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ABSTRACT

It is known that various implicit bias occur in Neural Networks due
to their structural restrictions. Among them, texture bias caused by
the convolution of CNNs has a significant impact on recognition perfor-
mance. This paper shows that models with strong texture bias degrade
recognition performance on datasets with large shape features, and to
compensate for this characteristic of CNNs we introduce a method to
increase their bias toward shapes rather than textures. Our method uses
a simple image decomposition technique to create a shape-dominant
dataset and then build a model with shape bias using the dataset. We
experimentally show that the network can be biased towards shape
without a significant loss of recognition accuracy compared to CNNs
trained using conventional ImageNet. Additionally, we demonstrate that
the CNN built by the proposed method obtains a higher recognition ac-
curacy for shape-dominant images than those created using conventional
methods.
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1 Introduction

Convolutional Neural Networks (CNNs) were originally designed to imitate the
human visual system [10, 22, 23] and are utilized for numerous tasks, such as
classification, semantic segmentation, and image generation. Although CNNs
mimic the human visual system, there are still differences [6, 9, 13, 15, 32].
One notable difference between humans and CNNs is that humans tend to
recognize objects by their global shape, whereas CNNs prioritize local texture
over global shape.

The human visual cortex tends to first capture edges and points, then
the shapes of objects, and finally the entire image containing the objects [24].
When humans recognize an object, they tend to focus on the global shape
information of the entire object rather than on the local texture information
of a part of the object. For example, when humans recognize elephants, they
rarely focus on the shape of the wrinkles on their body surface but tend to
recognize the body shape and positions of body parts, such as the nose and
ears.

In contrast, Convolutional Neural Networks (CNNs) recognize objects
primarily based on their texture, thanks to the use of convolutional layers that
calculate correlations between the central pixel and its neighboring pixels to
extract local texture features, rather than global shape. The pooling layer
further expands the recognition range by down-sampling the feature maps. The
CNN architecture gradually expands the recognition area from small to large by
stacking convolutional and pooling layers. However, the local texture features
obtained in the early layers tend to dominate the overall object recognition
performance, as they influence the operations of the later layers. Additionally,
as the kernel size per layer is usually small, the spatial receptive field is limited,
and even if many layers are stacked on top of each other, the receptive field of
CNNs does not become very large [5]. In other words, humans tend to focus
on global shape information for object recognition, while CNNs tend to focus
on local texture information for object recognition. This tendency to focus on
global shapes rather than local textures in the analysis is known as shape bias,
and the opposite is called texture bias.

Developing CNN with a shape bias has many advantages. One is that the
CNN can grasp features more accurately for shape-dominant image data, such
as cartoons or sketch images. In addition, focusing on shape also makes object
judgments less susceptible to noise, blurring, and other image degradation,
which may counter hostile attacks that may add perturbation and cause
misclassification. Such a bias can also improve the efficiency and accuracy of
CNN transfer learning and fine-tuning by selecting a model with an appropriate
bias for transferring learning data. Furthermore, by analyzing the area in the
image wherein the CNNs identify the shape and texture, we can improve their
explainability.
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In a previous study, Geirhos et al. [12] created Stylized-ImageNet, which is
an image dataset that has different labels for local textures and global shapes,
and experimentally confirmed that CNNs have a texture bias. They also used
the Stylized-ImageNet to create a model with shape bias. Hermann et al. [20]
performed various data augmentation techniques to quantitatively evaluate
texture and shape biases. However, these previous studies not only changed
the texture but also the shape of the object, or generated unrealistic images,
which may negatively impact learning and raise questions about whether the
shape is correctly recognized.

This study used image decomposition to remove texture from an image
and used this decomposition to create an image dataset with information
that is more meaningful for shape than texture. Thereafter, we trained the
CNN on the dataset such that it had more bias toward the shape. Through
experiments, we confirmed that the model had a shape bias, and fine-tuning
the shape-dominant dataset resulted in the best performance compared to
pretraining the model on other datasets.

The main contributions of this research can be summarized in the following
two points:

• This study shows that the shape bias of a Neural Network can be increased
with a shape-dominant image dataset obtained by image decomposition.
The conventional dataset employed by Geirhos et al. [12] uses specialized
techniques for dataset creation, and it is considered very time-consuming
or even hard to apply to a different modality. By contrast, our method
utilizes simple image decomposition techniques, providing the significant
advantage of being able to create shape-biased data from any dataset
and train new models with enhanced shape biases.

• While Geirhos et al. [12] aimed to create shape-biased models, the
conventional approach did not demonstrate significant improvements in
recognition performance on images from domains outside of ImageNet. In
contrast, our method demonstrates enhanced recognition performance on
datasets with limited texture information, which represents a significant
step forward in the field.

The rest of this paper is organized as follows: Section 2 introduces related
work on CNN bias and datasets. Section 3 describes the proposed method
and pretraining settings. In Section 4, we explain the four experiments of the
proposed method and discuss future work. Finally, Section 5 concludes the
paper.
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2 Related Work

2.1 Datasets

ImageNet [28] is a well-known dataset used for pertaining and includes
ImageNet-1k [28] and ImageNet-21k [4], comprising 1 and 14 million images,
respectively. It also has a wide variety of evaluation sets. ImageNet-C [18],
where the images have been processed in various ways, such as adding noise,
to verify model robustness. ImageNet-A or ImageNet-O [19], which is a collec-
tion of images originally included in ImageNet, is prone to misclassifications.
ImageNet-R [17] contains a collection of images included in ImageNet, which
are artifacts rather than real objects, such as pictures or dolls. ImageNet-
Sketch [35]is composed of sketch images of ImageNet labels. It also contains
the larger and publicly unavailable JFT-300M [31], which consists of 300
million images collected independently by Google; it is used for pretraining
the recently introduced ViT [7].

2.2 Research on Implicit Bias

Studies have shown that CNN models trained using ImageNet [28] prefer
local texture information to global shape information. Baker et al. [2] divided
images into global shapes (edges and silhouettes) and local textures (parts of
edges and within edges), and investigated the changes in recognition accuracy
between humans and CNNs by varying each of these. Their results showed
that the recognition accuracy of humans deteriorated significantly when the
global shape was corrupted compared to when the local texture was corrupted.
In the case of CNNs, the recognition accuracy did not deteriorate even if the
global shape was corrupted, whereas it deteriorated significantly when the
local texture was corrupted. Geirhos et al. [12] applied a style transformation
to ImageNet to create image datasets with different shapes and textures and
trained the CNN such that it had a shape bias. In the experiment, they
measured the bias by performing image classification using two correct labels,
shape and texture, for both humans and CNNs. The results showed that
the human classifier focused on the global shape, whereas the original CNN
focused on local texture. In contrast, models trained to have a shape bias had
a bias similar to that of humans. Geirhos et al. [11] also compared various
architectures and learning methods for humans, CNNs, and ViTs. They showed
that learning on large datasets over long periods of time and learning with
noise labels and data increases the bias and improves noise tolerance.

Tuli et al. [34] evaluated more accurate models by investigating the error
consistency of deep neural networks. They found that ViTs have a more
human-like bias than CNNs and a similar error consistency. Hermann et al.
[20] investigated the impact of data augmentation and learning goals on shape
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bias and found that CNNs can lose shape information in their architecture as
they learn. Shi et al. [29] proposed a vision-inspired algorithm to reduce the
texture bias of CNNs and found that other algorithms, such as adversarial
learning, can be used to improve recognition accuracy. Azad et al. [1] achieved
the best results on several datasets for few-shot segmentation by reducing
texture bias. Ding et al. [5] showed that increasing the kernel size of a CNN
increases its spatial receptive field and shape bias. Raghu et al. [27] mapped
the similarity between the layers of a CNN and ViT and showed that the CNN
acquires global features from local features, whereas the ViT acquires global
features from the beginning.

Many of these related studies, which attempted to obtain shape bias by
modifying datasets, largely corrupted the shape of the images in the dataset.
Therefore, CNNs may not have acquired the shape correctly. In this study, the
image was smoothed to remove the texture while preserving the shape such
that the CNN could acquire the shape from the image.

3 Proposed Method

The proposed method involves decomposing images into shape and texture
components, creating and training a shape image dataset, and performing
fine-tuning on datasets with shape dominance. An overview of the proposed
method is shown in Figure 1. In this study, we initially decompose the
pretraining images into local texture and global shape images by conventional
image decomposition techniques and then reconstruct the pretraining dataset
using only the global shape images. Subsequently, we pretrain the neural
network using only the training images to obtain the shape bias. Finally,
we quantitatively evaluate the bias through four types of experiments and
demonstrate the superiority of our method for shape-dominant image data.

3.1 Image Decomposition Method

In the previous study by Geirhos et al. [12], images are generated using style
transfer [21]. Style transfer is used to change the local texture of an image to
a different local texture that is not meaningful for the correct label, thereby
increasing the importance of global shape information. However, style transfer
often produces unrealistic images because changing the local texture also affects
the global shape, which negatively impacts learning and reduces accuracy.
This is similar to learning from noisy images and has been a major concern.

In this study, we propose a method for constructing a shape-dominant
dataset by using classical image decomposition methods to separate the shapes
and textures of each image. We use two different methods to decompose the
images: the edge-preserving smoothing algorithm proposed by Subr et al.
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Figure 1: Overview of the proposed method. First, the dataset is decomposed into shape
and texture images. Next, the shape images are used primarily to create a pretrained model.
This generates a more shape-biased model. Finally, fine-tuning and transition learning are
performed on the shape-biased dataset.

[30]and L0-Smoothing proposed by Xu et al. [38]. First, the edge-preserving
smoothing algorithm defines the oscillation between the local minima and
maxima in an image in detail (local texture). Then, the local minima and
maxima in the image are calculated, and the envelope connecting each extreme
value is obtained. Finally, we estimate the average of the envelopes of the local
minima and maxima, and generate a smoothed image S. Next, L0-Smoothing
reduces the number of pixels with non-zero differences between adjacent pixels,
resulting in a smoothed image.

Using an algorithm that preserves the edges of images and maintains their
shape, images can be added together. Let the original image be I, global shape
image be S, and local texture image be T. We decompose I into S and T such
that I = S + T , and reconstruct the image using the weighted combination as
follows:

I ′ = S + αT (0 ≤ α ≤ 1). (1)

Thus, the shape-dominant image I ’ is obtained. An example of images I ’
generated by applying the edge-preserving smoothing algorithm is shown
in Figure 2. This process (α = 0) was applied to all ImageNet images to
create datasets Smooth-ImageNet (edge-preserving smoothing algorithm) and
L0-ImageNet (L0-Smoothing).

Figure 3 illustrates some examples from the original ImageNet and Stylized-
ImageNet datasets [12], as well as sample images from the Smooth-ImageNet
and L0-ImageNet datasets. For the convenience of using style transfer [21], the
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Figure 2: Sample images with some values of α. A larger α results in a texture image, while
a smaller α results in a shape image. In particular, if alpha = 1, the image is the original
image, and if alpha = 0, it is a Smooth-ImageNet.

images in Stylized-ImageNet were resized to (256, 256). The styles used for
style transfer were based on paintings [26] primarily collected from a website
called WikiArt.1 However, due to the gaps between domains and the accuracy
of the style transfer itself, the images in the Stylized-ImageNet dataset may
not be interpretable to the human eye. In such cases, the image may contain
a mismatch between the shape and texture, which could lead to inaccuracies
in CNN’s ability to acquire the shape of the original image. In contrast, the
proposed datasets employ an algorithm that preserves the edges of the image
while removing the texture. By training the CNN without texture informa-
tion, the shape of the image is preserved, allowing humans to immediately
determine the contents of the image. Comparing the Smooth-ImageNet and
L0-ImageNet datasets, L0-ImageNet is smoother than Smooth-ImageNet. In
terms of processing speed, creating Smooth-ImageNet required more than one
month, whereas L0-ImageNet was created in approximately three days.

1https://www.wikiart.org/.

https://www.wikiart.org/
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Figure 3: Partial comparison of the image datasets used in this study; Stylized-ImageNet
has many images with heavily collapsed global shapes that cannot be determined by the
human eye. On the other hand, the proposed dataset shows that the edges remain and the
texture can be eliminated. Stylized-ImageNet is resized to (256, 256) to use style transfer.

3.2 Pretraining

We created a pretrained model of ResNet50 [16] using the proposed datasets
(Smooth-ImageNet and L0-ImageNet), ImageNet as a comparison method, and
Stylized-ImageNet, for a total of four types of data. For the pretraining dataset,
we used only ImageNet, 1,281,167 training images and 50,000 validation images
from ImageNet. We trained for 90 epochs with a batch size of 256 and an
initial learning rate of 0.1. The learning rate was divided by 10 for 30, 60, and
80 epochs. For the other three datasets, both the dataset and ImageNet were
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used for training. For example, when training Smooth-ImageNet, we used
images from both ImageNet and Smooth-ImageNet, and 2,562,334 training
images. Stochastic gradient descent (SGD) and cross-entropy loss were used.

4 Experiments

In this Section, we quantitatively evaluate the shape bias proposed in previous
studies. We also evaluate the efficiency of the proposed model with the shape
bias by conducting experiments on three datasets characterized by shapes that
are not related to either the proposed or comparative method.

4.1 Quantitative Evaluation of Shape Bias

4.1.1 Overview of the Experiment

In the first experiment, we quantitatively compared the shape bias of models
trained on the proposed datasets, Smooth-ImageNet and L0-ImageNet, with
those trained on the conventional datasets, ImageNet and Stylized-ImageNet.
In this experiment, we tested the degree to which increasing the shape bias
degrades the accuracy of conventional ImageNet classification with respect to
ImageNet. Four models (Smooth-ImageNet, L0-ImageNet, original ImageNet,
and Stylized-ImageNet), and three models that were fine-tuned with ImageNet
for each trained model, were compared and evaluated. Pretraining was per-
formed using the same parameter settings as those presented in Section 3.2,
and the original ImageNet was used for fine-tuning. We fine-tuned for 10
epochs with a learning rate of 0.01.

We also compared and evaluated the shape bias and accuracy of the latest
image recognition models, ConvNeXt-T [25] and EfficientNetV2-S [33]. The
pre-training for ConvNeXt-T was performed using the official pre-training
settings, and for EfficientNetV2-S, the settings in [37] were used as a reference.
We fine-tuned for 30 epochs.

4.1.2 Evaluation Method

To quantitatively evaluate bias, we used the criteria proposed by Geirhos et al.
[12]. As test data, images were style-transformed using a method similar to
that used for Stylized-ImageNet to generate images with two different labels
for global shapes and local textures (e.g., car for global shapes and cat for
local textures). They used 16 classes consisting of airplanes, bears, bicycles,
birds, boats, bottles, cars, cats, chairs, clocks, dogs, elephants, keyboards,
knives, ovens, and trucks. They defined the number of shape matches (NoSM )
as the number of model outputs that match the labels for the global shapes
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and the number of texture matches (NoTM ) as the number of model outputs
that match the labels for the local textures. Using these two quantities, they
calculated the degree of shape bias as follows:

Shape_bias =
NoSM

NoSM +NoTM
. (2)

This metric evaluates the shape bias for each model and the accuracy of the
original ImageNet validation set.

4.1.3 Results

The shape biases and recognition rates are shown in Table 1. For shape bias,
Stylized-ImageNet had the highest value, followed by L0-ImageNet, Smooth-
ImageNet, and ImageNet. Note that because the test data evaluated for the
shape bias were created using the same method that used for creating Stylized-
ImageNet, this experiment can be considered to have been conducted under
favorable conditions for Stylized-ImageNet. In addition, the models trained on
the proposed Smooth-ImageNet and L0-ImageNet datasets had larger shape
bias values than those trained on the original ImageNet. Furthermore, when
ImageNet was fine-tuned, the model trained on Stylized-ImageNet showed
a slight decrease in shape bias, whereas those of models trained on Smooth-
ImageNet and L0-ImageNet did not decrease.

Table 1: Shape bias and accuracy of the ImageNet validation set of ResNet50. IN: ImageNet,
SIN: Stylized-ImageNet, SmIN: Smooth-ImageNet (proposed method), L0IN: L0-ImageNet
(proposed method).

pretraining data Fine-tuning data Shape bias TOP-1 TOP-5

IN - 0.214 76.1 92.0
SIN + IN - 0.370 64.6 85.1
SIN + IN IN 0.362 74.1 91.9
SmIN + IN - 0.266 75.4 92.5
SmIN + IN IN 0.267 76.8 93.2
L0IN + IN - 0.269 72.2 90.6
L0IN + IN IN 0.272 76.3 93.1

Tables 2 and 3 shows the shape bias and accuracy of the latest image
recognition models, ConvNeXt-T and EfficientNetV2-S. In both cases, the
shape bias increased when trained on the proposed dataset and did not decrease
significantly after fine-tuning. The accuracy is higher for the training with
ImageNet alone, but the difference is not significant after fine-tuning. The
proposed method has higher accuracy than Stylized-Imagenet, although there
is a decrease in shape bias.
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.
Table 2: Shape bias and accuracy of the ImageNet validation set of ConvNeXt-T. IN:
ImageNet, SIN: Stylized-ImageNet, L0IN: L0-ImageNet (proposed method).

pretraining data Fine-tuning data Shape bias TOP-1 TOP-5

IN - 0.308 82.0 95.8
SIN + IN - 0.460 80.2 95.0
SIN + IN IN 0.429 81.0 95.3
L0IN + IN - 0.372 81.2 94.1
L0IN + IN IN 0.365 81.6 95.6

Table 3: Shape bias and accuracy of the ImageNet validation set of EfficientNetV2-S. IN:
ImageNet, SIN: Stylized-ImageNet, L0IN: L0-ImageNet (proposed method).

pretraining data Fine-tuning data Shape bias TOP-1 TOP-5

IN - 0.144 81.5 95.6
SIN + IN - 0.282 80.2 95.0
SIN + IN IN 0.178 80.8 95.3
L0IN + IN - 0.161 81.1 95.5
L0IN + IN IN 0.152 81.3 95.6

When the proposed datasets (Smooth-ImageNet and L0-ImageNet) were
used for pre-training and further fine-tuning using ImageNet, TOP-1 and TOP-
5 showed almost equal or better accuracy compared to training using ImageNet.
In addition, the shape bias in our method did not decrease significantly after
fine-tuning compared to Stylized-ImageNet. Thus, compared to ImageNet, the
proposed datasets can acquire shape bias and successfully improve or maintain
accuracy without decreasing shape bias.

4.2 Evaluation with Anime Images

4.2.1 Overview of the Experiment

In the second experiment, we performed anime image recognition as an example
to show that shape bias can improve classification performance. We used anime
images to evaluate the effectiveness of the proposed method. Because anime
images have fewer local textures than natural images, they can be considered
shape-dominant. Therefore, it can be used to determine the effectiveness of a
pretrained model with a shape bias for shape-dominant data.

We used the AnimeFace Character dataset;2 11,592 out of 14,490 images
were used as training data, and 2,898 images were used as test data.

2http://www.nurs.or.jp/~nagadomi/animeface-character-dataset/.

http://www.nurs.or.jp/~nagadomi/animeface-character-dataset/
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Samples of images in this dataset are shown in Figure 4. The number
of classes is 203, and each class contains approximately 50–100 images. For
fine-tuning, we used the SGD optimizer and cross-entropy loss as the loss
function. The batch size was 64 and the learning rate was 0.01. The model
was trained for 40 epochs.

Figure 4: Samples of AnimeFace Character Dataset2.

4.2.2 Results

The experimental results are shown in Table 4. The models pretrained on
the proposed L0-ImageNet had the highest TOP-1 and TOP-5, followed
by Smooth-ImageNet and Stylized-ImageNet; the models pretrained on the
original ImageNet achieved the lowest accuracy. The model pretrained with L0-
ImageNet was the most accurate for animated images with few textures. For the
validation set of ImageNet, the model trained on the original ImageNet was the
most accurate at the pretraining stage. However, in the fine-tuning of animated
images, the accuracy of the proposed method is considered superior because
of its emphasis on shape. This indicates that the proposed method is superior
for animated images, which comprise shape-dominated data. Conversely, the
accuracy of Stylized-ImageNet may be lower owing to the presence of different
local textures resulting from its data-creation method.

Table 4: Accuracy of the AnimeFace Character Dataset. IN: ImageNet, SIN: Stylized-
ImageNet, SmIN: Smooth-ImageNet (proposed method), L0IN: L0-ImageNet (Proposed
method).

Pretraining data Top-1 Top-5

IN 89.0 96.9
SIN + IN 89.6 96.8
SmIN + IN 89.3 96.6
L0IN + IN 90.0 97.0
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4.3 Evaluation with Sketch Images

4.3.1 Overview of the Experiment

In the third experiment, by performing a sketch image recognition task, we
showed that shape bias can improve classification performance. Sketches
mainly consist of global shapes of an object and have little meaningful local
texture. They have less local texture information than anime images and
no color information. Therefore, the data is shape-dominant compared to
natural images. We confirmed the effectiveness of the proposed method on
these shape-dominant data, which are different from those of anime images.

For fine-tuning, we used a dataset comprising a collection of sketched
images created by Eitz et al. [8]. Some samples from the dataset are shown in
Figure 5. Of the 20,000 images, 16,000 were used for training and 4,000 were
used for testing. The dataset comprises 250 classes, and the learning rate for
fine-tuning is 0.01. SGD was used as the optimizer and cross-entropy loss was
used as the loss function. The batch size was 128.

Figure 5: Samples of sketch dataset.

4.3.2 Results

The experimental results are shown in Table 5. Similar to the case of ani-
mated images, the models trained on L0-ImageNet and the proposed method
showed the highest accuracy, followed by those trained on Smooth-ImageNet,
Stylized-ImageNet, and original ImageNet. The group of models with low
accuracy in the ImageNet validation set became more accurate for the sketched
images. Thus, we created an effective pretrained model for data without color
information. Furthermore, the models trained using the proposed method
were found to be more effective for sketch images, which have even less local
texture information than animated images.

4.4 Evaluation of Logo Images

4.4.1 Overview of the Experiment

In this experiment, we used logo images as examples of shape-dominant images.
A logo is an illustration of a text string or object, and logos are applied to
various items, such as organizations and products. They have a few high-
frequency components similar to animated images, and some comprise different
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Table 5: Accuracy of the sketch dataset. IN: ImageNet, SIN: Stylized-ImageNet, SmIN:
Smooth-ImageNet (proposed method), L0IN: L0-ImageNet (Proposed method).

Pretraining data TOP-1 Top-5

IN 78.8 94.8
SIN + IN 80.3 95.7
SmIN + IN 80.5 95.3
L0IN + IN 81.8 95.9

Figure 6: Example images from the logo 2k+ Dataset. The same logo can have different
colors and slightly different shapes.

colors for different backgrounds or objects. Therefore, they can be considered
color-independent shape images.

The Logo-2k+ dataset [36] was used in this experiment. Samples of images
in the dataset are shown in Figure 6. The Logo-2k+ dataset consists of 10
parent categories and 2,341 child categories for a total of 167,140 images. Of
the 167,140 images, 116,958 were used as training data and 50,182 as test
data. The learning rate was set to 0.01, a cosine scheduler was used, and the
warm-up time was set to five epochs. SGD was used as the optimizer and
cross-entropy loss was used as the loss function. The batch size was 128.

4.4.2 Results

The experimental results are shown in Table 6. Similar to the aforementioned
two datasets, the accuracy of the model trained on the proposed dataset was
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Table 6: Accuracy on the Logo Dataset. IN: ImageNet, SIN: Stylized-ImageNet, SmIN:
Smooth-ImageNet (proposed method), L0IN: L0-ImageNet (Proposed method).

Pretraining data TOP-1 TOP-5

IN 58.9 69.8
SIN + IN 62.2 72.6
SmIN + IN 62.4 73.1
L0IN + IN 63.6 74.5

the highest, followed by Stylized-ImageNet and the original ImageNet. Thus,
the proposed model was also effective for datasets containing logo images,
where shape information is more important than color information.

These results indicate that compared to Stylized-ImageNet, Smooth-ImageNet
and L0-ImageNet are shape-biased datasets and models trained on these
datasets can produce effective models for shape-dominant data.

4.5 Remarks

We proposed a basis for controlling the shape bias of CNNs using image
decomposition as the dataset construction method; however, there is room
for further improvement. We need to conduct evaluation experiments using
datasets containing other images that are considered shape-dominant, such
as medical images or billboards, to further demonstrate the effectiveness
of creating datasets with image decomposition. Additionally, experiments
on model robustness should be conducted. CNNs are known to misclassify
even small noises, such as adversarial attacks. In contrast, the same type of
adversarial attacks rarely causes misclassification among humans. Therefore, it
is necessary to investigate the robustness of the model trained on the proposed
dataset to simple noise, such as Gaussian noise, or adversarial attacks [3].

Although optimization methods were used for shape and texture image
decomposition, they require parameters to be set for each image. The proposed
dataset was created without changing the parameters for each image; therefore,
it was not possible to erase the texture with the optimal parameters for all
images. With over one million images in ImageNet, it is practically impossible
to manually set parameters manually for each image, and creating an accurate
dataset for larger datasets is still problematic. Therefore, to improve texture
removal, a method that automatically sets parameters can be devised or an
image generation model [14, 39] that does not require parameter setting can
be used.

Furthermore, it is necessary to devise an evaluation metric to measure the
bias of the data to be fine-tuned. One advantage of the proposed method
is that the ratio of global shape to local texture of the image can be varied
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by adding the decomposed images together again. By changing the ratio of
shape and texture during training, a model with arbitrary bias can be created.
In this study, we experimented with three types of shape-dominant images:
animated images, sketches, and logo images. For example, when comparing
a sketch image with an animated image, the animated image should have
more local texture. Thus, we can expect more efficient learning and improved
accuracy by creating a model with a bias tailored to the domain of each data
set. For this purpose, it is necessary to have a measure of the bias of the
data used for fine-tuning. This will enable the use of models with appropriate
biases. In the future, the goal is to provide pretrained models with biases that
match the biases of the fine-tuned data.

5 Conclusion

In this study, we created a dataset to train a CNN with a shape bias, which
was fine-tuned and evaluated using data predominantly containing shapes.
To achieve a shape bias, we employed an image decomposition method that
separates images into their shape and texture components. This method
overcomes the limitations of previous studies by preventing shape collapse
during texture transformation, thus enabling us to reliably produce a shape-
focused CNN. Our proposed method outperformed several baseline methods on
test datasets where shape predominates. This dataset creation approach can
be used to develop models with arbitrary biases by adjusting the proportions
of shape and texture in the image through their combination. Moreover, the
edges obtained through our method closely resemble those of the original
images. By training on image datasets with varying proportions of shape and
texture, CNNs with different biases can be created.

Acknowledgements

This work was supported in part by JSPS KAKENHI Grant Number 23K11174
and MEXT Promotion of Distinctive Joint Research Center Program Grant
Number JPMXP 0621467946.

References

[1] R. Azad, A. R. Fayjie, C. Kauffmann, I. B. Ayed, M. Pedersoli, and
J. Dolz, “On the Texture Bias for Few-Shot CNN Segmentation,” 2021
IEEE Winter Conference on Applications of Computer Vision, 2021,
2673–82.



CNN Pretrained Model with Shape Bias using Image Decomposition 17

[2] N. Baker, H. Lu, G. Erlikhman, and P. J. Kellman, “Deep convolu-
tional networks do not classify based on global object shape,” PLoS
Computational Biology, 14, 2018.

[3] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in 2017 ieee symposium on security and privacy (sp), Ieee,
2017, 39–57.

[4] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in 2009 IEEE Conference on
Computer Vision and Pattern Recognition, 2009, 248–55, doi: 10.1109/
CVPR.2009.5206848.

[5] X. Ding, X. Zhang, Y. Zhou, J. Han, G. Ding, and J. Sun, “Scaling Up
Your Kernels to 31x31: Revisiting Large Kernel Design in CNNs,” arXiv
preprint arXiv:2203.06717, 2022.

[6] S. F. Dodge and L. Karam, “A Study and Comparison of Human and
Deep Learning Recognition Performance under Visual Distortions,” 2017
26th International Conference on Computer Communication and Net-
works, 2017, 1–7.

[7] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T.
Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al.,
“An image is worth 16x16 words: Transformers for image recognition at
scale,” arXiv preprint arXiv:2010.11929, 2020.

[8] M. Eitz, J. Hays, and M. Alexa, “How Do Humans Sketch Objects?”
ACM Trans. Graph., 31(4), 2012, doi: 10.1145/2185520.2185540.

[9] N. Ford, J. Gilmer, N. Carlini, and E. D. Cubuk, “Adversarial Examples
Are a Natural Consequence of Test Error in Noise,” in International
Conference on Machine Learning, 2019.

[10] K. Fukushima, S. Miyake, and T. Ito, “Neocognitron: A neural network
model for a mechanism of visual pattern recognition,” IEEE Transactions
on Systems, Man, and Cybernetics, SMC-13(5), 1983, 826–34, doi: 10.
1109/TSMC.1983.6313076.

[11] R. Geirhos, K. Narayanappa, B. Mitzkus, T. Thieringer, M. Bethge,
F. A. Wichmann, and W. Brendel, “Partial success in closing the gap
between human and machine vision,” in Advances in Neural Information
Processing Systems 34, 2021.

[12] R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F. A. Wichmann, and
W. Brendel, “ImageNet-trained CNNs are biased towards texture; in-
creasing shape bias improves accuracy and robustness.,” in International
Conference on Learning Representations, 2019, https://openreview.net/
forum?id=Bygh9j09KX.

[13] R. Geirhos, C. R. M. Temme, J. Rauber, H. H. Schütt, M. Bethge,
and F. A. Wichmann, “Generalisation in Humans and Deep Neural
Networks,” in, NIPS’18, Montréal, Canada: Curran Associates Inc., 2018,
7549–61.

https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1145/2185520.2185540
https://doi.org/10.1109/TSMC.1983.6313076
https://doi.org/10.1109/TSMC.1983.6313076
https://openreview.net/forum?id=Bygh9j09KX
https://openreview.net/forum?id=Bygh9j09KX


18 Iwata and Okuda

[14] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative Adversarial Nets,” in
Advances in Neural Information Processing Systems, ed. Z. Ghahramani,
M. Welling, C. Cortes, N. Lawrence, and K. Q. Weinberger, Vol. 27,
Curran Associates, Inc., 2014, https://proceedings.neurips.cc/paper/
2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf.

[15] I. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and Harness-
ing Adversarial Examples,” in International Conference on Learning
Representations, 2015, http://arxiv.org/abs/1412.6572.

[16] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition,” 2016 IEEE Conference on Computer Vision and Pattern
Recognition, 2016, 770–8.

[17] D. Hendrycks, S. Basart, N. Mu, S. Kadavath, F. Wang, E. Dorundo,
R. Desai, T. Zhu, S. Parajuli, M. Guo, D. Song, J. Steinhardt, and J.
Gilmer, “The Many Faces of Robustness: A Critical Analysis of Out-of-
Distribution Generalization,” 2021 IEEE International Conference on
Computer Vision (ICCV), 2021.

[18] D. Hendrycks and T. Dietterich, “Benchmarking Neural Network Ro-
bustness to Common Corruptions and Perturbations,” Proceedings of
the International Conference on Learning Representations, 2019.

[19] D. Hendrycks, K. Zhao, S. Basart, J. Steinhardt, and D. X. Song, “Nat-
ural Adversarial Examples,” 2021 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2021, 15257–66.

[20] K. Hermann, T. Chen, and S. Kornblith, “The origins and prevalence
of texture bias in convolutional neural networks,” Advances in Neural
Information Processing Systems, 33, 2020, 19000–15.

[21] X. Huang and S. Belongie, “Arbitrary Style Transfer in Real-time with
Adaptive Instance Normalization,” in ICCV, 2017.

[22] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” in Proceedings of the 25th
International Conference on Neural Information Processing Systems -
Volume 1, NIPS’12, Lake Tahoe, Nevada: Curran Associates Inc., 2012,
1097–105.

[23] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, 86(11), 1998,
2278–324, doi: 10.1109/5.726791.

[24] G. W. Lindsay, “Convolutional Neural Networks as a Model of the Visual
System: Past, Present, and Future,” Journal of Cognitive Neuroscience,
33, 2020, 2017–31.

[25] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie, “A
convnet for the 2020s,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2022, 11976–86.

https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
http://arxiv.org/abs/1412.6572
https://doi.org/10.1109/5.726791


CNN Pretrained Model with Shape Bias using Image Decomposition 19

[26] K. Nichol, “Painter by Numbers,” https://www.kaggle.com/competitions/
painter-by-numbers, 2016.

[27] M. Raghu, T. Unterthiner, S. Kornblith, C. Zhang, and A. Dosovitskiy,
“Do Vision Transformers See Like Convolutional Neural Networks?” In
Advances in Neural Information Processing Systems, ed. A. Beygelzimer,
Y. Dauphin, P. Liang, and J. W. Vaughan, 2021, https://openreview.
net/forum?id=Gl8FHfMVTZu.

[28] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z.
Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-
Fei, “ImageNet Large Scale Visual Recognition Challenge,” International
Journal of Computer Vision, 115(3), 2015, 211–52, doi: 10.1007/s11263-
015-0816-y.

[29] B. Shi, D. Zhang, Q. Dai, Z. Zhu, Y. Mu, and J. Wang, “Informative
Dropout for Robust Representation Learning: A Shape-bias Perspective,”
in International Conference on Machine Learning, 2020, 8828–39, http:
//proceedings.mlr.press/v119/shi20e.html.

[30] K. Subr, C. Soler, and F. Durand, “Edge-Preserving Multiscale Image
Decomposition Based on Local Extrema,” ACM Trans. Graph., 28(5),
2009, 1–9, doi: 10.1145/1618452.1618493.

[31] C. Sun, A. Shrivastava, S. Singh, and A. K. Gupta, “Revisiting Un-
reasonable Effectiveness of Data in Deep Learning Era,” 2017 IEEE
International Conference on Computer Vision (ICCV), 2017, 843–52.

[32] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” in International
Conference on Learning Representations, 2014, http://arxiv.org/abs/
1312.6199.

[33] M. Tan and Q. Le, “Efficientnetv2: Smaller models and faster training,”
in International conference on machine learning, PMLR, 2021, 10096–
106.

[34] S. Tuli, I. Dasgupta, E. Grant, and T. L. Griffiths, “Are Convolutional
Neural Networks or Transformers more like human vision?” ArXiv,
abs/2105.07197, 2021.

[35] H. Wang, S. Ge, Z. Lipton, and E. P. Xing, “Learning Robust Global
Representations by Penalizing Local Predictive Power,” in Advances in
Neural Information Processing Systems, 2019, 10506–18.

[36] J. Wang, W. Min, S. Hou, S. Ma, Y. Zheng, H. Wang, and S. Jiang, “Logo-
2K+: A Large-Scale Logo Dataset for Scalable Logo Classification,” in
AAAI Conference on Artificial Intelligence. Accepted, 2020.

[37] R. Wightman, H. Touvron, and H. Jégou, “Resnet strikes back: An
improved training procedure in timm,” arXiv preprint arXiv:2110.00476,
2021.

https://www.kaggle.com/competitions/painter-by-numbers
https://www.kaggle.com/competitions/painter-by-numbers
https://openreview.net/forum?id=Gl8FHfMVTZu
https://openreview.net/forum?id=Gl8FHfMVTZu
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
http://proceedings.mlr.press/v119/shi20e.html
http://proceedings.mlr.press/v119/shi20e.html
https://doi.org/10.1145/1618452.1618493
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199


20 Iwata and Okuda

[38] L. Xu, C. Lu, Y. Xu, and J. Jia, “Image Smoothing via L0 Gradient
Minimization,” ACM Transactions on Graphics (SIGGRAPH Asia),
2011.

[39] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired Image-to-Image
Translation using Cycle-Consistent Adversarial Networks,” in 2017 IEEE
International Conference on Computer Vision, 2017.


	Introduction
	Related Work
	Datasets
	Research on Implicit Bias

	Proposed Method
	Image Decomposition Method
	Pretraining

	Experiments
	Quantitative Evaluation of Shape Bias
	Overview of the Experiment
	Evaluation Method
	Results

	Evaluation with Anime Images
	Overview of the Experiment
	Results

	Evaluation with Sketch Images
	Overview of the Experiment
	Results

	Evaluation of Logo Images
	Overview of the Experiment
	Results

	Remarks

	Conclusion

