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ABSTRACT
Grasping densely stacked objects may cause collisions and result in
failures, degenerating the functionality of robotic arms. In this paper, we
propose a novel lightweight generative convolutional neural network with
grasp priority called GP-Net to solve multiobject grasp tasks in densely
stacked environments. Specifically, a calibrated global context (CGC)
module is devised to model the global context while obtaining long-range
dependencies to achieve salient feature representation. A grasp priority
prediction (GPP) module is designed to assign high grasp priorities to
top-level objects, resulting in better grasp performance. Moreover, a
new loss function is proposed, which can guide the network to focus
on high-priority objects effectively. Extensive experiments on several
challenging benchmarks including REGRAD and VMRD demonstrate
the superiority of our proposed GP-Net over representative state-of-the-
art methods. We also tested our model in a real-world environment and
obtained an average success rate of 83.3%, demonstrating that GP-Net
has excellent generalization capabilities in real-world environments as
well. The source code will be made publicly available.
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1 Introduction

The ability to grasp objects is one of the most important and fundamental
capabilities of intelligent robots [1, 30–32, 50]. As deep learning techniques
have made great progress in visual perception, various deep learning methods
have been applied to grasp techniques [9, 11, 28, 37, 43]. Six-degree-of-freedom
(6DoF) grasp pose estimation methods [15, 33, 40] focus on constructing point
cloud images of objects and diverse 6DoF grasp parameters in the simulation
environment. In the real grasping environment, this method filters the grasp
parameters with the aid of the positional estimation of the target object point
cloud and finally achieves the selection of the optimal grasp parameters. These
6DoF pose estimation methods rely on a known point cloud image of the target
object, which limits their performance in practical applications.

Facing the above problems, researchers simplified the process of robotic
grasping by using 4DoF parameters, i.e., the x-coordinate of the grasp, the
y-coordinate of the grasp, the angle of the grasp, and the width of the grasp.
Mahler et al. [23] first proposed a two-stage 4DoF grasp detection network.
The two-stage grasp detection network first generates the candidate regions
through a deep network, and then evaluates the feature vectors of the candidate
regions to generate grasp representation. However, these two-stage networks [9,
23] bring significant computational overhead, which impairs real-time efficiency.
Recently, Morrison et al. [25] proposed a lightweight generative grasping
convolutional neural network (GG-CNN) for real-time robotic grasping. This
method generated pixel-level grasp images mapped to 4DoF grasp parameters,
thus solving the real-time problem in actual grasping. Kumra et al. [18] added
a residual module to GG-CNN [25], which significantly improved the grasping
effect with less impact on the real-time efficiency. Chalvatzaki et al. [6] focused
on the problem of grasp direction to make the network more concerned with the
grasp direction while maintaining real-time efficiency. Xu et al. [41] proposed
a key point detection algorithm that can reduce the actual detection difficulty
of the network and further improve the real-time efficiency of the network.
However, these methods are all trained in simple scenarios with a single object.
Grasping densely stacked objects may cause collisions and result in failures,
degenerating the functionality of these methods.

In fact, the grasp order is particularly important in complex multiobject
stacking scenes. Recently, visual manipulation relationship detection methods
[27, 45] have been proposed to predict the grasp order in multiobject stacking
scenes, which consist of multiple stages, i.e., object detection, grasp detection,
and relational inference. Such a multistage framework reduces the real-time
efficiency of these methods. Moreover, the generalization ability of object
detection and relational inference in complex multiobject stacking scenarios is
a bottleneck, especially for unknown objects. Hence, it remains a challenge to
obtain a highly robust grasp performance while maintaining real-time efficiency
in complex multiobject stacking environments.
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Figure 1: Comparisons of GG-CNN[25] and our GP-Net.The grasp representations of different
networks in complex stacking scenarios from the VMRD dataset [46]. It can be seen that
our GP-Net can focus on the top-level objects.

To address the above issues, we propose a lightweight generative convolu-
tional neural network with grasp priority for the real-time grasping of multiple
objects in complex environments, called GP-Net. As shown in Figure 1, our
GP-Net can focus on the top-level objects and obtain more reasonable grasping
results in complex scenes. Specifically, a calibrated global context (CGC)
module is devised, which enables our model to have a global understanding of
the visual scene by capturing long-range dependencies with a smaller compu-
tational effort. Moreover, a novel grasp priority prediction (GPP) module is
designed to obtain the grasp order of multiple objects by generating pixel-level
grasp priorities. In addition, a new loss function is constructed using the
pixel-level grasp priority mask, which guides the network to efficiently focus
on the top-level objects with high grasp priorities.

The contributions of this study can be summarized as follows:

• We devise a novel generative grasping convolutional neural network with
grasp priority for real-time multiobject grasping in complex stacking
environments.
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• A calibrated global context module is proposed to obtain a more salient
feature representation, which enables a global understanding of the visual
scene by capturing long-range dependencies.

• A new grasp priority prediction module is developed to obtain the pixel-
level grasp priority, which can efficiently guide the network to focus on
the top-level objects together with a specially designed loss function.

The remainder of the paper is organized as follows: Section 2 reviews related
works. In Section 3, we present the details of the proposed method, including
the CGC module, the GPP module, and the loss function. The experimental
results and analysis are given in Section 4. Finally, we conclude the paper in
Section 5.

2 Related Work

2.1 Robotic Grasping

In past research, most robotic grasping methods relied on known information
about the environment as well as the object model to obtain the optimal
grasp poses [17, 24]. With the development of neural networks, deep learning
methods have been applied to the field of robotic grasping, which can be
broadly divided into two categories, namely, 6DoF grasp and 4DoF grasp.
In 6DoF grasp, early works [2, 15, 40] focused on generating 6DoF grasp
parameters through physical simulation and matching the appropriate grasp
parameters by estimating the object’s poses in the evaluation environment.
However, these methods require a 3D model of the target object, which is
difficult to acquire in many practical situations [20].

In 4DoF grasp, the number of parameters can be reduced by specifying a
top-down grasp. A two-stage 4DoF grasp detection network was proposed in
[23], which applied a region proposal network (RPN) to generate the region of
interest (ROI) [19]. Then, ROIs generated in the first stage were used to crop
the corresponding features and predict the grasp parameters. The two-stage
method achieves satisfactory performance in 4DoF grasp detection, but the high
inference latency of the two-stage framework significantly limits its application
in practical scenarios. Recently, lightweight generative grasping networks were
proposed for real-time 4DoF grasping [4, 18, 25, 41] by directly generating
the images of geometric grasp parameters. These methods effectively improve
the real-time efficiency of robotic grasping. However, these methods are
trained in single-object environments. In multiobject stacking environments,
unreasonable grasp predictions lead to collisions, thus greatly affecting the
actual effectiveness of these methods. Different from these methods, in this
paper a novel GP-Net is devised for real-time multiobject grasping in complex
stacking environments by predicting the grasp priority.
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2.2 Multitask Learning

Multitask learning (MTL) can improve the performance of the primary task
through collaborative training on auxiliary tasks [12, 21, 52, 53]. By sharing
features across multiple tasks, the network is guided to learn a common
representation among them, which may reduce overfitting and thus better
generalize the original task [39]. Hence, a growing number of MTL methods
have been used in the field of robotic grasping to improve performance. For
example, Prew et al. [29] achieved higher grasp detection performance using
depth prediction as a secondary task. Nguyen et al. [26] improved the grasp
detection performance with the aid of the bounding box generation task. Yu
et al. [44] proposed a grasp task implemented through a secondary task of
segmenting objects. In this paper, we design a novel grasp priority prediction
auxiliary task for the 4DoF grasp detection network, which can obtain more
accurate grasp parameters by sharing parameters among the tasks. Moreover,
the auxiliary task in our network has little impact on the network inference time.

3 The Proposed Method

3.1 Problem Reconfiguration

In the top-down grasping model, the robotic grasping problem can be defined
as a parameter estimation problem with four variables [18, 25]:

Gr = (S,Θr,Wr, Q) , (1)

where S = (x, y, z) indicates the 3D coordinates of the gripping center. Θr

indicates the angle of rotation of the gripping end around the z-axis. Wr is
the width of the clamping jaw opening and Q is the grasp quality score.

However, these methods [18, 25] are trained in simple scenarios with a single
object. Grasping densely stacked objects may cause collisions and result in fail-
ures, degenerating the functionality of these methods. In this paper, we propose
an efficient grasp priority constraint for multi-object grasping task in cluttered
stacked scenes. The higher the grasping priority of the region, the higher its
grasp quality score should be. Hence, the equation can be expressed as:

Gr = (S,Θr,Wr, Q
∗) , (2)

where Q∗ = (Q · P ). Q indicates the original grasp quality score. P indicates
our new grasp priority in a multiobject scene. A larger value of P indicates a
higher priority. Q and P are multiplied together to obtain Q∗. A larger value
of Q∗ indicates a higher grasp success rate in the multiobject scene.

Specifically, our GP-Net predicts a set of images
{
Qi,Θ

cos
i ,Θsin

i ,Wi,Pi

}
.

The size of each predicted image is 224× 224. Qi is the grasp quality score
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image, Pi is the grasp priority image, Θsin
i is the grasp angle sin component,

Θcos
i is the grasp angle cos component. Then, as shown in Figure 2, the dot

product of Qi and Pi gives our new grasp quality score Q*
i . Θsin

i and Θcos
i

combined to obtain the grasp angle image Θi.

Figure 2: GP-Net framework. The input RGB-D image needs to go through three parts:
feature extraction, attention block, and generation block. The grasp quality score image Qi,
the grasp priority image Pi, the grasp cosine angle image Θcos

i , the grasp sine angle image
Θsin

i , and the grasp width image Wi are obtained from the generation block. These image
features are fused to obtain the final valid grasp parameters.

We can get the coordinate (u, v) of the pixel with the maximum value in
Q*

i . The x-axis and y-axis of S of Equation (2) can be obtained from (u, v)
using a coordinate transformation, and the z-axis of S can be obtained from the
depth map. Θr of Equation (2) can be obtained from the corresponding pixel
(u, v) in the grasping angle image Θi. Wr of Equation (2) can be obtained
from the coordinates pixel (u, v) of the grasping angle image Wi. Thus, we
can get all the grasp parameters.

3.2 GP-Net

In this paper, we propose a lightweight generative convolutional neural network
with grasp priorities (GP-Net) for multiobject grasping in complex stacking
environments. GP-Net is mainly composed of feature extraction, a calibrated
global context (CGC) module, a generation block, a grasp priority prediction
(GPP) module, and an extraction angle module. Among them, the feature
extraction is mainly composed of convolutional layers, BN layers and ReLU
activation layers. The feature map size changes 224 → 112 → 56 → 56. The
CGC can enlarge the perceptual field and extract effective visual information.
The generation block mainly consists of transpose convolution layer, BN layers
and ReLU activation layers connected in series. The feature map size changes
56 → 56 → 112 → 224. The generation block is mainly responsible for the
generation of feature maps. The GPP realizes the prediction of grasp priority,
and the angle extraction module obtains the grasp angle information.

Figure 2 shows the diagram of our GP-Net. We input the RGB image
and depth map of size 224 × 224 of n channels into the feature extraction
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network to obtain the feature map of size 56× 56. We then feed the feature
map into the long-range attention module. Specifically, to obtain more spatial
feature information while keeping the network lightweight, we divide the
obtained feature map into two parts. One part is self-calibrated, and the
other part undergoes a convolution operation. The results of the two parts are
concatenated after passing through a self-attention module. The concatenated
feature maps are then passed through transposed convolution to generate
images containing grasp information [3, 5, 16, 34].

Finally, the grasp quality score Qi and the grasp priority Pi are combined
to obtain our new grasp quality score Q∗

i with more prominent features. We
extract the angle in the form of two elements Θcos

i and Θsin
i that output

distinct values that are combined to form the required angle Θi. The point
with the largest pixel value in the grasp quality score image Q∗

i is the 2D
coordinate of the grasp center, and the pixel value at the same position in the
grasp width image Wi and the angle image Θi is the grasp width and angle
centered on that 2D coordinate in the image coordinate system.

3.2.1 Calibrated Global Context Module

To extract more meaningful visual features, most improvements in convolutional
neural networks have focused on tuning the architecture of the network model
to produce a rich finite element analysis [7, 8, 13, 38, 53]. There are two
problems that make the extracted feature maps not very distinguishable: (a)
Each output feature map is calculated by summing all channels, and all feature
maps are generated uniformly by repeating the same formula several times.
(b) The perceptual field of each spatial location is mainly controlled by the
predefined convolutional kernel size.

In the CGC module, we use multiple convolutional kernels of different sizes
and consider the spatial updown relationship to have a larger perceptual field.
We put more emphasis on local contextual relationships, thus enabling more
accurate positioning of grasp detection. Adaptive operations encode multiscale
information, which provides rich features for grasp detection tasks.

Furthermore, long-range dependencies are particularly important in most
vision tasks [10, 22, 35, 36, 42, 48, 49, 51]. To capture long-range dependencies,
two types of approaches have been proposed. The first one uses a self-attention
mechanism to model the relationship of query pairs, while the second one
models the global context in a query-independent manner. But, the approach
that uses a self-attentive mechanism to model the relationship of query pairs is
computationally intensive and the approach that models the global context in
a query-independent manner does not take full advantage of the global context
information. Different from these methods, we design the CGC module to
generate the global attention map, which is shared by all locations. On the one
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hand, we do not create query pairs, which reduces the amount of computation.
On the other hand, our module generates an attention weight for each point of
the feature map. Long-range dependencies built in this way can obtain more
global information while keeping the network lightweight. Hence, our CGC
is able to model effective long-range dependencies such as SNL blocks [5, 35]
and save computations such as SE blocks [13]

Specifically, the architecture of our CGC is given in Figure 3. We divided
the feature map obtained from the feature extraction module into two parts.
The purpose of this design is that on the one hand we need to extract deeper
information and on the other hand we need a branch to preserve the feature
representation from the upstream feature extraction module. In the branch
above as shown in Figure 3, convolution kernels W2, W3, and W4 are applied
to extract the deeper feature representations. In terms of details, in the self-
calibration module, we conduct convolutional feature transformation in two
different scale spaces to efficiently gather informative contextual information
for each spatial location, i.e., an original scale space and a small latent space
after down-sampling. The embeddings after W3 in the small latent space have
large fields-of-view and are used as references to guide the original feature
space. Our self-calibrating convolution can achieve the purpose of enlarging
the receptive field through the intrinsic communication of features, which
enhances the diversity of output features. In the global context block, we
generate the global attention map by context modeling, which is shared with
all locations. The implementation of context modeling relies on the 1 × 1
convolution kernel to extract the weights on the feature map. All locations
share an attention map, which is less computationally intensive and allows
global information to be encoded. The branch below as shown in Figure 3, is
designed to preserve the original spatial context information.

Figure 3: Illustration of the CGC module.

3.2.2 Grasp Priority Prediction Module

In previous grasping works [6, 18], depth information is often used to obtain the
order of the entire grasp task in the face of multiobject stacking environments,
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and there are also many studies that obtain the grasp order in terms of
visual operational relationships [45]. However, visual operational relationships
can only have some effect on some secondary grasping networks. For real-
time closed-loop lightweight grasping networks, it is still a challenge to make
judgments about the grasp order.

We constructed the grasp priority prediction (GPP) module by drawing
upon the human experience of grasping in real life. Specifically, when facing
the grasp challenge of multiple objects stacked in real scenarios, humans
tend to prioritize the topmost objects for grasping, thus making the whole
grasping process more stable and avoiding collisions. Therefore, the topmost
object in a multiobject stacking environment has the highest grasp priority.
For complex stacking environments, we represent the topmost object in a
multiobject stacking scene by constructing a mask image P , i.e., the grasp
priority. In the grasp priority mask P , the larger the pixel value is, the higher
the object is in the top layer of the stacked scene, and the higher the capture
priority of the object.

3.3 The Loss Function

The loss function of GG-CNN [25] is the sum of the mean squared loss of the
output image in the space of four parameters Qi, Θ

cos
i , Θsin

i , and Wi.
In this paper, we propose a new loss function to suppress regions of

background and regions of non top-level objects. The network should learn
to output values close to a default value of 0 for angle and width in such
regions. To this end, we define the value of grasp priority to solve this problem.
The scaling of the loss in this manner focuses the learning of the network on
the grasp quality score, the grasp angle and width of the top object, and the
grasp priority.Our new loss function is defined as follows. Assuming that the
predicted grasp parameters are

{
Qi,Θ

cos
i ,Θsin

i ,Wi,Pi

}
and the true grasp

ground-truth are
{
Qgt,Θ

cos
gt ,Θsin

gt ,Wgt,Pgt

}
, the proposed loss function is

defined as:

LGP−Net =
∥∥Qi − Qgt

∥∥2 + ∥∥∥Pgt

(
Θsin

i −Θsin
gt

)∥∥∥2
+
∥∥Pgt

(
Θcos

i −Θcos
gt

)∥∥2 + ∥Pgt (Wi − Wgt)∥2

+ ∥Pi − Pgt∥2
(3)

We get the Qgt, Θ
cos
gt , Θsin

gt , and Wgt ground-truths as described in [25].
In the REGRAD grasp dataset [47], the pixel-level segmentation information
between each object is given, and the parent-child relationship between the
stacked objects is also available. Based on these two relevant information, we
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can obtain pixel-level segmentation of the top-level objects and get the priority
ground-truth Pgt.

4 Experiment

4.1 Datasets

In this paper, the REGRAD dataset [47] is used to train the network. REGRAD
is a simulation dataset that consists of 50K kinds of objects with 100M grasping
labels. In addition, the REGRAD dataset also contains the operational
relationships between different objects and their segmentation. Using this
information, we construct the grasp priority masks, as shown in Figure 4,
which are used as the grasp priority ground-truth Pgt. We can also obtain
the grasp ground-truth of center Qgt, angle Θcos

gt , angle Θsin
gt , width Wgt by

mapping grasping labels as described in [25]. Then we evaluated our method
on the test set of REGRAD and the VMRD dataset [46], as well as in our
constructed real scenarios.

Figure 4: The grasp priority masks of our method.

4.2 Grasp Detection Metric

The rectangle metric [14] is used to report the performance of different methods.
Specifically, a grasp is considered valid when it satisfies the following two
conditions: (1) the intersection over union (IoU) score between the ground
truth and the predicted grasp rectangle is more than 25%, and (2) the offset
between the predicted grasp orientation and the ground truth is less than 30◦.
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4.3 Implementation Details

The execution time of our proposed GP-Net is measured on a system running
Ubuntu 16.04 with an Intel Core i7-7800X CPU clocked at 3.50 GHz and
an NVIDIA GeForce GTX 1080 Ti GPU with CUDA 10. We use the Adam
optimizer with an initial learning rate of 0.001 and a gradual decay to 0.0001.
Because of the memory limitation, the size of the mini-batch in this paper is
set to 16 and the network is trained for a total of 50 epochs.

To comprehensively evaluate the robustness of the network in different
settings, we trained our network in three settings, i.e., RGB image input only,
depth image input only, and RGB-D input. The 2D grasping part of the
REGRAD dataset was used as the training set in all three settings. The
training set contains 5.3K RGB images, depth images, operation relation
labels, image segmentation labels, and approximately 6984.9K grasp labels.
For testing, we used the rest of the REGRAD dataset and VMRD dataset as
the test sets and tested the model in real-world complexly stacked scenes. For
a fair evaluation, we retrained GG-CNN [25], GG-CNN2 [25], GR-ConvNet
[18], and ORANGE [6] networks on the same REGRAD training set.

4.4 Quantitative Evaluation

We evaluated our network on the REGRAD dataset [47], recording the grasp
success rate in different scenarios. To compare with previous work, we evaluated
some grasp networks on the REGRAD dataset as well. For a fair comparison,
we trained these networks on the REGRAD dataset. Our method improves the
grasping success rate by 29.3% over the GG-CNN network on the REGRAD
dataset. Compared with GR-ConvNet, it improved the grasp accuracy from
67.1% to 82.6%. Our method achieves state-of-the-art grasp performance on
the REGRAD dataset compared with other networks of the same type. To
evaluate the effectiveness of different modules in our model, we performed
ablation experiments in two cases, i.e., removing the CGC module and removing
the GPP module. After removing the CGC module and GPP module, the
overall grasping performance of the algorithm showed a relatively large drop.
It is also noteworthy that the removal of the GPP module resulted in a larger
drop in performance and a more pronounced impact on the overall system. The
results in Table 1 show that the auxiliary task of grasp priority significantly
enhances the robustness of grasping, with a 19.4% improvement in the success
rate of grasping in the same test set, compared with the network without the
GPP module. The experimental results show that the CGC module and GPP
module play an important role in the whole system and can help achieve a
better grasp performance in complexly stacked multiobject scenes.

In addition, we evaluate the performance of the network with different input
modalities. The modalities that the model was tested on included unimodal
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Table 1: Evaluation results on the REGRAD dataset.

Algorithm Input Accuracy(%) Time (ms)

GGCNN [25] RGB-D 53.3 19
GGCNN2 [25] RGB-D 56.4 20
GR-ConvNet [18] RGB-D 67.1 20
ORANGE [6] Depth 64.6 -

Ours
(No CGC)

Depth 70.1 20
RGB 72.3 21
RGB-D 74.7 22

Ours
(No GPP)

Depth 66.3 20
RGB 67.8 20
RGB-D 69.2 22

Ours
Depth 75.3 21
RGB 78.2 21
RGB-D 82.6 23

input, such as depth-only and RGB-only input images, as well as multimodal
input, such as RGB-D images. Table 1 shows that our network performs
better on multimodal data than on unimodal data because the multiple input
modalities provide abundant information for learning better features. We
evaluated the latency of GP-Net and other methods and report the results in
Table 1. Compared with other grasp detection methods, GP-Net achieves the
most advanced detection results on the REGRAD dataset with a small extra
latency of only 1–2ms. These results indicate that our method can perform
well for real-time robotic grasping tasks.

We compare the success rate of grasping by using different loss functions
to train our GP-Net on the REGRAD dataset. Figure 5 shows that using the
priority loss function improves the grasp success rate by approximately 5%
compared with using the GG-CNN loss function. This is because the proposed
priority loss function can suppress the background area of non top-level objects
in multiobject stacking scenes, thereby delivering better grasp results.

To qualitatively illustrate the effectiveness of our method, we also present
the visual results of GP-Net on the VMRD dataset [46]. All the methods in
Table 2 are trained using the REGARD grasp datastet and directly tested on
the VMRD grasp dataset. Our method obtains a success rate of 70.2% and
20ms latency on the VMRD dataset. Compared with other methods, our model
achieves the best performance. As shown in Figure 6, the grasp quality score
map Q∗ indicates grasping of top-level objects, while the grasp angle and width
show a significant suppression effect on the region of non top-level objects.
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Figure 5: The comparison of using different loss functions to train GP-Net. In multi-object
scenario, the priority loss function obtains the higher grasp success rate.

Table 2: Evaluation results on the VMRD dataset.

Algorithm Input Accuracy(%) Time (ms)

GGCNN [25] RGB 52.1 19
GGCNN2 [25] RGB 53.7 19
GR-ConvNet [18] RGB 62.4 20

Ours (No CGC) RGB 66.9 20
Ours (No GPP) RGB 63.3 20
Ours RGB 70.2 21

The results demonstrate that our GP-Net can effectively grasp the topmost
object, which is an extremely reasonable grasp in a multiobject stacked scene,
and can effectively avoid collisions. The evaluation results on the VMRD
dataset also demonstrate that our GP-Net generalizes well to new objects that
it has never seen before.

4.5 Evaluation Results in Real-world Scenarios

We built a real robot arm test environment, where the robot arm is a UR10
and the camera is an Inter Realsense D435, and the objects used in testing are
shown in Figure 7 (a). During testing, incorrect grasping is defined as shown
in Figure 7 (b) where the grasped object is not a top-level object. Successful
grasping is defined as shown in Figure 7 (c), where the topmost object is
grasped.
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Figure 6: Visual results on the VMRD dataset [46]. “Quality” is the original grasp quality
score Q, while “Quality∗” is the grasp quality score Q∗ after combining with the predicted
priority mask. It can be seen that Q∗ has more prominent features on the top-level objects.
Besides, the angle and width feature maps show a strong suppression effect on the background
region of non-top-level objects with the supervision of the priority-optimized loss function.
GP-Net has a more reasonable grasp performance for grasp detection in complex stacking
scenes.

Figure 7: Real scenario testing. (a) The objects used in our testing, (b) Incorrect grasping
where the grasped object is not a top-level object, and (c) Successful grasping.

In the real environment grasping test, we constructed grasping scenarios
with different levels of difficulty. The number of objects and the number of
pairs with stacking relationships between objects were used as the criteria
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to measure the difficulty of grasping in the grasping experiments. Figure 8
shows the results of our grasp method in real scenarios. The new grasp quality
score Q∗ gives higher grasp priority to the top-level objects. This indicates
that our method has high stability in a real stacking environment. Next, we
selected 3-7 objects for grouping, and in each group, we performed 18 rounds
of grasping experiments. To better illustrate the effect of different stacking
scenarios on the grasping success rate, we measured the real environment
grasping performance as the ratio of the number of rounds that successfully
completed all the grasps of the whole group to the total number of grasping
rounds in each group of 18 rounds of grasping experiments. From Table 3, it

Figure 8: Qualitative analysis of real scenarios. “Quality” is the original grasp quality score
Q, and “Quality∗” is the grasp quality score Q∗ after combining with the predicted priority.
Note that Q∗ gives the topmost objects a higher grasp priority.

Table 3: Results of our method in real scenario testing.

Number of
objects

Number of pairs of objects Accuracy(%)with stacking relationships

3 2 94.4
4 3± 1 83.3
5 4± 1 88.8
6 5± 1 77.8
7 6± 2 72.2
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can be seen that our method obtains satisfactory grasping results in real-world
complex stacking scenarios, with an average grasping success rate of 83.3%.

5 Conclusions

In this paper, a novel neural network GP-Net is proposed to generate grasp
parameters with grasp priority, which improves the rationality of the grasp
representation for complex stacking scenarios. We evaluate our GP-Net on
public grasping datasets and real-world complex stacking scenarios. Extensive
experiments demonstrate the superiority of our method over previous represen-
tative methods and its good generalization ability to deal with unseen objects.
Moreover, our GP-Net also enjoys a fast inference speed, which can meet the
real-time requirement in practical applications.
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