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ABSTRACT

An efficient 3D scene flow estimation method called PointFlowHop is
proposed in this work. PointFlowHop takes two consecutive point clouds
and determines the 3D flow vectors for every point in the first point
cloud. PointFlowHop decomposes the scene flow estimation task into a
set of subtasks, including ego-motion compensation, object association
and object-wise motion estimation. It follows the green learning (GL)
pipeline and adopts the feedforward data processing path. As a result,
its underlying mechanism is more transparent than deep-learning (DL)
solutions based on end-to-end optimization of network parameters. We
conduct experiments on the stereoKITTI and the Argoverse LiDAR
point cloud datasets and demonstrate that PointFlowHop outperforms
deep-learning methods with a small model size and less training time.
Furthermore, we compare the Floating Point Operations (FLOPs) re-
quired by PointFlowHop and other learning-based methods in inference,
and show its big savings in computational complexity.
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1 Introduction

Dynamic 3D scene understanding based on captured 3D point cloud data is
a critical enabling technology in the 3D vision systems. 3D scene flow aims
at finding the point-wise 3D displacement between consecutive point cloud
scans. With the increase in the availability of point cloud data, especially
those acquired via the LiDAR scanner, 3D scene flow estimation directly from
point clouds is an active research topic nowadays. 3D scene flow estimation
finds rich applications in 3D perception tasks such as semantic segmentation,
action recognition, and inter-prediction in compressing sequences of LiDAR
scans.

Today’s solutions to 3D scene flow estimation mostly rely on supervised or
self-supervised deep neural networks (DNNs) that learn to predict the point-
wise motion field from a pair of input point clouds via end-to-end optimization.
One of the important components of these methods is to learn flow embedding
by analyzing spatio-temporal correlations among regions of the two point
clouds. After the successful demonstration of such an approach in FlowNet3D
[25], there has been an increased number of papers on this topic by exploiting
and combining other ideas such as point convolutions and attention mechanism.

These DNN-based methods work well in an environment that meets the
local scene rigidity assumption. They usually outperform classical point-
correspondence-based methods. On the other hand, they have a large number
of parameters and rely on large training datasets. For the 3D scene flow
estimation problem, it is non-trivial to obtain dense point-level flow annotations.
Thus, it is challenging to adopt the heavily supervised learning paradigm with
the real world data. Instead, methods are typically trained on synthetic
datasets with ground truth flow information first. They are later fine-tuned
for real world datasets. This makes the training process very complicated.

In this paper, we develop a green and interpretable 3D scene flow estimation
method for the autonomous driving scenario and name it “PointFlowHop”. We
decompose our solution into vehicle ego-motion and object motion modules.
Scene points are classified as static and moving. Moving points are grouped
into moving objects and a rigid flow model is established for each object.
Furthermore, the flow in local regions is refined assuming local scene rigidity.
PointFlowHop method adopts the green learning (GL) paradigm [20]. It is
built upon related recent work, GreenPCO [15], and preceding foundation
works such as R-PointHop [16], PointHop [48], and PointHop++ [47].

The task-agnostic nature of the feature learning process in prior art enables
scene flow estimation through seamless modification and extension. Further-
more, a large number of operations in PointFlowHop are not performed during
training. The ego-motion and object-level motion is optimized in inference only.
Similarly, the moving points are grouped into objects only during inference.
This makes the training process much faster and the model size very small.
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The decomposition of 3D scene flow into object-wise rigid motion and/or
ego-motion components is not entirely novel. However, our focus remains in
developing a GL-based solution with improved overall performance, including
accuracy, model sizes and computational complexity.

The novelty of our work lies in two aspects. First, it expands the scope
of existing GL-based point cloud data processing techniques. GL-based point
cloud processing has so far been developed for object-level understanding [14,
17, 18, 46–48] and indoor scene understanding [16, 45]. This work addresses
the more challenging problem of outdoor scene understanding at the point
level. This work also expands the application scenario of R-PointHop, where
all points are transformed using one single rigid transformation. For 3D scene
flow estimation, each point has its own unique flow vector. Furthermore, we
show that a single model can learn features for ego-motion estimation as well
as object-motion estimation, which are two different but related tasks. This
allows model sharing and opens doors to related tasks such as joint scene
flow estimation and semantic segmentation. Second, our work highlights the
over-paramertized nature of DL-based solutions which demand larger model
sizes and higher computational complexity in both training and testing. The
overall performance of PointFlowHop suggests a new point cloud processing
pipeline that is extremely lightweight and mathematically transparent.

To summarize, there are three major contributions of this work.

• We develop a lightweight 3D scene classifier that identifies moving points
and further clusters and associates them into moving object pairs.

• We optimize the vehicle ego-motion and object-wise motion based on
point features learned using a single task-agnostic feedforward PointHop++
model.

• PointFlowHop outperforms representative benchmark methods in the
scene flow estimation task on two real world LiDAR datasets with fewer
model parameters and lower computational complexity measured by
FLOPs (floating-point operations).

The rest of the paper is organized as follows. Related work is reviewed in
Section 2. The PointFlowHop method is proposed in Section 3. Experimental
results are presented in Section 4. Finally, concluding remarks and possible
future extensions are given in Section 5.

2 Related Work

2.1 Scene Flow Estimation

Early work on 3D scene flow estimation uses 2D optical flow estimation followed
by triangulation such as that given in [37]. The Iterative Closest Point (ICP)
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[5] and the non-rigid registration work, NICP [1], can operate on point clouds
directly. A series of image- and point-based seminal methods for scene flow
estimation relying on similar ideas were proposed in the last two decades. The
optical flow is combined with dense stereo matching for flow estimation in [13].
A variational framework that predicts the scene flow and depth is proposed
in [2]. A piecewise rigid scene flow estimation method is investigated in [39].
Similarly, the motion of rigidly moving 3D objects is examined in [27]. Scene
flow based on Lucas-Kanade tracking [26] is studied in [34]. An exhaustive
survey on 2D optical flow and 3D scene flow estimation methods has been
done by Zhai et al. [43]. We adopt the object-level rigid motion analysis as
presented in [27] and several related follow-up works. However, their problem
formulation and optimization is different from ours and they do use training
data to learn features.

Deep-learning-based (DL-based) methods have been popular in the field of
computer vision in the last decade. For DL-based 3D scene flow estimation,
FlowNet3D [25] adopts the feature learning operations from PointNet++ [33].
HPLFlowNet [11] uses bilateral convolution layers and projects point clouds to
an ordered permutohedral lattice. PointPWC-Net [41] takes a self-supervised
learning approach that works in a coarse-to-fine manner. FLOT [32] adopts a
correspondence-based approach based on optimal transport. HALFlow [40]
uses a hierarchical network structure with an attention mechanism. The Just-
Go-With-the-Flow method [30] uses self-supervised learning with the nearest
neighbor loss and the cycle consistency loss. These DL-based methods do not
decompose the scene flow into ego-motion and object-level rigid motion like
ours.

DL-based methods that attempt to simplify the flow estimation problem
using ego-motion and/or object-level motion have also been investigated. For
example, Rigid3DSceneFlow [10] reasons the scene flow at the object level
(rather than the point level). Accordingly, the flow of scene background is
analyzed via ego-motion and that of a foreground object is described by a rigid
model. RigidFlow [22] enforces the rigidity constraint in local regions and
performs rigid alignment in each region to produce rigid pseudo flow. SLIM [3]
uses a self-supervised loss function to separate moving and stationary points.
However, these methods still require end-to-end training, unlike ours where
the feature is learned in a feedforward manner.

2.2 Green Point Cloud Learning

Green Learning (GL) [20] has started to gain attention as an alternative to
Deep Learning (DL) in recent years. Typically, GL consists of three modules:
1) unsupervised representation learning, 2) supervised feature learning, and
3) supervised decision learning. The unsupervised representation learning
in the first module is rooted in the derivation of data-driven transforms
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such as the Saak [19] and the Saab [21] transforms. Both the training and
inference processes in GL adopt a feedforward data processing path without
backpropagation. The optimization is statistics-based, and it is carried out at
each module independently. The learning process is lightweight, making it data
and computation resource friendly. GL-based methods have been developed
for a wide variety of image processing and computer vision tasks [20].

Green Point Cloud learning [24] was first introduced in PointHop [48]. The
unsupervised representation learning process involves constructing a local point
descriptor via octant space partitioning followed by dimensionality reduction
via the Saab transform. These operations together are called one PointHop
unit. It is the fundamental building block in a series of follow-up works
along with other task-specific modules. PointHop++ [47] replaces the Saab
transform with its efficient counterpart called the Channel-wise Saab transform
[8]. We use PointHop++ for learning point-wise features in the ego-motion
and object motion estimation steps. PointHop and PointHop++ adopt a
multi-hop learning system for point cloud classification, whereby the learned
point representations are aggregated into a global feature vector and fed to a
classifier. The multi-hop learning architecture is analogous to the hierarchical
deep learning architecture. The multi-hop architecture helps capture the
information from short-, mid-, and long-range point cloud neighborhoods.

More recently, R-PointHop [16], GSIP [45] and GreenPCO [15] demonstrate
green learning capabilities on more challenging large-scale point clouds for in-
door scene registration, indoor segmentation, and odometry tasks, respectively.
R-PointHop finds corresponding points between the source and target point
clouds using the learned representations and then estimates the 3D rotation
and translation to align the source with the target. We use this procedure in
the object motion estimation step in PointFlowHop, where the 3D rotation
and translation gives the object rigid motion model. In GreenPCO, a similar
process is adopted to incrementally estimate the object’s trajectory. Additional
ideas presented in GreenPCO include a geometry-aware point cloud sampling
scheme that is suitable for LiDAR data. We use GreenPCO in the ego-motion
compensation step. Other noteworthy green point cloud learning works include
SPA [17], UFF [46], PCRP [18], and S3I-PointHop [14]. While these works
mainly focus on object-level or indoor-scene analysis, PointFlowHop is an
application of green learning to outdoor scene analysis.

3 Proposed PointFlowHop Method

The system diagram of the proposed PointFlowHop method is shown in
Figure 1. It takes two consecutive point clouds Xt ∈ Rnt×3 and Xt ∈ Rnt+1×3

as the input and calculates the point-wise flow f̄t ∈ Rn1×3 for the points in
Xt.
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Figure 1: An overview of the PointFlowHop method, which consists of six modules: 1)
ego-motion compensation, 2) scene classification, 3) object association, 4) object refinement,
5) object motion estimation, and 6) scene flow initialization and refinement.

PointFlowHop decomposes the scene flow estimation problem into two
subproblems: 1) determining vehicle’s ego-motion (Tego) and 2) estimating
the motion of each individual object (denoted by (Ti) for object i). It first
proceeds by determining and compensating the ego-motion and classifying
scene points as being moving or static in modules 1 and 2, respectively. Next,
moving points are clustered and associated as moving objects in modules 3
and 4, and the motion of each object is estimated in module 5. Finally, the
flow vectors of static and moving points are jointly refined. These steps are
detailed below.

3.1 Module 1: Ego-motion Compensation

The ith point in Xt has coordinates (xi
t, y

i
t, z

i
t). Suppose this point is observed

at (xi
t+1, y

i
t+1, z

i
t+1) in Xt+1. These point coordinates are expressed in the

respective LiDAR coordinate systems centered at the vehicle position at time
t and t+ 1. Since the two coordinate systems may not overlap due to vehicle’s
motion, the scene flow vector, f̄t

i, of the ith point cannot be simply calculated
using vector difference. Hence, we begin by aligning the two coordinates
systems or, in other words, we compensate for the vehicle motion (or called
ego-motion).

The ego-motion compensation module in PointFlowHop is built upon a
recently proposed point cloud odometry estimation method, called GreenPCO
[15]. It is briefly reviewed below for self-containedness. GreenPCO determines
the vehicle trajectory incrementally by analyzing consecutive point cloud scans.
It is conducted with the following four steps. Usually, the point clouds have
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a large number of points and not all points are required, nor useful in the
ego-motion compensation step. Uniformly downsampling the point cloud using
iterative farthest point sampling is not useful since it selects some featureless
points. Hence, first, the two point clouds are sampled using the geometry-
aware sampling method instead, which selects points spatially spread out
with salient local surfaces. Geometry-aware sampling considers two criteria
jointly in selecting 2048 discriminant points for ego-motion estimation – point
saliency based on the local geometric eigen feature [12] and spatial distance
between discriminant points. Second, the sampled points from the two point
clouds are divided into four views - front, left, right and rear based on the
azimuthal angles. Third, point features are extracted using PointHop++ [47].
The features are used to find matching points between the two point clouds
in each view. Last, the pairs of matched points are used to estimate the
vehicle trajectory. These steps are repeated as the vehicle advances in the
environment. The diagram of the GreenPCO method is depicted in Figure 2.

Figure 2: An overview of the GreenPCO method [15].

Ego-motion estimation in PointFlowHop involves a single iteration of
GreenPCO whereby the vehicle’s motion from time t to t + 1 is estimated.
Then, the ego-motion can be represented by the 3D transformation, Tego,
which consists of a 3D rotation and 3D translation. Afterward, we use Tego

to warp Xt to X̃t, making it in the same coordinate system as that of Xt+1.
Then, the flow vector can be computed by

f̄t
i
= (xi

t+1 − x̃i
t, y

i
t+1 − ỹit, z

i
t+1 − z̃it), (1)

where (x̃i
t, ỹ

i
t, z̃

i
t) is the warped coordinate of the ith point.

3.2 Module 2: Scene Classification

After compensating for ego-motion, the resulting X̃t and Xt+1 are in the
same coordinate system (i.e., that of Xt+1). Next, we coarsely classify scene
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points in X̃t and Xt+1 into moving and static two classes. Generally speaking,
the moving points may belong to objects such as cars, pedestrians, mopeds,
etc., while the static points correspond to objects like buildings, poles, etc.
The scene flow of moving points can be analyzed later while static points
can be assigned a zero flow (or equal to the ego-motion depending on the
convention of the coordinate systems used). This means that the later stages
of PointFlowHop would process fewer points.

For the scene classifier, we define a set of shape and motion features that are
useful in distinguishing static and moving points. These features are explained
below.

• Shape features

We reuse the eigen features [12] calculated in the ego-motion estimation
step. They summarize the distribution of neighborhood points using
covariance analysis. The analysis provides a 4-dimensional feature vector
comprising of linearity, planarity, eigen sum and eigen entropy.

• Motion feature

We first voxelize X̃t and Xt+1 with a voxel size of 2 meters. Then, the
1-dimensional motion feature for each point in X̃t is the distance to the
nearest voxel center in Xt+1, and vice versa, for each point in Xt+1.

The 5-dimensional (shape and motion) feature vector is fed to a binary
XGBoost classifier. For training, we use the point-wise class labels provided by
the SemanticKITTI [4] dataset. We observe that the 5D shape/motion feature
vector are sufficient for decent classification. The classification accuracy on
the SemanticKITTI dataset is 98.82%. Furthermore, some of the misclassified
moving points are reclassified in the subsequent object refinement step.

3.3 Module 3: Object Association

We simplify the problem of motion analysis on moving points by grouping
moving points into moving objects. To discover objects from moving points,
we use the Density-based Spatial Clustering for Applications with Noise
(DBSCAN) [9] algorithm. Simply speaking, DBSCAN iteratively clusters
points based on the minimum distance (eps) and the minimum points (minPts)
parameters. Parameter eps gives the minimum Euclidean distance between
points considered as neighbors. Parameter minPts determines the minimum
number of points to form a cluster. Some examples of the objects discovered
using PointFlowHop are colored in Figure 3.

Points belonging to distinct objects may get clustered together. We put
the points marked as “outliers” by DBSCAN in the set of static points. The
DBSCAN algorithm is run on X̃t and Xt+1 separately. Later, we use cluster
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Figure 3: Objects clustered using the DBSCAN algorithm are shown in different colors.

centroids to associate objects between X̃t and Xt+1. That is, for each centroid
in X̃t, we locate its nearest centroid in Xt+1.

3.4 Module 4: Object Refinement

Next, we perform an additional refinement step to recover some of the mis-
classified points during shape classification and potential inlier points during
object association. This is done using the nearest neighbor rule within a
defined radius neighborhood. For each point classified as a moving point, we
re-classify static points lying within the neighborhood as moving points. The
object refinement operation is conducted on X̃t and Xt+1.

The refinement step is essential for two reasons. First, an imbalance class
distribution between static and moving points usually leads to the XGBoost
classifier to favor the dominant class (which is the static points). Then, the
precision and recall for moving points are still low in spite of high classification
accuracy. Second, in the clustering step, it is difficult to select good values for
eps and minPts that are robust in all scenarios for the sparse LiDAR point
clouds. This may lead to some points being marked as outliers by DBSCAN.
Overall, the performance gains of our method reported in Section 4 are a result
of the combination of all steps and not due to a single step in particular.

3.5 Module 5: Object Motion Estimation

We determine the motion between each pair of associated objects in this
step. For that, we follow a similar approach as taken by a point cloud rigid
registration method, R-PointHop [16]. The objective of R-PointHop is to
register the source point cloud with the target point cloud. The block diagram
of R-PointHop is illustrated in Figure 4. It includes the following two major
steps. First, the source and target point clouds are fed to a sequence of R-
PointHop units for hierarchical feature learning (or multiple hops) in the feature
learning step. Point clouds are downsampled between two hops by iteratively
selecting farther points. The R-PointHop unit comprises of constructing a
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Figure 4: An overview of the R-PointHop method [16].

local point descriptor followed by the channel-wise Saab transform [8]. Second,
the point features are used to find pairs of corresponding points. The optimal
rigid transformation that aligns the two point clouds is then solved as an
energy minimization problem [35].

For object motion estimation in PointFlowHop, the features of refined
moving points from X̃t and Xt+1 are extracted using the trained PointHop++
model. We reuse the same model from the ego-motion estimation step here.
While four hops with intermediate downsampling is used in R-PointHop,
the PointHop++ model in PointFlowHop only involves two hops without
downsampling to suit the LiDAR data. We use Oi

t and Oi
t+1 to indicate sets

of points belonging to object i. We find corresponding points between these
two point clouds using the nearest neighbor search in the feature space. The
correspondence set is further refined by selecting top correspondences based on:
1) the minimum feature distance criterion and 2) the ratio test (the minimum
ratio of the distance between the first and second best corresponding points).
The refined correspondence set is then used to estimate the object motion as
follows.

First, the mean coordinates of the corresponding points in Õi
t and Oi

t+1

are found by:

ōit =
1

Ni

Ni∑
j=1

õijt , ōit+1 =
1

Ni

Ni∑
j=1

oijt+1. (2)

Then, the 3×3 covariance matrix is computed using the pairs of corresponding
points as

K(Õi
t, O

i
t+1) =

Ni∑
j=1

(õijt − ōit)(o
ij
t+1 − ōit+1)

T . (3)
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The Singular Value Decomposition of K gives matrices U and U , which are
formed by the left and right singular vectors, respectively. Mathematically, we
have

K(Õi
t, O

i
t+1) = USV T . (4)

Following the orthogonal procrustes formulation [35], the optimal motion of
Õi

t can be expressed in form of a rotation matrix Ri and a translational vector
ti. They can be computed as

Ri = V UT , ti = −Riōit + ōit+1. (5)

Since (Ri, ti) form the object motion model for object i, it is denoted as Ti.
Actually, once we find the corresponding point oijt+1 of õijt , the flow vector

may be set to
f ij
t = oijt+1 − õijt .

However, this point-wise flow vector can be too noisy, and it is desired to use
a flow model for the object rather than each point. The object flow model
found using SVD in the step after finding correspondences is optimal in the
mean square sense over all corresponding points and, hence, is more robust. It
makes a reasonable assumption of existence of a rigid transformation between
the two objects.

3.6 Module 6: Flow Initialization and Refinement

In the last module, we apply the object motion model Ti to Õi
t and align it

with Oi
t+1. Since the static points do not have any motion, they are not further

transformed. We denote the new transformed point cloud as X̃ ′
t. At this point,

we have obtained an initial estimate of the scene flow for each point in Xt. For
static points, the flow is given by the ego-motion transformation Tego. For the
moving points, it is a composition of ego-motion and corresponding object’s
motion Tego · Ti.

In this module, we refine the flow for all points in X̃ ′
t using the Iterative

Closest Point (ICP) [5] algorithm in small non-overlapping regions. In each
region, the points in X̃ ′

t falling within it are aligned with corresponding points
in Xt+1. The flow refinement step ensures a tighter alignment and is a common
post processing operation in several related tasks. Finally, the flow vectors
for Xt are calculated as the difference between the transformed and initial
coordinates. Exemplar pairs of input and scene flow compensated point clouds
using PointFlowHop are shown in Figure 5.

It is worth noting that naive point-to-point ICP can be replaced with its
variants such as point-to-plane ICP [7], the Generalized ICP [36], or similar
local registration methods. However, global registration methods like Fast
Global Registration (FGR) [49] or TEASER [42] may not be necessary for the
refinement since the initial flow is already close to optimal.
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Figure 5: Flow estimation results using PointFlowHop: input point clouds (left) and warped
output using flow vectors (right).

4 Experiments

In this section, we report experimental results on real world LiDAR point
cloud datasets. We choose the stereoKITTI [28, 29] and the Argoverse [6]
two datasets since they represent challenging scenes in autonomous driving
environments. StereoKITTI has 142 pairs of point clouds. The ground truth
flow of each pair is derived from the 2D disparity maps and the optical flow
information. There are 212 test samples for Argoverse whose flow annotations
were given in [31]. We use per-point labels from the SemanticKITTI dataset
[4] to train our scene classifier.

Following a series of prior art, we measure the performance in the following
metrics:

• 3D end point error (EPE3D). It is the mean Euclidean distance between
the estimated and the ground truth flow.
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• Strict accuracy (Acc3DS). It is the percentage of points for which EPE3D
is less than 0.05m or the relative error is less than 0.05.

• Relaxed accuracy (Acc3DR). It gives the ratio of points for which EPE3D
is less than 0.1m or the relative error is less than 0.1.

• Percentage of Outliers. It is the ratio of points for which EPE3D is
greater than 0.3m or the relative error is greater than 0.1. This is
reported for the StereoKITTI dataset only.

• Mean angle error (MAE). It is the mean of the angle errors between the
estimated and the ground truth flow of all points expressed in the unit
of radians. This is reported for the Argoverse dataset only.

4.1 Performance Benchmarking

The scene flow estimation results on stereoKITTI and Argoverse are reported
in Table 1 and Table 2, respectively. For comparison, we show the performance
of several representative methods proposed in the past few years. Overall, the
EPE3D, Acc3DS and Acc3DR values are significantly better for stereoKITTI
as compared to the Argoverse dataset. This is because Argoverse is a more chal-
lenging dataset. Furthermore, PointFlowHop outperforms all benchmarking
methods in almost all evaluation metrics on both datasets.

4.2 Ablation Study

In this section, we assess the role played by each individual module of Point-
FlowHop using the stereo KITTI dataset as an example.

Ego-motion compensation. First, we may replace GreenPCO [15] with
ICP [5] for ego-motion compensation. The results are presented in Table 3.
We see a sharp decline in performance with ICP. The substitution makes the
new method much worse than all benchmarking methods. While the naive

Table 1: Comparison of scene flow estimation results on the Stereo KITTI dataset, where
the best performance number is shown in boldface.

Method EPE3D (m)↓ Acc3DS ↑ Acc3DR ↑ Outliers ↓
FlowNet3D [25] 0.177 0.374 0.668 0.527
HPLFlowNet [11] 0.117 0.478 0.778 0.410
PointPWC-Net [41] 0.069 0.728 0.888 0.265
FLOT [32] 0.056 0.755 0.908 0.242
HALFlow [40] 0.062 0.765 0.903 0.249
Rigid3DSceneFlow [10] 0.042 0.849 0.959 0.208
PointFlowHop (Ours) 0.037 0.938 0.974 0.189
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Table 2: Comparison of scene flow estimation results on the Argoverse dataset, where the
best performance number is shown in boldface.

Method EPE3D (m) ↓ Acc3DS ↑ Acc3DR ↑ MAE (rad) ↓
FlowNet3D [25] 0.455 0.01 0.06 0.736
PointPWC-Net [41] 0.405 0.08 0.25 0.674
Just Go with the Flow [30] 0.542 0.08 0.20 0.715
NICP [1] 0.461 0.04 0.14 0.741
Graph Laplacian [31] 0.257 0.25 0.48 0.467
Neural Prior [23] 0.159 0.38 0.63 0.374
PointFlowHop (Ours) 0.134 0.39 0.71 0.398

Table 3: Ego-motion compensation – ICP vs. GreenPCO.

Ego-motion Method EPE3D ↓ Acc3DS ↑ Acc3DR ↑ Outliers ↓
ICP [5] 0.574 0.415 0.481 0.684
GreenPCO [15] 0.037 0.938 0.974 0.189

ICP could be replaced with other advanced model-free methods, it is preferred
to use GreenPCO since the trained PointHop++ model is still needed later.

Performance Gain Due to Object Refinement. Next, we compare
PointFlowHop with and without the object refinement step. The results are
shown in Table 4. We see consistent performance improvement in all evaluation
metrics with the object refinement step. On the other hand, the performance
of PointFlowHop is still better than that of benchmarking methods except for
Rigid3DSceneFlow [10] (see Table 1) even without object refinement.

Performance Gain Due to Flow Refinement. Finally, we compare
PointFlowHop with and without the flow refinement step in Table 5. It is not
surprising that flow refinement is crucial in PointFlowHop. However, one may
argue the refinement step may be included in any of the discussed methods as
a post processing operation. While this argument is valid, we see that even
without flow refinement, PointFlowHop still is better than almost all methods
(see Table 1). Between object refinement and flow refinement, flow refinement
seems slightly more important if we consider all four evaluation metrics jointly.

Table 4: Performance gain due to object refinement.

Object Refinement EPE3D ↓ Acc3DS ↑ Acc3DR ↑ Outliers ↓
✗ 0.062 0.918 0.947 0.208
✓ 0.037 0.938 0.974 0.189
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Table 5: Performance gain due to flow refinement.

Flow Refinement EPE3D ↓ Acc3DS ↑ Acc3DR ↑ Outliers ↓
✗ 0.054 0.862 0.936 0.230
✓ 0.037 0.938 0.974 0.189

4.3 Complexity Analysis

The complexity of a machine learning method can be examined from multiple
angles, including training time, the number of model parameters (i.e., the
model size) and the number of floating point operations (FLOPs) during
inference. These metrics are valuable besides performance measures such as
prediction accuracy/error. Furthermore, since some model-free methods (e.g.,
LOAM [44]) and the recently proposed KISS-ICP [38] can offer state-of-the-art
results for related tasks such as Odometry and Simultaneous Localization
and Mapping (SLAM), the complexity of learning-based methods deserves
additional attention.

To this end, PointFlowHop offers impressive benefits as compared to
representative DL-based solutions. Training in PointFlowHop only involves
the ego-motion compensation and shape classification steps. For object motion
estimation, PointHop++ obtained from the ego-motion compensation step is
reused while the rest of the operations in PointFlowHop are parameter-free
and performed only in inference.

Table 6 provides details about the number of parameters of PointFlowHop.
It adopts the PointHop++ architecture with two hops. The first hop has 13
kernels of dimension 88 while the second hop has 104 kernels of dimension
8. For XGBoost, it has 100 decision tree estimators, each of which has a
maximum depth of 3. We also report the training time of PointFlowHop in
the same table, where the training is conducted on Intel(R) Xeon(R) CPU
E5-2620 v3 at 2.40 GHz.

While we do not measure the training time of other methods ourselves,
we use [31] as a reference to compare our training time with others. It took
the authors of [31] about 18 hours to train and fine-tune the FlowNet3D [25]

Table 6: The number of trainable parameters and training time of the proposed Point-
FlowHop.

Trainable module Number of Parameters Training time
Hop 1 1144 20 minutesHop 2 832
XGBoost 2200 12 minutes
Total 4176 32 minutes
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Table 7: Comparison of model sizes (in terms of the number of parameters) and computational
complexity of inference (in terms of FLOPs) of four benchmarking methods.

Method Number of Parameters FLOPs
FlowNet3D [25] 1.23 M (308X) 11.67 G (61X)
PointPWC Net [41] 7.72 M (1930X) 17.46 G (92X)
FLOT [32] 110 K (28X) 54.65 G (288X)
PointFlowHop (Ours) 4 K (1X) 190 M (1X)

method for the KITTI dataset and about 3 days for the Argoverse dataset. We
expect comparable time for other methods. Thus, PointFlowHop is extremely
efficient in this context. While the Graph Laplacian method [31] offers a
variant where the scene flow is entirely optimized at runtime (non-learning
based), its performance is inferior to ours as shown in Table 2.

Finally, we compare the model sizes and computational complexity of
four benchmarking methods in Table 7. It is apparent that PointFlowHop
demands significantly less parameters than other methods. Furthermore, we
compute the number of floating-point operations (FLOPs) of PointFlowHop
analytically during inference and report it in Table 7. While calculating the
FLOPs, we consider input point clouds containing 8,192 points. Thus, the
normalized FLOPs per point is 23.19K. We conclude from the above discussion
that PointFlowHop offers a green and high-performance solution to 3D scene
flow estimation.

5 Conclusion and Future Work

A green and interpretable 3D scene flow estimation method called Point-
FlowHop was proposed in this work. PointFlowHop takes two consecutive
LiDAR point cloud scans and determines the flow vectors for all points in the
first scan. It decomposes the flow into vehicle’s ego-motion and the motion of
an individual object in the scene. The superior performance of PointFlowHop
over benchmarking DL-based methods was demonstrated on stereoKITTI
and Argoverse datasets. Furthermore, PointFlowHop has advantages in fewer
trainable parameters and fewer FLOPs during inference.

One future research direction is to extend PointFlowHop for the 3D object
detection task. Along this line, we may detect moving objects using Point-
FlowHop and derive 3D bounding boxes around them. The clustered points
obtained by PointFlowHop may act as an initialization in the object detection
process. Another interesting problem to pursue is simultaneous flow estimation
and semantic segmentation. The task-agnostic nature of our representation
learning can be useful.
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