distributions
U(0.9, 1) and U(0.5, 1), respectively, and γ is the gamma correction factor
which is sampled from U(2, 3.5).

We also synthesize the noisy version of the dark frames. Following [38], we
add both Poisson and Gaussian noise to the low-light frames:

n = P(σp) +N (σg), (19)

where σp and σg are parameters of Poisson noise and Gaussian noise, respec-
tively. They are both sampled from a uniform distribution U(0.01, 0.04). We
acquire two sets of videos, namely clean-dark and noisy-dark videos. Our goal
is to enhance these videos and assess them qualitatively and quantitatively.
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4.2 Visual Comparison

We first provide visual analysis on an exemplary video frame from the clean-
dark and noisy-dark datasets in Figures 2 and 3, respectively. We observe that
methods not based on deep learning (LIME and DUAL) do not add artifacts
to the frame, but the resulting enhanced frame still lacks lightness. Among
prior methods based on deep learning, DRP [24] is a self-supervised method
that gives nice enhancement results. While DRP adds colorful textures to
the enhanced images, the results tend to be slighly different with the ground
truth and have artifacts in some regions. SDSD [35] is a supervised method
which is fine-tuned to the DAVIS dataset. SDSD tends to add artifacts to
enhanced images. This issue is more noticable in Figure 3. StableLLVE [38] is
a supervised method trained on the DAVIS dataset. The enhancement results
by StableLLVE have a pale color. Our method achieves enhanced frames that
are fairly close to the ground-truth and avoids adding artifacts or changing
the coloring of the image.

Figure 2: Visual comparison between our method and prior work on clean-darkened video
frames from DAVIS dataset.

Figure 3: Visual comparison between our method and prior work on noisy-darkened video
frames from DAVIS dataset.
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The exemplary input dark frames in Figures 2 and 3 were created syn-
thetically. Next, we examine our framework on a real-world video randomly
selected from the LoLi-Phone dataset [23]. Note that there is no ground-
truth video in this case. We present the enhanced frames corresponding to
our work and related work in Figure 4. We have a similar observation to
that of the synthetic dataset. Our method is capable of achieving an im-
age with a natural lightness while keeping the coloring and visual content
intact.

Figure 4: Visualization of video frames from a real-world dark video from LoLi-Phone
dataset.

4.3 Quantitative Evaluation

We use four quantitative metrics to evaluate the performance of our method and
compare it with prior work. First two metrics are Peak-Signal-to-Noise Ratio
(PSNR) and Structural-SIMilarity (SSIM) [36], which we apply on all frames
of the videos. We also use AB(Var) from [27] and Mean Absolute Brightness
Difference (MABD) from [14] to assess temporal stability and its consistency
with those of the ground truth. Table 1 and Table 2 show comparisons between
our method and prior work for the clean and noisy datasets, respectively. In
Table 1 and 2, we take the scores of all prior work except for Dual [39], DRP
[24] and SDSD [35] from [38]. For DUAL (traditional method) and DRP
(self-supervised method), we use their public codes to enhance the images. For
SDSD, we fine-tune their pre-trained model on the DAVIS dataset. We then
use the fine-tuned SDSD model to enhance the images. We then calculate
the scores of these three methods and report them in Tables 1 and 2. Low
scores of the DRP method is caused by its generative flavor, which makes
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Table 1: Quantitative comparison for enhancing clean dark videos. The best scores are
indicated in bold.

Method PSNR↑ SSIM↑ AB(Var)↓ MABD↓
LIME [11] 17.36 0.7386 9.65 0.37
Dual [39] 18.12 0.8283 2.13 0.07
MBLLEN [27] 18.41 0.8100 77.24 1.95
RetinexNet [37] 19.78 0.8353 1.32 0.09
SID [7] 22.95 0.9428 4.93 0.43
DRP [24] 6.89 0.3160 6.73 0.52
NATLE [2] 26.70 0.9127 2.04 0.03
MBLLVEN [27] 24.50 0.9482 1.79 0.80
SMOID [14] 24.85 0.9472 1.30 0.17
SFR [9] 23.81 0.9413 2.14 0.11
BLIND [19] 22.87 0.9344 8.66 0.43
StableLLVE [38] 24.07 0.9483 1.96 0.05
SDSD [35] 25.09 0.8783 0.98 0.01
SALVE (Ours) 28.85 0.9225 1.47 0.006

Table 2: Quantitative comparison for enhancing noisy dark videos. The best scores are
indicated in bold.

Method PSNR↑ SSIM↑ AB(Var)↓ MABD↓
LIME [11] 16.43 0.4567 8.29 0.33
Dual [39] 18.38 0.6073 2.14 0.22
MBLLEN [27] 18.38 0.7982 78.76 1.93
RetinexNet [37] 19.56 0.7475 1.45 0.09
SID [7] 22.93 0.9253 4.03 0.39
DRP [24] 5.55 0.4107 15.37 0.34
NATLE [2] 25.55 0.8237 1.48 0.06
MBLLVEN [27] 23.08 0.8839 2.81 1.02
SMOID [14] 23.42 0.9212 0.82 0.17
SFR [9] 22.82 0.9299 2.29 0.12
BLIND [19] 22.94 0.9174 7.86 0.33
StableLLVE [38] 24.01 0.9305 3.00 0.10
SDSD [35] 22.27 0.8051 1.35 0.03
SALVE (Ours) 27.06 0.8202 1.18 0.01

the results different from the ground truth. Also, their public codes are only
conducted for low-resolution video content. To tailor their implementations to
high-resolution video content demands special efforts.
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4.4 Computational Complexity

In this section, we calculate the runtime and FLOPs (FLoating Point Opera-
tions) of SALVE and prior work to offer a comparison on the computational
complexity.

Table 3 shows the runtime comparison between different methods on CPU
and GPU resources. We measure the average runtime of different methods for
enhancing an RGB frame of size 530× 942 on the CPU resource of Intel Xeon
6130 and the GPU resource of NVIDIA Tesla V100. Since LIME and Dual
only have CPU implementations, their GPU runtimes are not mentioned in
the table. Table 3 shows that SALVE’s runtime is better than LIME, Dual,
NATLE and DRP. Specifically, SALVE is more than 2500 times faster than
the self-supervised DRP method.

Table 4 compares the numbers of FLOPs per pixel among StableLLVE,
SDSD, NATLE and SALVE. We use a FLOP counter tool1 [33] for PyTorch to
calculate FLOPs of StableLLVE and SDSD. We did not find a tool to measure
the number of FLOPs of (non-PyTorch) LIME, Dual, and DRP methods. For
NATLE and SALVE, we calculate their FLOP numbers manually [8].

Table 4 shows that SALVE has a significantly lower number of FLOPs
than StableLLVE and SDSD. Our explanation for the lower runtime of these
two methods in Table 3 is that their implementations in PyTorch are very
efficient. In contrast, SALVE uses several libraries including SciPy in most of

Table 3: Average runtime (in seconds) comparison per RGB frame of size 530× 942 pixels.

Method CPU GPU
LIME [11] 6.60 N/A
Dual [39] 13.20 N/A
DRP [24] 2760 2728
StableLLVE [38] 0.063 0.057
SDSD [35] 0.307 0.261
NATLE [2] 3.14 2.90
SALVE (Ours) 0.980 0.322

Table 4: FLOPs comparison per pixel.

Method FLOPs Ratio
StableLLVE [38] 51.19 K 7.20×
SDSD [35] 233.45 K 32.83×
NATLE [2] 10.85 K 1.52×
SALVE (Ours) 7.11 K 1×

1https://github.com/sovrasov/flops-counter.pytorch

https://github.com/sovrasov/flops-counter.pytorch
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the calculations. The latter is not as efficient as PyTorch. As a result, SALVE
has a slightly longer runtime despite its lower number of FLOPs.

4.5 User Study

To further demonstrate the effectiveness of our method, we conduct a user
study with 31 participants. In this study, we have 10 blind A/B tests between
our method and prior works. At each time, only 2 videos are shown to the user.
The 10 videos are randomly selected for this study. Each of the five prior work
appears two times in the study. We show the results of this study in Figure 5.
As shown in the figure, depending on the comparison baseline, between 87%
to 100% of users prefer our method over the benchmarking method.

Figure 5: User study results, where we show user’s preference in pair-wise comparison
between our method and five benchmarking methods.

4.6 Ablation Study

An ablation study was conducted in [2] to show the effectiveness of α, β and
denoising of R̂ on the final enhanced image. Here, we study the effect of these
three parameters on the future enhanced frames in Figure 6. We see from the
figure that cancelling parameter α and/or disabling the denoising operation
results in noisy textures. Setting parameter β = 0 makes the edges of objects
blurry and degrades texture preservance quality of the method.

As mentioned in Eq. (17), the window size of ridge regression is 5 × 5.
Here, we analyze the effect of the window size on enhanced frames. Figure 7
shows this analysis. A small window size results in artifacts in the enhanced
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Figure 6: Effect of parameters α and β as well as the denoising operation on the enhanced
frame’s quality.

Figure 7: Effect of the regressor’s window size on the quality of enhanced frames.

frame (e.g., some pixels on the street light become red instead of maintaining
the black color). Noisy patterns can be reduced as the window size increases.
Overall, we strike a good balance between visual quality and the cost of ridge
regression setting the window size to 5× 5. A close look reveals noise patterns,
blurry textures or artifacts in Figures 6 and 7.2

5 Conclusion

A new method for low-light video enhancement, called SALVE, was proposed
in this work. The new self-supervised learning method is fully adaptive to
the test video. SALVE enhances a few keyframes of the test video, learns a
mapping from low-light to enhanced keyframes, and finally uses the mapping
to enhance the rest of the frames. This approach enables SALVE to work
without requiring (paired) training data. Furthermore, we conducted a user
study and observed that participants preferred our enhanced videos in at least
87% of the tests. Finally, we performed an ablation study to demonstrate the
contribution of each component of SALVE.

2High-resolution versions of Figures 6 and 7 are available on bit.ly/3TXGxRh.

bit.ly/3TXGxRh
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