
APSIPA Transactions on Signal and Information Processing, 2024, 13, e101
This is an Open Access article, distributed under the terms of the Creative Commons
Attribution licence (http:// creativecommons.org/ licenses/ by-nc/4.0/ ), which permits un-
restricted re-use, distribution, and reproduction in any medium, for non-commercial use,
provided the original work is properly cited.

Overview Paper

An Overview of Language Models:
Recent Developments and Outlook
Chengwei Wei1∗, Yun-Cheng Wang1, Bin Wang2 and C.-C. Jay Kuo1

1University of Southern California, USA
2National University of Singapore, Singapore

ABSTRACT

Language modeling studies the probability distributions over strings
of texts. It is one of the most fundamental tasks in natural lan-
guage processing (NLP). It has been widely used in text generation,
speech recognition, machine translation, etc. Conventional lan-
guage models (CLMs) aim to predict the probability of linguistic
sequences in a causal manner, while pre-trained language models
(PLMs) cover broader concepts and can be used in both causal
sequential modeling and fine-tuning for downstream applications.
PLMs have their own training paradigms (usually self-supervised)
and serve as foundation models in modern NLP systems. This
overview paper provides an introduction to both CLMs and PLMs
from five aspects, i.e., linguistic units, architectures, training meth-
ods, evaluation methods, and applications. Furthermore, we discuss
the relationship between CLMs and PLMs and shed light on the
future directions of language modeling in the pre-trained era.

Keywords: Language model, Natural language processing, Pre-trained language
model, Conventional language model.

∗Corresponding author: Chengwei Wei, chengwei@usc.edu.

Received 14 March 2023; Revised 30 July 2023
ISSN 2048-7703; DOI 10.1561/116.00000010
© 2024 C. Wei, Y.-C. Wang, B. Wang and C.-C. Jay Kuo

http://creativecommons.org/licenses/by-nc/4.0/


2 Wei et al.

1 Introduction

Language modeling studies the probability distributions over a sequence of
linguistic units, such as words. It is one of the most fundamental tasks and long-
standing research topics in natural language processing (NLP). The developed
language models (LMs) find applications in many computational linguistic
problems such as text generation, machine translation, speech recognition,
natural language generation, question-and-answer systems, etc.

There are two major approaches to language modeling: 1) the statistical
approach based on a relatively small corpus set, and 2) the data-driven approach
based on a significantly larger corpus set. Conventional language models
(CLMs) predict the probability of linguistic sequences in a causal manner.
They can be learned by both language modeling approaches. The data-driven
approach has become mainstream nowadays. It exploits a large number of
corpora to train neural-network models, leading to pre-trained language models
(PLMs). PLMs are then fine-tuned with task-specific datasets and objectives
for downstream applications. In this overview paper, we define CLMs as
language models that predict the probability of linguistic sequences in a causal
manner. In contrast, PLMs refer to language models pre-trained on a broad
range of linguistic tasks and objectives. It is important to note that the two
concepts are not exclusive. One LM can fall into both categories. For example,
GPT models [133] can predict the probability of linguistic sequences in a causal
manner. They are also pre-trained with various downstream tasks. We provide
an overview of CLMs and PLMs and study them from five perspectives: 1)
linguistic units, 2) architectures, 3) training methods, 4) evaluation methods,
and 5) applications. In the end, we point out several future research directions.

The goal of CLMs is to model the probability distributions over sequences
of linguistic units:

P (u1, u2, · · · , ut), (1)

where ui can be either a character, a word, a phrase, or other linguistic units.
CLMs attempt to predict the next linguistic unit in a text sequence given its
preceding contexts:

P (ut|u<t) (2)

CLMs are also called auto-regressive language models since the units are
predicted in a causal way. Estimating the probability of a text sequence as
shown in Equation (1) directly encounters the data sparsity problem. CLMs
often estimate the joint probability of the text sequence by decomposing a
text sequence into smaller units. For example, CLMs leverage the chain rule
and the conditional probability to estimate the joint probability in the form of

P (u1, u2, . . . , ut) = P (u1)P (u2|u1)P (u3|u1, u2) · · ·P (ut|u1, . . . , ut−1). (3)



An Overview of Language Models 3

Before the pre-training era, CLMs are often trained from scratch with
a training corpus and, then, predict the probability of text sequences with
respective applications. Representative models include N-grams LMs [16, 40,
123], exponential LMs [12, 34, 142] and earlier neural LMs [11, 114]. CLMs
give a high probability to natural text sequences occurring frequently in the
real world. As a result, they play a fundamental role in text generation,
speech recognition [9, 72, 74], and machine translation [15, 124, 208] until
the emergence of PLMs. Nowadays, high-performance PLMs serve as the
backbone of many NLP systems. They are not limited to the causal predictive
functionality of CLMs and provide more different types of LMs.

The differences between CLMs before the pre-training era and PLMs can
be summarized below.

• Training Methodology. With the development of deep learning, PLMs
with neural network structures are pre-trained by collections of massive
unlabeled corpora to learn generic knowledge which is then transferred
to downstream tasks by task-specific fine-tuning.

• Causality Constraint. PLMs do not necessarily follow CLMs in
predicting linguistic units as shown in Equation (2). For example,
bidirectional LMs [36, 107] use both preceding and succeeding contexts
to predict the missing linguistic units via probability estimation:

P (ut|u<t, u>t). (4)

Bidirectional LMs do not follow the causality constraint and the chain
rule in Equation (3), to access the probability of a text sequence, which
makes it inherently different from CLMs.

• Token Representation. Apart from the differences in the training
paradigm and probability modeling, PLMs adopt a different represen-
tation for basic units called tokens. PLMs represent tokens by em-
bedding them in a high-dimensional continuous space such as word
embeddings [126, 198] and sentence embeddings [44, 186, 187]. The new
representations offer a flexible and powerful tool that enables PLMs to
handle a wide range of tasks.

This overview paper serves two objectives. On one hand, instead of only
focusing on recently developed PLMs [55, 106, 132], we aim to provide a
comprehensive overview of the basic concepts of LMs, the transition from
CLMs to PLMs, LM’s recent developments and applications to beginners in
the field. On the other hand, we would like to shed light on future research
directions and offer our outlook to experienced engineers and researchers in
the NLP field. For example, we cover large LMs (LLMs) in the survey as there
are growing interests in LLMs due to the new services provided by ChatGPT.



4 Wei et al.

Furthermore, we include efficient LMs as an emerging topic since there are
increasing concerns about large model sizes and high training costs of LLMs.

The rest of the paper is organized as below. We introduce several types
of LMs that go beyond CLMs in Section 2, and provide an overview of
common ways to decompose text sequences into smaller linguistic units in
Section 3. Section 4 introduces different model architectures. We discuss
the training procedures of LMs in Section 5. Common evaluation methods
including, both intrinsic and extrinsic ones, are introduced in Section 6. The
application of LMs to text generation is discussed in Section 7. We comment
on the redundancy problem of LMs and analyze techniques for efficient LMs
in Section 8. Promising future research directions are pointed out in Section 9.
Concluding remarks are given in Section 10

2 Types of Language Models

CLMs commonly refer to auto-regressive models that predict the next linguistic
units given the preceding context as shown in Equation (2). LMs can access
the probability of a text sequence using the chain rule. The goal of CLMs is
to decode the probability of text sequences in a causal manner. In this section,
we introduce more LMs that go beyond CLMs.

2.1 Structural LM

Instead of predicting linguistic units in a sequential or reversed sequential
order, structural LMs [19, 20, 52, 117, 199] predict linguistic units based on
pre-defined linguistic structures such as dependency or constituent parse trees.
Structural LMs utilize the linguistic structure to bring linguistically relevant
context closer to the linguistic unit to be predicted. For example, given a
parse tree structure, a structural LM can define the ancestor context A(ut) of
ut as the sequence from the root node to the parent of ut. For example, the
ancestor sequence of word ‘strong’ is {‘binoculars’, ‘saw’, ROOT} in Figure 1.
Then, the structural LM uses the ancestor context in the tree to predict the
next linguistic unit as

P (ut|A(ut)), (5)

where A(ut) is the ancestor context of linguistic unit ut. Similar to CLMs, struc-
tural LMs are designed to model the probability of text sequences. Differently,
structural LMs decode the sequence probability in the order of their synthetic
structures. It has been successfully applied to sentence completion [52, 117]
and speech recognition [19, 20].



An Overview of Language Models 5

Figure 1: The example of a dependency parse tree example [117].

2.2 Bidirectional LM

Instead of using the causal contexts to make predictions, bidirectional LMs
utilize contexts from both directions as shown in Equation (4). The masked
LM is one representative bidirectional LM. It masks out linguistic units in a
text sequence and, then, encodes their preceding and succeeding contexts to
predict the masked linguistic units. Formally, the prediction can be defined as
the estimation of the following conditional probability

P (um|S̄), (6)

where um is the masked linguistic unit and S̄ is the corrupted text sequence
by replacing a certain number of linguistic units with [MASK] symbols. The
goal of bidirectional LMs is to learn the inner dependency between linguistic
units in an unsupervised manner. The trained model can inherit semantics
meanings from large-scale unlabeled corpora. Different from CLMs that aim
to model the generation probability of text sequences, pre-trained bidirectional
LMs are used as the backbone that transfers the learned knowledge through
further fine-tuning in various downstream applications.

2.3 Permutation LM

CLMs and masked LMs have their own advantages and disadvantages. A
masked LM needs to create artificial tokens such as [mask], which never occur
in downstream tasks while CLMs only condition on preceding context. The
permutation LM [211] is a recently proposed LM that takes advantage of CLMs
and masked LMs. Given an input sequence of linguistic units, permutation
LMs randomize the order of input linguistic units and construct different
permutations of the input sequence. Figure 2 shows an example of different
permutations given an input text sequence. Let Z be the set of all possible
permutations. Permutation LMs predict the next linguistic unit, ut, in one
permutation, Z, of the sequence based on

P (ut|uZ
<t), Z ∈ Z. (7)



6 Wei et al.

Figure 2: The use of different permutations in a natural sentence.

3 Linguistic Units

To estimate the probability of text sequences, LMs partition text sequences
into small linguistic units such as characters, words, phrases, or sentences. This
process is called tokenization. The resulting linguistic units are called tokens.
Different languages and models may have different appropriate tokenization
methods. Here, we focus on English and use it as an example. In this section,
we examine typical tokenization methods used in language modeling according
to unit sizes.

3.1 Characters

LMs can model text sequences probability based on characters [67, 86, 136,
170, 207]. As compared with other linguistics units, using characters has a
much smaller vocabulary size, leading to a smaller discrete space and model
size. On the other hand, it is challenging to predict the next character.
Usually, it requires a long historical context. This makes the performance
of character-level LMs poorer than that of word-level LMs. In addition, the
input and output lengths have to be longer to model the character distribution
accurately. This results in higher computational costs, especially for auto-
regressive decoding. Several LM methods use the combination of words and
characters to alleviate the issue [80, 118, 180].

3.2 Words and Subwords

The most natural tokenization for English is to decompose a text sequence
into words by white spaces. Many LMs apply word tokenization. However,
there are several issues of naive word tokenization. The first one is the Out-
Of-Vocabulary (OOV) problem. Because an LM has a pre-defined vocabulary
size that cannot be arbitrarily large. Less frequent words and words with
character-level errors may not be stored in the pre-defined vocabulary. Thus,
they cannot be retrieved from the dictionary. Although one can extend the



An Overview of Language Models 7

vocabulary size to alleviate this problem, it will increase the model size and
still cannot handle all possible words.

LMs beyond the word level still have the OOV problem while a single
character is not semantically meaningful by themselves. Recently, researchers
are in favor of decomposing words into subwords if they do not appear in the
dictionary. This offers a flexible and effective solution to the OOV problem [116,
158]. Several subword segmentation algorithms are developed to boost the
performance of LMs. They strike a balance between the good performance of
word-level models and the flexibility of character-level models. Two subword
segmentation approaches, statistics-based and linguistics-based, are presented
below.

3.2.1 Statistics-based Subword Tokenizers

The statistics-based subword tokenizers generate subword vocabulary purely
based on the corpus. The associated methods are derived from a compression
point of view. They work by replacing the commonly appeared character se-
quences with a new symbol (word) that does not exist in the current vocabulary.
Then, fewer bytes are needed for information transmission.

Byte Pair Encoding (BPE). BPE [42] is a simple data compression
technique that replaces the most common pair of bytes in a sequence by a
single unused byte recursively. It was adopted by [158] to solve the word
segmentation problem. That is, frequent characters or character sequences are
merged to generate subwords. BPE is also used by several advanced PLMs
such as GPT-2 [134] and RoBERTa [107] with the following algorithm, called
the BPE merge operation.

1. Prepare a training corpus and define the size of the subword vocabulary.

2. Split all words into characters.

3. Generate a new subword by merging a pair of characters or subwords
with the highest frequency.

4. Repeat step 3 until the desired vocabulary size is reached.

An illustration of the BPE merge operation conducted on a small dictionary
is given in Figure 3.

WordPiece. [154] WordPiece is another data-driven subword algorithm.
The difference between WordPiece and BPE is that WordPiece merges the
pair of A and B if they have the highest score P (AB)/P (A)P (B) (rather than
the highest frequency P (AB)) at each iterative step. For example, WordPiece
merges the pair of “u” and “g” in Figure 3 only if they have the highest value,
P (′ug′)/P (′u′)P (′g′), as compared with other pairs. WordPiece is used as the
tokenization method in BERT [36], DistilBERT [148], and Electra [27].



8 Wei et al.

Figure 3: Illustration of the BPE merge operation conducted on the dictionary {“hug”, “pug”,
“pun”, “bun”}. The vocabulary is initialized with all characters. Then, a new subword is
created by merging the most frequent pair.

There are other statistics-based subword tokenizers such as Unigram [90].
SentencePiece,1 Huggingface tokenizers,2 and OpenNMT3 are popular tokeniz-
ers. Their implementation contains the statistics-based subword tokenization.
Different subword tokenizers and their performance comparison are studied
in [14].

3.2.2 Linguistics-based Subword Tokenizers

Linguistics-based subword tokenizers exploit the linguistic knowledge and
decompose words into smaller grammatical units, such as morphemes or
syllables. Such subword tokenizers are widely used in machine translation and
speech recognition among different languages [2, 28, 29, 84, 144, 146, 150]. For
example, in machine translation, words formed by compounding, affixation,
or inflection, can be conveniently translated by translating the morphemes,
respectively. However, linguistics-based subword tokenizers are not as popular
as statistics-based ones due to the complexity and the rule-based nature of
language decomposition.

3.3 Phrases

The semantic meaning of a single word can be ambiguous because of various
contexts and set collocations. Since the linguistic dictionary does not go
beyond the word-level, the inter-word dependency is ignored. Phrase-level
LMs replace common and cohesive word sequences by phrases [98, 138, 149,
168]. Phrase-level LMs are suitable for some applications. For example, it is
observed in [149] that short words with fewer syllables in automatic speech
recognition (ASR) are more frequently misrecognized than longer ones. Since

1https://github.com/google/sentencepiece.
2https://github.com/huggingface/tokenizers.
3https://github.com/OpenNMT/Tokenizer.

https://github.com/google/sentencepiece
https://github.com/huggingface/tokenizers
https://github.com/OpenNMT/Tokenizer


An Overview of Language Models 9

phrases provide longer phone sequences than their constituents, they are more
robust to recognition errors for ASR.

3.4 Sentences

Auto-regressive LMs with smaller linguistic units (e.g., characters, words, sub-
words, and phrases) rely on conditional probabilities to estimate the probability
of text sequences as given in Equation (3). Sentence-level LMs [22, 69, 96, 140,
141] avoid the use of the chain rule. They generate sentence features and, then,
model the sentence probability directly. This is because modeling the sentence
probability directly is more convenient than that in Equation (3) in encoding
the sentence-level information. It is also easier to encode the inter-sentence
information such as the effects of preceding utterances in a dialog flow.

4 Architecture of Language Models

In this section, we conduct a survey on several common architectures to model
the probability distributions of text sequences. They are N-gram, maximum
entropy, and neural network models. While there are other LM architectures,
like Gaussian mixture LMs [3] and Hidden Markov LMs [91], we focus on
the above-mentioned architectures due to their popularity in the research
community. Furthermore, LMs can operate at various levels of linguistic units.
For generality and consistency with the most recent literature, we use the term
‘token’ to refer to all linguistic units leveraged by different LMs for the rest of
this paper.

4.1 N-gram Models

An N-gram consists of N consecutive tokens from a text sequence. N-gram
LMs [16, 40, 123] assume that the probability of a token depends only on its
preceding N-1 tokens and it is independent of other contexts. This is known as
the Markov assumption. Thus, instead of using all historical contexts, N-gram
LMs only use the previous N-1 tokens to predict the current one; namely,

P (ut|u<t) = P (ut|ut−N+1:t−1). (8)

N-gram LMs calculate the conditional probability by counting the occurrence
time of N-grams given a training corpus as

P (ut|ut−N+1:t−1) =
C(ut−N+1:t)

C(ut−N+1:t−1)
. (9)

N-gram LMs simplify the token probability calculation based on previous
N-1 tokens, but they encounter two sparsity issues. First, if an N-gram,



10 Wei et al.

(ut−N+1:t), never occurs in the training corpus, the probability for the next
tokens being ut is zero. Second, if the (N-1)-gram, (ut−N+1:t−1), in the
denominator never occurs, we cannot calculate the probability of any tokens.
These sparsity issues can be alleviated by smoothing techniques. A simple
smoothing method [79, 104], called additive smoothing, is to add a small value
to the count for every N-gram so as to avoid zero in the numerator and the
denominator in Equation (9). However, this simple smoothing is still deficient
because it assigns the same probability for N-grams that never occur in the
training corpus.

There are more advanced smoothing techniques such as back-off and in-
terpolation [21, 25, 73, 83, 88] that achieve better probability estimation. In
back-off, lower-order N-grams are used for probability estimation if higher-
order N-grams do not occur. For example, if C(ut−3:t−1) = 0, we back off to
compute P (ut|ut−2:t−1). In interpolation, different N-grams are considered for
conditional probability computation. Mathematically, the N-gram probability
is estimated by

P (ut|ut−N+1:t−1) = λNP (ut|ut−N+1:t−1) + λN−1P (ut|ut−N :t−1)

+ λN−2P (ut|ut−N−1:t−1) + · · ·+ λ1P (ut), (10)

where λi is the weight for each n-gram and
∑N

i=1 λi = 1.

4.2 Maximum Entropy Models

Maximum Entropy models (also called the exponential models) [12, 34, 142]
estimate the probability of text sequences using feature functions in the form
of

P (u|h) = exp(aT f(u, u<t))∑
u′ exp(aT f(u′, u′

<t))
, (11)

where f(u, u<t) is the feature function that generates the feature of token
u and its historical context u<t,

∑
w′ exp(aT f(u′, u′

<t)) is a normalization
factor, and a is a parameter vector derived by the Generalized Iterative Scaling
algorithm [32]. The features are usually generated from the N-grams.

4.3 Feed-forward Neural Network (FNN) Models

The discrete nature of the N-gram model is its performance bottleneck even
with advanced smoothing techniques. Neural LMs embrace the continuous
embedding space (distributed representation) to overcome the data sparsity
problem. Feed-forward Neural Network (FNN) LMs [5, 11, 156, 157] is one of
the earlier neural network models.

An FNN LM takes historical contexts as the input, and outputs the
probability distribution of tokens. As shown in Figure 4, each token in the



An Overview of Language Models 11

Figure 4: The structure of FFN LMs, where ut−N+1, . . . , ut−1 denotes the preceding
contexts of ut in a fixed-window, and P , H, and O are the dimensions of the projection, the
hidden layer, and the output layer, respectively.

preceding context is represented as a vector through a projection layer (i.e., an
embedding matrix). These vectors of tokens are sent to the hidden layer with
H hidden units followed by non-linear activation. Then, a softmax function
is used to obtain the posterior probabilities for token candidates, denoted as
P (ut = vi|ut−N−1:t−1), which represent the probabilities of token ut being vi,
where vi represents the i-th token in the vocabulary, given a specific history
ut−N−1:t−1 predicted by the language model.

An FNN LM uses a fixed window to collect fixed-length contexts. It
is essentially a neural version of N-gram LMs. The FNN LM have several
advantages over the N-gram LM by projecting tokens into continuous space.
First, it can handle unseen N-grams by representing each token as an N-gram
with a dense vector space. Second, it is storage-efficient since it does not need
to count and store the transition probability of conventional N-gram models.

4.4 Recurrent Neural Network (RNN) Models

It is clearly insufficient to use the historical context in a fixed-length to predict
the next token. In contrast to the limited historical context used in the N-gram,
maximum entropy and FNN LMs, Recurrent Neural Network (RNN) LMs [89,
114, 115, 169, 210] can exploit arbitrarily long histories to predict the next
token.



12 Wei et al.

Figure 5: The structure of RNN LMs.

The structure of a vanilla RNN LM is shown in Figure 5. A token ui

in position i is first converted into a one-hot representation ûi. Then, the
recurrent hidden state, hi+1, is computed using the previous hidden state, hi,
and the one-hot representation, ûi, of token ui as

hi+1 = f(Wûi + Uhi), (12)

where f(·) is a non-linear activation function, W is the weight matrix of the
connections from the input layer to the hidden layer, and U is the connection
between the previous and current hidden layers, respectively. By iteratively
computing the hidden states, RNN LMs can encode the historical context of
varying length. Finally, the output layer gives the conditional probability of
tokens yt = g(V ht), where V is the weight matrix connecting the hidden layer
and the output layer and g(·) is the softmax activation function.

In theory, RNN LMs do not need the Markov assumption. They can
use all preceding history to predict the next token. However, the inherent
gradient vanishing problem of RNN hampers the learning of the model [58].
Since the gradient may become very small over a long distance, model weights
are actually updated by the nearby context in practice. Generally, RNN
LMs cannot learn the dependency between the current token and its far-away
historical context. Although an attention mechanism can be introduced to
RNNs to alleviate this problem [8, 35]. The inherent sequential nature of RNNs
makes them less powerful than transformer-based LMs with a self-attention
mechanism.

4.5 Transformers

The transformer architecture [179] can capture long-term dependencies and
important sequence components by exploiting a self-attention mechanism.



An Overview of Language Models 13

Unlike the recurrent structure of RNNs, a transformer is easy to parallelize in
both training and inference. Its structure is shown in Figure 6. It consists of
an encoder and a decoder. Before being sent to the encoder, the input textual
sequence is first converted to an embedding through an embedding layer plus
positional embedding. Multi-head attention, which is an ensemble of multiple
self-attention mechanisms, enables the transformer to capture more robust
and diverse attention between tokens. The other parts in the transformer
encoder include feed-forward layers, residual connections, and normalization
layers. The difference between the transformer encoder and decoder is that the
transformer decoder has an additional masked multi-head attention layer. The
masking ensures the decoder can only access preceding tokens of the current
one, which makes the decoder auto-regressive.

Figure 6: The structure of a transformer [179].

Based on different purposes, transformers have encoder-only, decoder-only,
and encoder-decoder three variants as shown in Table 1 and Figure 7. Encoder-
only models can access all positions given an input and utilize bi-directional
contexts to predict tokens. They are suitable for tasks requiring understanding
full sentences, such as text classification. Transformer decoder-only models can



14 Wei et al.

Table 1: Transformer-based PLMs.

Encoder-only models
(Bidirectional)

BERT [36]
RoBERTa [107]
ELECTRA [27]

Decoder-only models
(Unidirectional)

PaLM [24]
GPT-1, 2 and 3 [17, 133, 134]

Transformer XL [31]
Encoder-Decoder models
(Sequence to sequence)

BART [99]
T5 [135]

Figure 7: Illustration of different transformer models, where BERT is the encoder-only
model, GPT is the decoder-only model, and BART is the encoder-decoder model.

only use previous tokens to predict the current token (namely, auto-regressive
models). They are good at text generation tasks such as story generation.
Transformer encoder-decoder models can access all tokens in the encoding
phase, and tokens before the current token in the decoding phase. They are
suitable for sequence-to-sequence tasks such as translation and summarization.

5 Pre-trained Language Models

Pre-trained language models (PLMs) are dominating in the NLP field nowadays.
With the development of deep learning, the training and usage of PLMs



An Overview of Language Models 15

have changed a lot as compared with conventional statistical LMs. Before
being applied to real-world tasks, PLMs are first pre-trained on massive
collections of corpora so that they learn universal representations that carry
both syntactic and semantic knowledge. After pre-training, PLMs are fine-
tuned for downstream tasks so that the acquired knowledge can be transferred
to different tasks. In the following, we first explain the pre-training objectives
in Section 5.1 and then talk about how to adapt PLMs to various tasks of
interest through fine-tuning in Section 5.2. It is also worthwhile to point out
several good survey papers on PLMs, e.g., [55, 106, 132].

5.1 Pre-training

The most commonly used pre-training task is “missing token prediction”. There
are other pre-training tasks for different purposes, e.g., next-sentence prediction,
which allows an LM to learn sentence relationships.

Token Prediction. Auto-regressive language LMs [17, 133, 134] are
trained to predict the next token using previous tokens. While bidirectional
LMs [36, 94, 107] mask a subset of tokens in a sample and learn to predict
such masked tokens using the rest of the context. For the latter, the most
popular objective is the masked language model (MLM) objective as proposed
in BERT [36]. The MLM objective is the cross-entropy loss in predicting
masked tokens. It randomly masks out 15% of the input tokens and then
predicts the masked tokens. The number of masked tokens is set to 15% based
on experimental verification. If the masking rate is too small, the model only
learns from a limited number of masked tokens. On the other hand, if it is
too large, there is not enough context to do reasonable predictions and models
cannot learn well.

Other Pre-training Tasks. There are other pre-training tasks to make
LMs learn better linguistic knowledge such as sentence relationships. For ex-
ample, next sentence prediction is used as the pre-training task in BERT [36].
Next sentence prediction is formalized as a binary prediction task that decides
whether two sentences are two consecutive sentences or not. In this way, a PLM
can be used in downstream tasks that require the understanding of the relation-
ship between two sentences, such as Question Answering (QA) and Natural Lan-
guage Inference (NLI). Other pre-training objectives are adopted by BART [99].
They include token deletion, text infilling, sentence permutation, and document
rotation to corrupt the original sequence for reconstruction. Shuffled tokens
are used in T5 [135] to increase the robustness of the learned representation.

5.2 Fine-Tuning, Adapter Tuning and Prompt Tuning

PLMs learn non-task-specific language knowledge in the pre-training stage.
Fine-tuning performs task-specific adaptations of the model so that they can



16 Wei et al.

be applied to different downstream tasks. The model parameters are updated
in the fine-tuning stage. One approach is to design task-specific heads based
on different label spaces and losses in different downstream tasks, then update
the entire model and task-specific heads. For instance, GPT [133] and BERT
[36] added an extra linear output layer as task-specific heads in their original
papers, and fine-tuned the entire set of parameters in the PLMs and the heads
for various downstream tasks, such as natural language inference, question
answering, semantic similarity, and text classification. To make the fine-tuning
mechanism more parameter efficient, one can choose to only update certain
layers of an LM and the task-specific heads.

Adapter tuning [60, 62, 129] is proposed to make fine-tuning even more
parameter efficient compared with updating the last layers of a PLM only.
It injects additional compact layers, calls adapters, into the original PLMs.
Then, the new adapter layers are updated, while the parameters of the original
PLMs are frozen during adapter tuning. In this way, the parameters of the
original PLMs can be shared by different downstream tasks.

PLMs are pre-trained by one or several pre-training objectives and, then,
applied to different downstream tasks. The gap between pre-training tasks
and downstream task-specific fine-tuning can be substantial. Prompt-tuning
[106] is used to discover the potential of PLMs by mimicking the pre-training
objectives in the fine-tuning or inference stage. As PLMs get more powerful,
they can handle various downstream tasks by seeing a few examples without any
gradient updates or fine-tuning. This is achieved by prompt-based fine-tuning
(or prompt-tuning in short).

The prompt can be divided into discrete prompts (also called hard prompts)
and continuous prompts (also called soft prompts). A discrete prompt is a
natural text template that could be manually designed by humans [17, 152,
153] or automatic methods [43, 130, 222]. On the contrary, continuous prompts
[97, 102, 131, 221] are continuous vectors in the embedding space that do not
correspond to real text. It sacrifices interpretability but relaxes the discrete
prompt constraint in that prompts should be real texts.

Figure 8 shows an example of the pre-training task, fine-tuning and discrete
prompt-tuning of MLMs. In the pre-training, MLMs are trained to predict
masked tokens. Assuming that the downstream task is the sentiment analysis
of the movie review. In standard fine-tuning, we train a new head on the top
of a PLM and predict the sentiment labels. The original input appended with
a designed prompt, say, ‘It was’, is sent to the PLM. The PLM has to assign
probabilities to designed answers, which can be ‘great’ or ‘terrible’. If the
probability of ‘great’ is higher, then the label of the input will be positive and
vice versa. In this way, prompt-tuning converts a distinct downstream task
to the token prediction task to narrow the gap between the pre-training and
fine-tuning stages.



An Overview of Language Models 17

Figure 8: An illustration of (a) LM pre-training, (b) standard fine-tuning, and (c) discrete
prompt-based fine-tuning (or prompt-tuning) [43].

6 Model Evaluation

There are two LM evaluation types: intrinsic evaluation and extrinsic evalua-
tion. The intrinsic evaluation examines the internal properties of an LM while
the extrinsic evaluation studies its performance in downstream tasks.

6.1 Intrinsic Evaluation

Auto-regressive LM. LMs estimate the probability of text sequences. A
good LM assigns higher probabilities to natural text sequences and lower ones
to unreal or random text sequences. The perplexity is a common evaluation
metric for this purpose. Given a testing text sequence, the perplexity, denoted
by PPL, is defined as the inverse probability of the sequence normalized by
the number of tokens. Mathematically, we have

PPL(S) = N

√
1

(P (u1u2 . . . uN )
, (13)

where S = u1u2 . . . uN is a testing text sequence. The perplexity can be
rewritten in form of

PPL(S) = N

√√√√ N∏
i=1

1

P (ui|u1 . . . ui−1)
. (14)

A good LM should maximize the text set probability. It is equivalent to
minimizing the perplexity. The lower the perplexity, the better the LM.

Bidirectional Language Model. To calculate the inverse probability
in Equation (13), the auto-regressive LMs can use a sequence of conditional



18 Wei et al.

probabilities. However, this approach does not work for bidirectional LMs
(or masked LMs). Several intrinsic evaluation metrics have been proposed for
bidirectional LMs. The pseudo-log-likelihood score (PLL) [183] is defined as

PLL(S) =

|S|∑
i=1

logP (ui|S\i), (15)

where logP (ui|S\i) is the conditional probability of token ui in sentence S
with all remaining tokens. Instead of maximizing the joint probability of the
entire text sequence, a good bidirectional LM should maximize the probability
of each token in the text sequence given other tokens. Based on PLLs, the
pseudo-Perplexity (PPPL) for corpora C is defined as [147]

PPPL(C) = exp(− 1

N

∑
S∈C

PLL(S)). (16)

Both PLL and PPPL provide effective means to measure the naturalness of
sentences for a bidirectional LM. For example, it was shown in [147] that PLL
and PPPL correlate well with the performance of an LM on downstream tasks,
such as automatic speech recognition and machine translation.

6.2 Extrinsic Evaluation

Any downstream task of LMs can be used for extrinsic evaluation. There are
several common downstream tasks selected as extrinsic evaluation benchmarks.
Two popular ones are GLUE (General Language Understanding Evaluation)
[185] and SuperGLUE [184]. GLU is an evaluation benchmark for natural
language understanding. It contains single-sentence tasks, similarity and
paraphrase tasks, and inference tasks. SuperGLUE is an enhanced version of
GLUE. It includes a new set of more challenging language understanding tasks,
more diverse task formats, improved resources, and a public leaderboard.

6.3 Relation between Intrinsic and Extrinsic Evaluations

If an LM achieves a lower perplexity, does that mean it can also perform
well on downstream tasks? In other words, is there any correlation between
pre-training tasks (based on token prediction) and the downstream tasks?
There are many empirical studies on this question but few theoretical studies.

Empirical Studies. Researchers design experiments to understand what
kind of knowledge is learned by an LM from the pre-training tasks. Examples
include [47, 57, 85, 139, 171, 172]. They use part-of-speech tagging, constituent
labeling, and dependency labeling to measure the degree of syntactic knowledge



An Overview of Language Models 19

learning, and named entity labeling, semantic role labeling, and semantic proto-
role for testing semantic knowledge. Empirical studies show that pre-training
tasks help LMs learn the linguistic knowledge such as the grammar [85] and
the semantic role [139]. However, these experimental results can only be used
as evidence supporting that the token prediction tasks benefit downstream
tasks. They cannot explain the underlying mechanism.

Theoretical Studies. Some researchers attempt to build the connection
between LM’s perplexities and its performance on downstream tasks math-
ematically. The text classification tasks were studied in [151]. They first
hypothesized and verified that text classification tasks can be reformulated
as sentence completion tasks. Since the LM pre-training task is essentially
a sentence completion task, it does help the text classification downstream
task. Then, they quantified the connection mathematically and showed that
the features from LMs that achieve ϵ-optimal in log-perplexity can linearly
solve text classification tasks with O(

√
ϵ) error. An underlying generative

model was utilized in [200] to show the relationship between the pre-training
tasks and the downstream tasks. Current theoretical studies are limited in the
sense that only a specific downstream task (say, the text classification task) is
considered and the proof holds under certain conditions.

6.4 Beyond Single Metric for LM Evaluation

Except for the evaluation of LM’s performance on standard evaluation test
sets, the LM performance on other aspects is also important in real-world
applications, such as efficiency [10, 166, 173, 202], bias [1, 13, 112, 119],
robustness [48, 77, 122, 125, 145, 192, 214], explainability [223], and logical
consistency [137]. In this section, we discuss evaluations on efficiency, bias,
and robustness to provide a holistic review of evaluation aspects.

Efficiency of LMs can be evaluated in several aspects, such as inference
time, computational complexity, energy consumption, model size, and training
data size. Some work [166, 173, 196, 202] calculated the computational
complexity, approximate financial, and environmental costs of training PLMs.
They also suggested practical steps to reduce expenses in NLP research and
applications. Discussion on the model size of recently developed PLMs was
given in [10]. In Section 8 of this paper, we also discussed several methods to
achieve efficient LMs. Table 2 shows the number of parameters, training data,
cost, and time of recently developed LMs.

Bias in NLP refers to systematic prejudices of models resulting from
erroneous assumptions, such as racism, sexism, and ableism. Bias is reflected
in PLMs since they are trained on a large volume of real word data. Several
studies have examined bias in PLMs. The Sentence Encoder Association Test
(SEAT) was proposed in [112] to investigate bias in BERT [36]. A dataset was
created in [119] to measure bias against gender, profession, race, and religion



20 Wei et al.

across multiple PLMs, including BERT [36], RoBERTa [107], XLNet [211] and
GPT-2 [134]. It was demonstrated in [1] that GPT-3 [17] consistently exhibits
a significant anti-Muslim bias in various tasks. The work in [13] surveyed 146
papers on bias in NLP and made recommendations for analyzing bias in NLP
systems.

Robustness of LMs refers to their capacity to perform effectively and
consistently when confronted with input variations (e.g., typos and misspellings)
that should not affect the system’s output. In other words, a robust LM should
not be easily fooled by adversarial text. Recent studies[77, 122, 214] created a
set of character or word level perturbations to simulate various types of noise
that LMs may encounter in real-world scenarios. They examined robustness
of recently developed PLMs, including BERT, RoBERTa and XLNets. The
results suggest that input perturbations, even minor alterations, can harm the
performance of these LMs. In addition, Robustness Gym [48], WildNLP [145],
and TextFlint [192] are tools designed for robustness evaluation.

7 Language Models in Text Generation

One of the most important applications of LMs is text generation, which aims
to generate sequences of words based on the input data. There are many text
generation tasks because of different purposes and inputs. For example, the
automatic speech recognition (ASR) task demands that the input be a speech
sequence while the output be the corresponding text sequence. The machine
translation task generates the translated text sequence based on the input
text sequence and the target language. Story Generation is a topic-to-text
generation task. In this section, we introduce common techniques used in
text generation and then explain how LMs can be applied in each of the
representative tasks.

7.1 Decoding Methods

Decoding decides the next output linguistic unit to generate text. A good
decoding method should generate coherent continuation given a context. As
LMs get more sophisticated, decoding methods have played an increasingly
important role. As shown in Figure 9, deficient decoding methods lead to
bad generated texts even with a powerful LM. There are two main decoding
methods for text generation.

Maximization-based decoding. This is the most commonly used de-
coding objective. Assuming that the model assigns a higher probability to a
higher quality text which is closer to the ground truth written by humans, the
maximization-based decoding strategy searches for tokens with the highest
probability as the generated text. Greedy search [206, 220] chooses the token



An Overview of Language Models 21

Figure 9: Comparison of texts generated by the powerful GPT-2 large language model
(LLM) using Beam search (left) and pure sampling decoding (right). Beam search yields
degenerate repetition (in blue) while pure sampling results in incoherent gibberish (in red)
[59].

with the highest probability as the next token in a greedy manner. Beam
search [92, 100, 181] keeps a certain number of most likely tokens at each
time step and selects the generated token sequences with the overall highest
probability eventually. It avoids missing reasonable tokens that do not have
the highest probability. Trainable decoding algorithms have been proposed
recently. Trainable greedy decoding [50] is a neural-based solution that works
as part of a neural machine translation decoder. It utilizes reinforcement
learning to find a translation that maximizes a decoding objective.

Sampling-based decoding. It chooses the next token from a set of
sampled tokens. Because maximization-based decoding depends highly on
the underlying model probabilities and suffers from producing degenerate
repetition, sampling-based decoding increases the diversity of generated texts
by random sampling. However, the simple pure sampling may choose a token
with low probability (from an unreliable tail distribution) as the next generated
token. As a result, the generated text could be unrelated to the prefix, leading
to incoherent gibberish. Top-k sampling [39] and Nucleus sampling [59] have
recently been proposed to address this problem. Both Top-k sampling and
Nucleus sampling sample from truncated LM distributions (i.e., sampling
from the most probable tokens). Diverse Beam search [100] is a trainable
sampling-based (stochastic) decoding algorithm based on the Beam search. It
uses reinforcement learning to determine the beam diversity parameters for
different inputs or tasks.

7.2 Dialogue Systems

A dialogue system aims at simulating human responses when conversing with
human users. Recent dialogue systems such as ChatGPT4 and LaMDA [174]
have attracted a lot of attention in the generative AI field because of their
superior performance as interactive chatbot systems. Dialogue systems can be

4https://openai.com/blog/chatgpt/.

https://openai.com/blog/chatgpt/


22 Wei et al.

categorized into task-oriented systems and open-domain systems. The former
is designed for specific tasks such as customer service for online shopping.
The latter is also known as chatbots [121]. Most modern dialogue systems
are fine-tuned versions of generative LMs. Taking ChatGPT as an example,
ChatGPT is built based on a generative LM, GPT-3 [17] with 175 billion
parameters. It is further fine-tuned by supervised learning and reinforcement
learning on labeled data.

LMs play an important role in dialogue systems, especially in their natu-
ral language understanding (NLU) and natural language generation (NLG)
components [189, 190]. NLU is responsible for understanding and recognizing
users’ intent. Nowadays, for encoder-decoder PLMs’, the encoders provide
informative representations for NLU, while the associated decoders are respon-
sible for generating an appropriate response. The latter involves constructing
the response text, selecting appropriate words, and determining the correct
phrasing and tone. The effectiveness of representations of PLMs was examined
in [203] for dialogue tasks. The evaluation PLM targets included BERT [36]
and GPT-2 [134]. The few-shot capability of PLMs in dialogue tasks such
as NLU and NLG was evaluated in [111]. Overall, LMs in dialogue systems
play a key role in understanding users’ input and generating appropriate and
natural responses.

7.3 Automatic Speech Recognition

Automatic speech recognition (ASR) is a speech-to-text generation task that
aims to transform raw audio input into the corresponding text sequence.
The LM plays an essential role in an ASR system. First, it helps solve
acoustically ambiguous utterances. Second, it can lower the computational
cost by constraining the search space in a set of words of higher probability.
Conventional ASR systems contain two independent models, an acoustic model
and a language model, which are related by

P (word|sound) ∝ P (sound|word)P (word). (17)

The acoustic model is conditioned on phones P (sound|word) while the LM
gives the word distribution denoted by P (word). LMs help search the word
hypotheses during recognition. Different types of LMs have been explored in
ASR, such as N-gram [71, 163], FFNN [7], RNN [6, 66] and Transformer [161]

With the development of deep learning techniques, end-to-end (E2E) ASR
systems have emerged as the dominant approach in this field nowadays. E2E
ASR systems do not train the acoustic model and the language model indepen-
dently but use a single-network architecture. For example, the Listen, Attend,
and Spell (LAS) model [18] contains an encoder, a decoder, and an attention
network, which are trained jointly to predict the output text sequence. The LM



An Overview of Language Models 23

component in the E2E ASR system is implicitly learned from the transcribed
speech data. To address the challenge of limited transcribed speech data for
LM’s training, one solution is to integrate external language models trained on
extensive text corpora using LM integration [81, 176]. Shallow fusion [23, 53,
113] considers log-linear interpolation between the scores from an E2E ASR
model and an external LM at the decoding stage. Deep fusion [53] integrates
an external LM and the E2E ASR model by fusing their hidden states. Unlike
shallow fusion and deep fusion, where the E2E ASR model and the external
LM are separately trained, cold fusion [164] and component fusion [159] train
the E2E ASR model and the external LM jointly.

7.4 Machine Translation

Machine translation is a text-to-text generation task where the text in the
source language is translated into that of the target language. LMs adopted by
machine translation are conditioned on the source sentence and the previous
partial translation. The E2E machine translation models become prevailing
nowadays. The language model is implicitly learned through E2E training.
Recently, transformer-based models achieved great success in machine trans-
lation [179, 191]. Similar to ASR advancements, an external LM trained
by extensive monolingual corpora can be incorporated into an E2E machine
translation model through LM integration techniques [53]. Furthermore, many
PLMs have shown their few-shot or zero-shot ability on machine translation
[17, 24] although they have never been explicitly trained on translation parallel
data between the source and the target languages.

7.5 Detection of Generated texts

As the performance of LMs gets closer to or even outperforms humans, the
misuse of LMs, such as fake news and fake product reviews generation, has
become a serious problem. The ability to detect machine-generated texts is
important. There are two types of detection problems: 1) human written vs.
machine generated, and 2) inveracious vs. veracious. Most datasets, e.g., [38,
178, 201], are collected for the first type. Problems of the second type are
much harder than those of the first type [175] since one needs to connect
generated text to the fact, which requires a high-level knowledge reasoning
capability.

Two common approaches to detecting machine-generated text are reviewed
below. One is to exploit the probability distribution of LMs [46, 68]. If
the probability distribution of a text sequence is closer to that of human-
written texts as compared with known machine-generated texts, the text
sequence is classified as human-written. The other is to train classifiers with
supervised learning [178, 215]. It converts the distribution to a supervised



24 Wei et al.

binary classification task. For more details on the detection of machine-
generated texts, readers are referred to two survey papers [70, 165].

8 Efficient Models

As recent PLMs get more powerful, their model size, training cost, and demand
for training data increase tremendously. They need high computational re-
sources and energy consumption, limiting their real-world applications. Table 2
shows the model size, training data, cost, and time of recently developed LMs.
This issue is a concern to many people and the construction of efficient LMs
has received attention.

Table 2: Table of the number of parameters, training data, cost, and time of several large
LMs, where blank cells indicate that the data are not available. The sources are cited if the
data are not obtained from the original work.

Number of Training Training Training
Model Year Parameters data cost time

BERT-Large 2018 340M 3.3B words $7,0005 64 TPU chips
4 days

XLNet-Lagre 2019 340M 32.9B tokens $245,0005 512 TPU v3 chips
5.5 days

GPT-2 2019 1.5B 8 million web
pages

$12,902–
$43,008
[166]

32 TPU v3 chip
168 hours

Megatron-LM 2019 8.3B 174 GB of
text data

512 GPUs
2 days per epoch

T5 2019 11B 745GB of text
data

Over $1.3
million
[160]

Turing-NLG 2020 17B

GPT-3 2020 175B 570GB of text
data

Over $4.6
million6

1024 A100 GPUs
34 days [120]

Megatron-Turing
NLG

2022 530B 270B tokens
2K A100 GPUs

3 months7

8.1 Data Usage

Pre-training Data Size. A critical question for PLM training is how much
data is needed. The effect of the pre-training data size on the RoBERTa model
was studied in [218]. The learning curves of four model performance measures
as a function of the pre-training dataset size are shown in Figure 10. When the

5https://syncedreview.com/2019/06/27/the-staggering-cost-of-training-sota-ai-models/.
6https://lambdalabs.com/blog/demystifying-gpt-3.
7https://www.deepspeed.ai/.

https://syncedreview.com/2019/06/27/the-staggering-cost-of-training-sota-ai-models/
https://lambdalabs.com/blog/demystifying-gpt-3
https://www.deepspeed.ai/


An Overview of Language Models 25

Figure 10: The performance curves as functions of the pre-training dataset size, where the
classifier probing measures the quality of the syntactic and semantic features, the minimum
description length probing quantifies the accessibility of these features, the BLiMP curve
measures the model’s knowledge of various syntactic phenomena, and the superGLUE
measures the capability of handling NLU tasks [218].

data size ranges between 100M and 1B words, three learning curves gradually
level off and it implies that LMs encode most syntactic and semantic features.
However, a much larger quantity of data is needed for LMs to acquire enough
common-sense knowledge and other skills to achieve better performance on
downstream NLU tasks.

Efficient Pre-Training. Several methods have been proposed to use
the pre-training data more efficiently. In the pre-training of masked LMs, a
certain percentage of tokens are masked and need to be inferred by context.
This approach incurs a substantial amount of computational cost because the
network only learns from a certain percentage of tokens which are masked. To
enhance training efficiency, the work in [27] uses “replaced token detection”
(rather than “masked token prediction”) as the pre-training task. As shown
in Figure 11, a generator is trained to perform the masked LM and predicts
the masked tokens. Then, the main model works as a discriminator, called
ELECTRA, which learns to decide the original or replaced tokens. In this
way, pre-training tasks are conducted on all tokens instead of a small subset
of masked tokens. Learning from all input positions causes ELECTRA to
train much faster than BERT which adopts masked token prediction. Besides,
ELECTRA achieves higher accuracy on downstream tasks when it is fully
trained. Later, a new pre-training task using an energy-based model, which is
closely related to ELECTRA, is proposed in [26].

Bridging Pre-training and Downstream Tasks. A typical pre-training
task is token prediction, which often has a large gap with downstream tasks. To
mitigate the gap between pre-training and downstream tasks, prompt tuning



26 Wei et al.

Figure 11: The structure of ELECTRA (Efficiently Learning an Encoder that Classifier
Token Replacements Accurately) [27].

has been studied in [43, 134, 152, 162]. As illustrated in Figure 8, the head is
trained to predict the masked tokens in masked LMs. For the downstream sen-
timent analysis task, the head is trained to predict the positive or the negative
label in traditional fine-tuning. A template (e.g., ‘It was’) and its expected text
responses (e.g., ‘great’ and ‘terrible’) are used in prompt tuning. In this way,
pre-training and prompt tuning share the same “token prediction” objective.

8.2 Model Size

Besides improving training efficiency, efficient LMs focus on the design of
models of smaller sizes. Many methods are investigated to reduce the model
size so that the model can be implemented on mobile or edge devices with
limited computing resources. Model compression is a widely studied topic.
Compression methods first train a large LM and then compress it into a target
size. Examples include model pruning [54, 182, 197], knowledge distillation [76,
148, 177], low rank matrix approximation [61, 110, 210], and parameter
sharing [30, 33, 94, 143].

8.3 Inference Latency

Inference efficiency is important to an LM, particularly in real-time applications.
A model of a smaller size generally has faster inference speed under the same
setting. Knowledge distillation, pruning, and low rank matrix approximation
can be employed to achieve faster inference time while reducing the model
size. For instance, DistilBERT [148], which is a distilled version of BERT,
has demonstrated a 60% improvement in the inference speed compared to the
original model. More than 2x speed-up in inference is achieved in [197] by
pruning PLMs.

Fast inference speed can also be achieved by fast decoding methods. Non-
autoregressive generation (NAG) models [49, 101, 167] predict each token
simultaneously. They have a faster inference speed than autoregressive models
due to parallel computation. On the other hand, the performance of NAG
models is generally worse than autoregressive models since they do not consider
the forward or backward dependency between tokens in the output text.



An Overview of Language Models 27

9 Future Research Directions

In this section, we describe several promising future research directions in
language modeling.

9.1 Integration of LMs and KGs

Knowledge Graph (KG) provides a structured representation of human knowl-
edge [45, 195]. It has been widely used in many NLP applications, such as
question answering [65] and text summarization [64], because of its capability
to represent relationships between entities. There is a growing interest in
evaluating the knowledge learned in PLMs [127, 128], where the relationship
between different semantic units is captured in the embedding space and the
self-attention layers. Several ideas are proposed in [4, 56, 193, 204, 212, 217,
219] to leverage KGs for LM training. As a result, the knowledge learned in the
models can be greatly improved. Thus, it is worth careful investigation of inte-
grating KGs with LMs and understanding how they interact with each other.

It appears that KG can serve as an information database to be queried
by LMs. LMs are powerful in natural language understanding and generation
while KGs can organize and store the knowledge information extracted from
the training corpus. In other words, we may decompose knowledge sources
into semantic and syntactic two components, which can be handled by KGs
and LMs, respectively.

Specifically, most reasoning is handled by KGs so that predictions are
fact-based and explainable. On the other hand, LM serves as an interface
to understand and interpret the language input and improve fluency, com-
prehensiveness, conciseness, etc., of the language output. Similar concepts
were proposed in [63, 213]. In the training phase, a KG is constructed based
on the information extracted from the training corpus, and an LM can be
trained simultaneously. In the inference phase, an LM can serve as an interface
between humans and the knowledge database represented in the form of KGs.
There are advantages to assigning semantic and syntactic processing tasks to
KGs and LMs, respectively. For example, the decoupling facilitates incremental
learning, allows a smaller model size, and improves interpretability. They will
be further elaborated on below.

9.2 Incremental Learning

Incremental learning aims to incorporate new information without re-training
existing models entirely. The problem of catastrophic forgetting associated with
neural network models was pointed out in [41]. That is, the information that
has already been learned by a model can be gradually forgotten when training
with new information. This problem is particularly critical to large LMs since



28 Wei et al.

new information keeps arriving. A solution to catastrophic forgetting was
proposed in [87]. It attempts to remember prior important tasks by slowing
down learning on weights that are more relevant to them. However, it is
difficult to define important tasks in LMs. In addition, re-training a large LM
with both old and new data is too expensive. Lifelong learning of LMs [78, 95,
109] is another solution to accommodate new data to update the knowledge in
LMs. It is worth further exploration.

The importance of developing a satisfactory solution to incremental learning
for LMs cannot be over-emphasized. Incremental learning is challenging for
neural networks. Yet, it is easy for KGs to add new data to (or remove old
data from) an existing database by adding or removing factual triples [188].
Clearly, the current information in the KGs will not be overwritten by newly
collected data. The information in the database is updated incrementally. To
this end, the integration of KGs and LMs provides an excellent solution that
meets the need for incremental learning.

9.3 Lightweight Models

As mentioned in Section 8, PLMs get more powerful at the expense of huge
computational resources and energy consumption. The cost issue has to be
faced seriously in the development of large LMs (LLMs). Besides, LLMs are
unfriendly to our environment due to their high carbon footprint. Green Learn-
ing (GL) targets learning solutions with low carbon footprint. The design of
lightweight models of smaller sizes and lower computational complexity without
sacrificing performance has received more attention in recent years [93, 155, 194,
205]. The design of green LMs is an important topic worth serious investigation.

Current PLMs are data-driven models that use neural architectures to
learn generic language knowledge from a large amount of data. Efforts have
been made in the development of lightweight LMs. Model compression is
one of the popular approaches to obtaining a small LM. Examples include
knowledge distillation or pruning [103]. However, this methodology appears
to be a detour since it trains large models and then shrinks their sizes by
compression. Instead, we may incorporate the linguistic information and the
domain knowledge to offer a more direct way to reduce the model size and the
amount of training data.

9.4 Universal versus Domain-Specific Models

A universal LM is developed to handle tasks in the general domain. For
example, ChatGPT is a universal dialogue LM pre-trained on multilingual and
general domain corpora. It can converse on open-domain topics in multiple
languages. In contrast, domain-specific LMs [51, 105, 108, 216] are designed to
deal with domain-specific tasks, e.g., biomedicine, economics, musicology, etc.



An Overview of Language Models 29

A universal LM demands a huge model size, a large number of training
examples, and a tremendous amount of computational resources. Based on the
scaling law of neural language models [82], the inference performance scales as
a power-law with the model size, the dataset size, and the amount of computing
used for training. So far, the largest PLM contains 540-billion parameters [24].
Despite the superior performance and the flexibility to adapt to multiple tasks,
we may wonder whether a huge universal LM is cost-effective.

For domain-specific LMs, the amount of training data in need is significantly
lower. It was believed that the general domain PLMs benefit the training of
domain-specific LMs. However, it is reported in [51] that domain-specific LMs,
which were pre-trained from scratch on in-domain data, can provide a solid
foundation for biomedical NLP. In other words, training a domain-specific LM
may not need a huge amount of general corpora and labeled data. Domain-
specific LMs to be deployed on task-specific scenarios with less training and
inference efforts expect to receive more attention in the future.

9.5 Interpretable Models

Although deep-learning-based LMs are dominating the NLP field, they are
inherently black-box methods without mathematical transparency. Its inter-
pretability is of concern. Efforts have been made to explain the black-box LMs.
As mentioned in Section 6.3, empirical studies are conducted to understand
what PLMs have learned through experimental design. However, the progress
in this direction may offer insights but not a satisfactory and clean answer.
Providing theoretical explanations or establishing explainable LMs is still a
challenging and open issue. A direction to interpretability is to design an
interpretable learning model from scratch. For example, we may incorporate
KGs with LMs. KG is known to be capable of improving the interpretability
and transparency of the system in many reasoning tasks such as information
retrieval [37] and recommendation systems [209]. For example, reasoning paths
and data sources can be provided with predictions when KGs are incorporated
for reasoning. It is challenging for LMs to do so. It is critical to develop an
interpretable LM to avoid its hallucination in natural language generation [75].

9.6 Machine Generated Text Detection

The most common application of LMs is text generation. As generative LM’s
performance gets closer to or even outperforms humans, these LMs can be
used for malicious purposes such as academic dishonesty, spamming, targeted
bot attacks, and fake news/reviews generation. How to determine whether a
text is generated by LMs or written by humans is a big challenge nowadays. A
high-performance machine-generated text classifier can only serve as a reference
in real-world applications, since it has false positives (i.e., human-written texts



30 Wei et al.

classified as machine-generated) and false negatives (i.e., machine-generated
texts classified as human-written). In addition, people may be even more
interested in detecting veracious and unveracious texts. They care more about
whether the text is true or not. Detecting disinformation could be more difficult
than detecting machine/human-generated text without assessing the factuality.
Additionally, the factuality may change as time goes by. It is critical to our soci-
ety in developing effective tools to identify malicious usages of generative LMs.

10 Conclusion

A comprehensive overview of CLMs and their successors, PLMs, was presented
in this paper and a wide range of topics was covered. First, different levels of
linguistic units were introduced and how linguistic unit prediction is used to
train language models was examined. Second, tokenization methods adopted
by language models were discussed. Third, language model architectures
and the training paradigm of PLMs were reviewed. Fourth, we studied the
evaluation and applications of language models. Especially, several applications
in the context of text generation were detailed. Finally, several future research
directions were pointed out. The need for explainable, reliable, domain-specific,
and lightweight language models was emphasized.

References

[1] A. Abid, M. Farooqi, and J. Zou, “Persistent anti-muslim bias in large
language models”, in Proceedings of the 2021 AAAI/ACM Conference
on AI, Ethics, and Society, 2021, 298–306.

[2] M. Ablimit, G. Neubig, M. Mimura, S. Mori, T. Kawahara, and A. Ham-
dulla, “Uyghur morpheme-based language models and ASR”, in IEEE
10th INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING
PROCEEDINGS, IEEE, 2010, 581–4.

[3] M. Afify, O. Siohan, and R. Sarikaya, “Gaussian mixture language
models for speech recognition”, in 2007 IEEE International Conference
on Acoustics, Speech and Signal Processing-ICASSP’07, Vol. 4, IEEE,
2007, IV–29.

[4] O. Agarwal, H. Ge, S. Shakeri, and R. Al-Rfou, “Knowledge Graph
Based Synthetic Corpus Generation for Knowledge-Enhanced Language
Model Pre-training”, in Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Online: Association for Computational
Linguistics, June 2021, 3554–65, doi: 10.18653/v1/2021.naacl-main.278,
https://aclanthology.org/2021.naacl-main.278.

https://doi.org/10.18653/v1/2021.naacl-main.278
https://aclanthology.org/2021.naacl-main.278


An Overview of Language Models 31

[5] E. Arisoy, T. N. Sainath, B. Kingsbury, and B. Ramabhadran, “Deep
neural network language models”, in Proceedings of the NAACL-HLT
2012 Workshop: Will We Ever Really Replace the N-gram Model? On
the Future of Language Modeling for HLT, 2012, 20–8.

[6] E. Arisoy, A. Sethy, B. Ramabhadran, and S. Chen, “Bidirectional
recurrent neural network language models for automatic speech recog-
nition”, in 2015 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), IEEE, 2015, 5421–5.

[7] E. Arısoy, S. F. Chen, B. Ramabhadran, and A. Sethy, “Converting neu-
ral network language models into back-off language models for efficient
decoding in automatic speech recognition”, IEEE/ACM Transactions
on Audio, Speech, and Language Processing, 22(1), 2013, 184–92.

[8] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate”, arXiv preprint arXiv:1409.0473,
2014.

[9] L. R. Bahl, F. Jelinek, and R. L. Mercer, “A maximum likelihood
approach to continuous speech recognition”, IEEE transactions on
pattern analysis and machine intelligence, (2), 1983, 179–90.

[10] E. M. Bender, T. Gebru, A. McMillan-Major, and S. Shmitchell, “On
the Dangers of Stochastic Parrots: Can Language Models Be Too Big?”,
in Proceedings of the 2021 ACM conference on fairness, accountability,
and transparency, 2021, 610–23.

[11] Y. Bengio, R. Ducharme, and P. Vincent, “A neural probabilistic lan-
guage model”, Advances in neural information processing systems, 13,
2000.

[12] A. Berger, S. A. Della Pietra, and V. J. Della Pietra, “A maximum
entropy approach to natural language processing”, Computational lin-
guistics, 22(1), 1996, 39–71.

[13] S. L. Blodgett, S. Barocas, H. Daumé III, and H. Wallach, “Language
(Technology) is Power: A Critical Survey of “Bias” in NLP”, in Proceed-
ings of the 58th Annual Meeting of the Association for Computational
Linguistics, 2020, 5454–76.

[14] K. Bostrom and G. Durrett, “Byte Pair Encoding is Suboptimal for
Language Model Pretraining”, in Findings of the Association for Com-
putational Linguistics: EMNLP 2020, 2020, 4617–24.

[15] P. F. Brown, J. Cocke, S. A. Della Pietra, V. J. Della Pietra, F. Jelinek,
J. Lafferty, R. L. Mercer, and P. S. Roossin, “A statistical approach to
machine translation”, Computational linguistics, 16(2), 1990, 79–85.

[16] P. F. Brown, V. J. Della Pietra, P. V. Desouza, J. C. Lai, and R. L. Mer-
cer, “Class-based n-gram models of natural language”, Computational
linguistics, 18(4), 1992, 467–80.



32 Wei et al.

[17] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al., “Language
models are few-shot learners”, Advances in neural information processing
systems, 33, 2020, 1877–901.

[18] W. Chan, N. Jaitly, Q. Le, and O. Vinyals, “Listen, attend and spell: A
neural network for large vocabulary conversational speech recognition”,
in 2016 IEEE international conference on acoustics, speech and signal
processing (ICASSP), IEEE, 2016, 4960–4.

[19] C. Chelba and F. Jelinek, “Exploiting syntactic structure for language
modeling”, in Proceedings of the 36th Annual Meeting of the Association
for Computational Linguistics and 17th International Conference on
Computational Linguistics-Volume 1, 1998, 225–31.

[20] C. Chelba and F. Jelinek, “Structured language modeling”, Computer
Speech & Language, 14(4), 2000, 283–332.

[21] S. F. Chen and J. Goodman, “An empirical study of smoothing tech-
niques for language modeling”, Computer Speech & Language, 13(4),
1999, 359–94.

[22] S. F. Chen and R. Rosenfeld, “Efficient sampling and feature selection
in whole sentence maximum entropy language models”, in 1999 IEEE
International Conference on Acoustics, Speech, and Signal Processing.
Proceedings. ICASSP99 (Cat. No. 99CH36258), Vol. 1, IEEE, 1999,
549–52.

[23] J. Chorowski and N. Jaitly, “Towards Better Decoding and Language
Model Integration in Sequence to Sequence Models”, Proc. Interspeech
2017, 2017, 523–7.

[24] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts,
P. Barham, H. W. Chung, C. Sutton, S. Gehrmann, et al., “Palm: Scaling
language modeling with pathways”, arXiv preprint arXiv:2204.02311,
2022.

[25] K. W. Church and W. A. Gale, “A comparison of the enhanced Good-
Turing and deleted estimation methods for estimating probabilities of
English bigrams”, Computer Speech & Language, 5(1), 1991, 19–54.

[26] K. Clark, M.-T. Luong, Q. Le, and C. D. Manning, “Pre-Training
Transformers as Energy-Based Cloze Models”, in Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2020, 285–94.

[27] K. Clark, M.-T. Luong, Q. V. Le, and C. D. Manning, “Electra: Pre-
training text encoders as discriminators rather than generators”, arXiv
preprint arXiv:2003.10555, 2020.

[28] M. Creutz, T. Hirsimäki, M. Kurimo, A. Puurula, J. Pylkkönen, V.
Siivola, M. Varjokallio, E. Arisoy, M. Saraçlar, and A. Stolcke, “Morph-
based speech recognition and modeling of out-of-vocabulary words



An Overview of Language Models 33

across languages”, ACM Transactions on Speech and Language Process-
ing (TSLP), 5(1), 2007, 1–29.

[29] M. Creutz and K. Lagus, Unsupervised morpheme segmentation and
morphology induction from text corpora using Morfessor 1.0, Helsinki
University of Technology Helsinki, 2005.

[30] R. Dabre and A. Fujita, “Recurrent stacking of layers for compact neural
machine translation models”, in Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 33, No. 01, 2019, 6292–9.

[31] Z. Dai, Z. Yang, Y. Yang, J. G. Carbonell, Q. Le, and R. Salakhutdinov,
“Transformer-XL: Attentive Language Models beyond a Fixed-Length
Context”, in Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, 2019, 2978–88.

[32] J. N. Darroch and D. Ratcliff, “Generalized iterative scaling for log-
linear models”, The annals of mathematical statistics, 1972, 1470–80.

[33] M. Dehghani, S. Gouws, O. Vinyals, J. Uszkoreit, and Ł. Kaiser, “Uni-
versal transformers”, arXiv preprint arXiv:1807.03819, 2018.

[34] S. A. Della Pietra, V. J. Della Pietra, R. L. Mercer, and S. Roukos,
“Adaptive language modeling using minimum discriminant estimation”,
in Speech and Natural Language: Proceedings of a Workshop Held at
Harriman, New York, February 23-26, 1992, 1992.

[35] H. Deng, L. Zhang, and L. Wang, “Global context-dependent recurrent
neural network language model with sparse feature learning”, Neural
Computing and Applications, 31(2), 2019, 999–1011.

[36] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding”, arXiv
preprint arXiv:1810.04805, 2018.

[37] L. Dietz, C. Xiong, J. Dalton, and E. Meij, “The Second Workshop
on Knowledge Graphs and Semantics for Text Retrieval, Analysis,
and Understanding (KG4IR)”, in The 41st International ACM SIGIR
Conference on Research & Development in Information Retrieval, 2018,
1423–6.

[38] T. Fagni, F. Falchi, M. Gambini, A. Martella, and M. Tesconi, “Tweep-
Fake: About detecting deepfake tweets”, Plos one, 16(5), 2021, e0251415.

[39] A. Fan, M. Lewis, and Y. Dauphin, “Hierarchical Neural Story Genera-
tion”, in Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), 2018, 889–98.

[40] M. Federico, “Bayesian estimation methods for n-gram language model
adaptation”, in Proceeding of Fourth International Conference on Spoken
Language Processing. ICSLP’96, Vol. 1, IEEE, 1996, 240–3.

[41] R. M. French, “Catastrophic forgetting in connectionist networks”,
Trends in cognitive sciences, 3(4), 1999, 128–35.

[42] P. Gage, “A new algorithm for data compression”, C Users Journal,
12(2), 1994, 23–38.



34 Wei et al.

[43] T. Gao, A. Fisch, and D. Chen, “Making Pre-trained Language Models
Better Few-shot Learners”, in Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and the 11th Inter-
national Joint Conference on Natural Language Processing (Volume 1:
Long Papers), 2021, 3816–30.

[44] T. Gao, X. Yao, and D. Chen, “SimCSE: Simple Contrastive Learning
of Sentence Embeddings”, in Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, 2021, 6894–910.

[45] X. Ge, Y.-C. Wang, B. Wang, and C.-C. J. Kuo, “Compounde: Knowl-
edge graph embedding with translation, rotation and scaling compound
operations”, arXiv preprint arXiv:2207.05324, 2022.

[46] S. Gehrmann, H. Strobelt, and A. M. Rush, “GLTR: Statistical De-
tection and Visualization of Generated Text”, in Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics:
System Demonstrations, 2019, 111–6.

[47] M. Giulianelli, J. Harding, F. Mohnert, D. Hupkes, and W. Zuidema,
“Under the Hood: Using Diagnostic Classifiers to Investigate and Im-
prove how Language Models Track Agreement Information”, in Pro-
ceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and
Interpreting Neural Networks for NLP, 2018, 240–8.

[48] K. Goel, N. F. Rajani, J. Vig, Z. Taschdjian, M. Bansal, and C. Ré, “Ro-
bustness Gym: Unifying the NLP Evaluation Landscape”, in Proceedings
of the 2021 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technologies:
Demonstrations, 2021, 42–55.

[49] J. Gu, J. Bradbury, C. Xiong, V. Li, and R. Socher, “Non-autoregressive
neural machine translation”, in International Conference on Learning
Representations (ICLR), 2018.

[50] J. Gu, K. Cho, and V. O. Li, “Trainable Greedy Decoding for Neu-
ral Machine Translation”, in Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing, 2017, 1968–78.

[51] Y. Gu, R. Tinn, H. Cheng, M. Lucas, N. Usuyama, X. Liu, T. Naumann,
J. Gao, and H. Poon, “Domain-specific language model pretraining
for biomedical natural language processing”, ACM Transactions on
Computing for Healthcare (HEALTH), 3(1), 2021, 1–23.

[52] J. Gubbins and A. Vlachos, “Dependency language models for sen-
tence completion”, in Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing, 2013, 1405–10.

[53] C. Gulcehre, O. Firat, K. Xu, K. Cho, L. Barrault, H.-C. Lin, F.
Bougares, H. Schwenk, and Y. Bengio, “On using monolingual corpora
in neural machine translation”, arXiv preprint arXiv:1503.03535, 2015.



An Overview of Language Models 35

[54] D. Guo, A. M. Rush, and Y. Kim, “Parameter-Efficient Transfer Learn-
ing with Diff Pruning”, in Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long
Papers), 2021, 4884–96.

[55] X. Han, Z. Zhang, N. Ding, Y. Gu, X. Liu, Y. Huo, J. Qiu, Y. Yao, A.
Zhang, L. Zhang, et al., “Pre-trained models: Past, present and future”,
AI Open, 2, 2021, 225–50.

[56] L. He, S. Zheng, T. Yang, and F. Zhang, “KLMo: Knowledge Graph En-
hanced Pretrained Language Model with Fine-Grained Relationships”,
in Findings of the Association for Computational Linguistics: EMNLP
2021, Punta Cana, Dominican Republic: Association for Computational
Linguistics, November 2021, 4536–42, doi: 10.18653/v1/2021.findings-
emnlp.384, https://aclanthology.org/2021.findings-emnlp.384.

[57] J. Hewitt and C. D. Manning, “A structural probe for finding syntax
in word representations”, in Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers), 2019, 4129–38.

[58] S. Hochreiter, “The vanishing gradient problem during learning re-
current neural nets and problem solutions”, International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems, 6(02), 1998, 107–
16.

[59] A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi, “The curious
case of neural text degeneration”, arXiv preprint arXiv:1904.09751,
2019.

[60] N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. De Laroussilhe,
A. Gesmundo, M. Attariyan, and S. Gelly, “Parameter-efficient transfer
learning for NLP”, in International Conference on Machine Learning,
PMLR, 2019, 2790–9.

[61] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang,
and W. Chen, “Lora: Low-rank adaptation of large language models”,
arXiv preprint arXiv:2106.09685, 2021.

[62] E. J. Hu, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, W. Chen,
et al., “LoRA: Low-Rank Adaptation of Large Language Models”, in
International Conference on Learning Representations.

[63] Z. Hu, Y. Xu, W. Yu, S. Wang, Z. Yang, C. Zhu, K.-W. Chang, and Y.
Sun, “Empowering language models with knowledge graph reasoning for
open-domain question answering”, in Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Processing, 2022, 9562–81.

[64] L. Huang, L. Wu, and L. Wang, “Knowledge Graph-Augmented Abstrac-
tive Summarization with Semantic-Driven Cloze Reward”, in Proceed-

https://doi.org/10.18653/v1/2021.findings-emnlp.384
https://doi.org/10.18653/v1/2021.findings-emnlp.384
https://aclanthology.org/2021.findings-emnlp.384


36 Wei et al.

ings of the 58th Annual Meeting of the Association for Computational
Linguistics, 2020, 5094–107.

[65] X. Huang, J. Zhang, D. Li, and P. Li, “Knowledge graph embedding
based question answering”, in Proceedings of the twelfth ACM interna-
tional conference on web search and data mining, 2019, 105–13.

[66] Z. Huang, G. Zweig, and B. Dumoulin, “Cache based recurrent neural
network language model inference for first pass speech recognition”, in
2014 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), IEEE, 2014, 6354–8.

[67] K. Hwang and W. Sung, “Character-level language modeling with hierar-
chical recurrent neural networks”, in 2017 ieee international conference
on acoustics, speech and signal processing (icassp), IEEE, 2017, 5720–4.

[68] D. Ippolito, D. Duckworth, C. Callison-Burch, and D. Eck, “Automatic
Detection of Generated Text is Easiest when Humans are Fooled”, in
Proceedings of the 58th Annual Meeting of the Association for Compu-
tational Linguistics, 2020, 1808–22.

[69] D. Ippolito, D. Grangier, D. Eck, and C. Callison-Burch, “Toward Better
Storylines with Sentence-Level Language Models”, in Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics,
2020, 7472–8.

[70] G. Jawahar, M. Abdul-Mageed, and V. Laks Lakshmanan, “Automatic
Detection of Machine Generated Text: A Critical Survey”, in Proceedings
of the 28th International Conference on Computational Linguistics, 2020,
2296–309.

[71] F. Jelinek, B. Merialdo, S. Roukos, M. Strauss, et al., “Self-organized
language modeling for speech recognition”, in Readings in speech recog-
nition, Citeseer, 1990.

[72] F. Jelinek, “Continuous speech recognition by statistical methods”,
Proceedings of the IEEE, 64(4), 1976, 532–56.

[73] F. Jelinek, “Interpolated estimation of Markov source parameters from
sparse data”, in Proc. Workshop on Pattern Recognition in Practice,
1980, 1980.

[74] F. Jelinek, L. Bahl, and R. Mercer, “Design of a linguistic statistical
decoder for the recognition of continuous speech”, IEEE Transactions
on Information Theory, 21(3), 1975, 250–6.

[75] Z. Ji, N. Lee, R. Frieske, T. Yu, D. Su, Y. Xu, E. Ishii, Y. J. Bang,
A. Madotto, and P. Fung, “Survey of hallucination in natural language
generation”, ACM Computing Surveys, 55(12), 2023, 1–38.

[76] X. Jiao, Y. Yin, L. Shang, X. Jiang, X. Chen, L. Li, F. Wang, and Q. Liu,
“TinyBERT: Distilling BERT for Natural Language Understanding”,
in Findings of the Association for Computational Linguistics: EMNLP
2020, 2020, 4163–74.



An Overview of Language Models 37

[77] D. Jin, Z. Jin, J. T. Zhou, and P. Szolovits, “Is bert really robust?
a strong baseline for natural language attack on text classification
and entailment”, in Proceedings of the AAAI conference on artificial
intelligence, Vol. 34, No. 05, 2020, 8018–25.

[78] X. Jin, D. Zhang, H. Zhu, W. Xiao, S.-W. Li, X. Wei, A. Arnold,
and X. Ren, “Lifelong Pretraining: Continually Adapting Language
Models to Emerging Corpora”, in Proceedings of BigScience Episode #5
– Workshop on Challenges & Perspectives in Creating Large Language
Models, virtual+Dublin: Association for Computational Linguistics,
May 2022, 1–16, doi: 10 .18653/v1/2022.bigscience- 1 .1, https ://
aclanthology.org/2022.bigscience-1.1.

[79] W. E. Johnson, “Probability: The deductive and inductive problems”,
Mind, 41(164), 1932, 409–23.

[80] M. Kang, T. Ng, and L. Nguyen, “Mandarin word-character hybrid-
input neural network language model”, in Twelfth Annual Conference
of the International Speech Communication Association, 2011.

[81] A. Kannan, Y. Wu, P. Nguyen, T. N. Sainath, Z. Chen, and R. Prab-
havalkar, “An analysis of incorporating an external language model into
a sequence-to-sequence model”, in 2018 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2018,
1–5828.

[82] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R.
Child, S. Gray, A. Radford, J. Wu, and D. Amodei, “Scaling laws for
neural language models”, arXiv preprint arXiv:2001.08361, 2020.

[83] S. Katz, “Estimation of probabilities from sparse data for the lan-
guage model component of a speech recognizer”, IEEE transactions on
acoustics, speech, and signal processing, 35(3), 1987, 400–1.

[84] D. Kiecza, T. Schultz, and A. Waibel, “Data-driven determination of
appropriate dictionary units for Korean LVCSR”, in Proceedings of
ICASSP, 1999, 323–7.

[85] T. Kim, J. Choi, D. Edmiston, and S.-g. Lee, “Are pre-trained language
models aware of phrases? simple but strong baselines for grammar
induction”, arXiv preprint arXiv:2002.00737, 2020.

[86] Y. Kim, Y. Jernite, D. Sontag, and A. M. Rush, “Character-aware
neural language models”, in Thirtieth AAAI conference on artificial
intelligence, 2016.

[87] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins,
A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, et
al., “Overcoming catastrophic forgetting in neural networks”, Proceedings
of the national academy of sciences, 114(13), 2017, 3521–6.

[88] R. Kneser and H. Ney, “Improved backing-off for m-gram language
modeling”, in 1995 international conference on acoustics, speech, and
signal processing, Vol. 1, IEEE, 1995, 181–4.

https://doi.org/10.18653/v1/2022.bigscience-1.1
https://aclanthology.org/2022.bigscience-1.1
https://aclanthology.org/2022.bigscience-1.1


38 Wei et al.

[89] S. Kombrink, T. Mikolov, M. Karafiát, and L. Burget, “Recurrent
Neural Network Based Language Modeling in Meeting Recognition.”,
in Interspeech, Vol. 11, 2011, 2877–80.

[90] T. Kudo, “Subword Regularization: Improving Neural Network Transla-
tion Models with Multiple Subword Candidates”, in Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), 2018, 66–75.

[91] T. Kuhn, H. Niemann, and E. G. Schukat-Talamazzini, “Ergodic hidden
Markov models and polygrams for language modeling”, in Proceedings
of ICASSP’94. IEEE International Conference on Acoustics, Speech
and Signal Processing, Vol. 1, IEEE, 1994, I–357.

[92] I. Kulikov, A. Miller, K. Cho, and J. Weston, “Importance of Search
and Evaluation Strategies in Neural Dialogue Modeling”, in Proceedings
of the 12th International Conference on Natural Language Generation,
2019, 76–87.

[93] C.-C. J. Kuo and A. M. Madni, “Green learning: Introduction, ex-
amples and outlook”, Journal of Visual Communication and Image
Representation, 2022, 103685.

[94] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut,
“Albert: A lite bert for self-supervised learning of language representa-
tions”, arXiv preprint arXiv:1909.11942, 2019.

[95] A. Lazaridou, A. Kuncoro, E. Gribovskaya, D. Agrawal, A. Liska, T.
Terzi, M. Gimenez, C. de Masson d’Autume, T. Kocisky, S. Ruder, et al.,
“Mind the gap: Assessing temporal generalization in neural language
models”, Advances in Neural Information Processing Systems, 34, 2021,
29348–63.

[96] H. Lee, D. A. Hudson, K. Lee, and C. D. Manning, “SLM: Learning
a Discourse Language Representation with Sentence Unshuffling”, in
Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2020, 1551–62.

[97] B. Lester, R. Al-Rfou, and N. Constant, “The Power of Scale for
Parameter-Efficient Prompt Tuning”, in Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language Processing, 2021,
3045–59.

[98] M. Levit, S. Parthasarathy, S. Chang, A. Stolcke, and B. Dumoulin,
“Word-phrase-entity language models: Getting more mileage out of
n-grams”, in Fifteenth Annual Conference of the International Speech
Communication Association, 2014.

[99] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V.
Stoyanov, and L. Zettlemoyer, “BART: Denoising Sequence-to-Sequence
Pre-training for Natural Language Generation, Translation, and Com-
prehension”, in Proceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics, 2020, 7871–80.



An Overview of Language Models 39

[100] J. Li, W. Monroe, and D. Jurafsky, “A simple, fast diverse decoding
algorithm for neural generation”, arXiv preprint arXiv:1611.08562, 2016.

[101] J. Li, T. Tang, W. X. Zhao, J.-Y. Nie, and J.-R. Wen, “ELMER: A Non-
Autoregressive Pre-trained Language Model for Efficient and Effective
Text Generation”, arXiv preprint arXiv:2210.13304, 2022.

[102] X. L. Li and P. Liang, “Prefix-Tuning: Optimizing Continuous Prompts
for Generation”, in Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long
Papers), 2021, 4582–97.

[103] Z. Li, E. Wallace, S. Shen, K. Lin, K. Keutzer, D. Klein, and J. Gonzalez,
“Train big, then compress: Rethinking model size for efficient training
and inference of transformers”, in International Conference on Machine
Learning, PMLR, 2020, 5958–68.

[104] G. J. Lidstone, “Note on the general case of the Bayes-Laplace formula
for inductive or a posteriori probabilities”, Transactions of the Faculty
of Actuaries, 8(182-192), 1920, 13.

[105] K. Liu, J. Jiang, and F. Lyu, “A Domain Knowledge Enhanced Pre-
Trained Language Model for Vertical Search: Case Study on Medicinal
Products”, in Proceedings of the 29th International Conference on Com-
putational Linguistics, 2022, 1014–23.

[106] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, “Pre-train,
prompt, and predict: A systematic survey of prompting methods in
natural language processing”, ACM Computing Surveys, 55(9), 2023,
1–35.

[107] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach”, arXiv preprint arXiv:1907.11692, 2019.

[108] R. Luo, L. Sun, Y. Xia, T. Qin, S. Zhang, H. Poon, and T.-Y. Liu,
“BioGPT: generative pre-trained transformer for biomedical text gener-
ation and mining”, Briefings in Bioinformatics, 23(6), 2022.

[109] K. Luu, D. Khashabi, S. Gururangan, K. Mandyam, and N. A. Smith,
“Time Waits for No One! Analysis and Challenges of Temporal Mis-
alignment”, in Proceedings of the 2022 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human
Language Technologies, Seattle, United States: Association for Compu-
tational Linguistics, July 2022, 5944–58, doi: 10.18653/v1/2022.naacl-
main.435, https://aclanthology.org/2022.naacl-main.435.

[110] X. Ma, P. Zhang, S. Zhang, N. Duan, Y. Hou, M. Zhou, and D. Song,
“A tensorized transformer for language modeling”, Advances in neural
information processing systems, 32, 2019.

https://doi.org/10.18653/v1/2022.naacl-main.435
https://doi.org/10.18653/v1/2022.naacl-main.435
https://aclanthology.org/2022.naacl-main.435


40 Wei et al.

[111] A. Madotto, Z. Liu, Z. Lin, and P. Fung, “Language models as few-shot
learner for task-oriented dialogue systems”, arXiv preprint arXiv:2008.
06239, 2020.

[112] C. May, A. Wang, S. Bordia, S. R. Bowman, and R. Rudinger, “On Mea-
suring Social Biases in Sentence Encoders”, in Proceedings of NAACL-
HLT, 2019, 622–8.

[113] E. McDermott, H. Sak, and E. Variani, “A density ratio approach to
language model fusion in end-to-end automatic speech recognition”, in
2019 IEEE Automatic Speech Recognition and Understanding Workshop
(ASRU), IEEE, 2019, 434–41.

[114] T. Mikolov, M. Karafiát, L. Burget, J. Cernockỳ, and S. Khudanpur,
“Recurrent neural network based language model.”, in Interspeech, Vol. 2,
No. 3, Makuhari, 2010, 1045–8.

[115] T. Mikolov, S. Kombrink, L. Burget, J. Černockỳ, and S. Khudanpur,
“Extensions of recurrent neural network language model”, in 2011 IEEE
international conference on acoustics, speech and signal processing
(ICASSP), IEEE, 2011, 5528–31.

[116] T. Mikolov, I. Sutskever, A. Deoras, H.-S. Le, S. Kombrink, and J.
Cernocky, “Subword language modeling with neural networks”, preprint
(http://www. fit. vutbr. cz/imikolov/rnnlm/char. pdf), 8(67), 2012.

[117] P. Mirowski and A. Vlachos, “Dependency Recurrent Neural Language
Models for Sentence Completion”, in Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing (Volume
2: Short Papers), 2015, 511–7.

[118] Y. Miyamoto and K. Cho, “Gated word-character recurrent language
model”, in 2016 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2016, Association for Computational Linguistics
(ACL), 2016, 1992–7.

[119] M. Nadeem, A. Bethke, and S. Reddy, “StereoSet: Measuring stereo-
typical bias in pretrained language models”, in Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), 2021, 5356–71.

[120] D. Narayanan, M. Shoeybi, J. Casper, P. LeGresley, M. Patwary, V.
Korthikanti, D. Vainbrand, P. Kashinkunti, J. Bernauer, B. Catanzaro,
et al., “Efficient large-scale language model training on gpu clusters
using megatron-lm”, in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, 2021,
1–15.

[121] J. Ni, T. Young, V. Pandelea, F. Xue, and E. Cambria, “Recent advances
in deep learning based dialogue systems: A systematic survey”, Artificial
intelligence review, 2022, 1–101.



An Overview of Language Models 41

[122] Y. Nie, A. Williams, E. Dinan, M. Bansal, J. Weston, and D. Kiela,
“Adversarial NLI: A New Benchmark for Natural Language Understand-
ing”, in Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, 2020, 4885–901.

[123] T. R. Niesler and P. C. Woodland, “A variable-length category-based
n-gram language model”, in 1996 IEEE International Conference on
Acoustics, Speech, and Signal Processing Conference Proceedings, Vol. 1,
IEEE, 1996, 164–7.

[124] F. J. Och, N. Ueffing, and H. Ney, “An efficient A* search algorithm
for statistical machine translation”, in Proceedings of the ACL 2001
Workshop on Data-Driven Methods in Machine Translation, 2001.

[125] M. Omar, S. Choi, D. Nyang, and D. Mohaisen, “Robust natural
language processing: Recent advances, challenges, and future directions”,
IEEE Access, 2022.

[126] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and
L. Zettlemoyer, “Deep Contextualized Word Representations”, in Pro-
ceedings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long Papers), New Orleans, Louisiana: Association for
Computational Linguistics, June 2018, 2227–37, doi: 10.18653/v1/N18-
1202, https://aclanthology.org/N18-1202.

[127] F. Petroni, P. Lewis, A. Piktus, T. Rocktäschel, Y. Wu, A. H. Miller, and
S. Riedel, “How Context Affects Language Models’ Factual Predictions”,
in Automated Knowledge Base Construction, 2020, https://openreview.
net/forum?id=025X0zPfn.

[128] F. Petroni, T. Rocktäschel, S. Riedel, P. Lewis, A. Bakhtin, Y. Wu, and
A. Miller, “Language Models as Knowledge Bases?”, in Proceedings of
the 2019 Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), 2019, 2463–73.

[129] J. Pfeiffer, A. Kamath, A. Rücklé, K. Cho, and I. Gurevych, “Adapter-
Fusion: Non-Destructive Task Composition for Transfer Learning”, in
Proceedings of the 16th Conference of the European Chapter of the
Association for Computational Linguistics: Main Volume, 2021, 487–
503.

[130] R. Pryzant, D. Iter, J. Li, Y. T. Lee, C. Zhu, and M. Zeng, “Automatic
prompt optimization with" gradient descent" and beam search”, arXiv
preprint arXiv:2305.03495, 2023.

[131] G. Qin and J. Eisner, “Learning How to Ask: Querying LMs with
Mixtures of Soft Prompts”, in Proceedings of the 2021 Conference of
the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, 2021, 5203–12.

https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://aclanthology.org/N18-1202
https://openreview.net/forum?id=025X0zPfn
https://openreview.net/forum?id=025X0zPfn


42 Wei et al.

[132] X. Qiu, T. Sun, Y. Xu, Y. Shao, N. Dai, and X. Huang, “Pre-trained
models for natural language processing: A survey”, Science China Tech-
nological Sciences, 63(10), 2020, 1872–97.

[133] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al., “Improving
language understanding by generative pre-training”, 2018.

[134] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al.,
“Language models are unsupervised multitask learners”, OpenAI blog,
1(8), 2019, 9.

[135] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y.
Zhou, W. Li, P. J. Liu, et al., “Exploring the limits of transfer learning
with a unified text-to-text transformer.”, J. Mach. Learn. Res., 21(140),
2020, 1–67.

[136] R. Al-Rfou, D. Choe, N. Constant, M. Guo, and L. Jones, “Character-
level language modeling with deeper self-attention”, in Proceedings of
the AAAI conference on artificial intelligence, Vol. 33, No. 01, 2019,
3159–66.

[137] M. T. Ribeiro, C. Guestrin, and S. Singh, “Are red roses red? evaluating
consistency of question-answering models”, in Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics, 2019,
6174–84.

[138] K. Ries, F. D. Buo, and A. Waibel, “Class phrase models for language
modeling”, in Proceeding of Fourth International Conference on Spoken
Language Processing. ICSLP’96, Vol. 1, IEEE, 1996, 398–401.

[139] A. Rogers, O. Kovaleva, and A. Rumshisky, “A primer in bertology:
What we know about how bert works”, Transactions of the Association
for Computational Linguistics, 8, 2020, 842–66.

[140] R. Rosenfeld, “A whole sentence maximum entropy language model”, in
1997 IEEE workshop on automatic speech recognition and understanding
proceedings, IEEE, 1997, 230–7.

[141] R. Rosenfeld, S. F. Chen, and X. Zhu, “Whole-sentence exponential lan-
guage models: a vehicle for linguistic-statistical integration”, Computer
Speech & Language, 15(1), 2001, 55–73.

[142] R. Rosenfeld, “A maximum entropy approach to adaptive statistical
language modeling”, 1996.

[143] S. Rothe, S. Narayan, and A. Severyn, “Leveraging pre-trained check-
points for sequence generation tasks”, Transactions of the Association
for Computational Linguistics, 8, 2020, 264–80.

[144] T. Rotovnik, M. S. Maučec, and Z. Kačič, “Large vocabulary continuous
speech recognition of an inflected language using stems and endings”,
Speech communication, 49(6), 2007, 437–52.



An Overview of Language Models 43

[145] B. Rychalska, D. Basaj, A. Gosiewska, and P. Biecek, “Models in
the wild: On corruption robustness of neural nlp systems”, in Neural
Information Processing: 26th International Conference, ICONIP 2019,
Sydney, NSW, Australia, December 12–15, 2019, Proceedings, Part III
26, Springer, 2019, 235–47.

[146] H. Sak, M. Saraclar, and T. Güngör, “Morphology-based and sub-
word language modeling for Turkish speech recognition”, in 2010 IEEE
International Conference on Acoustics, Speech and Signal Processing,
IEEE, 2010, 5402–5.

[147] J. Salazar, D. Liang, T. Q. Nguyen, and K. Kirchhoff, “Masked Language
Model Scoring”, in Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, 2020, 2699–712.

[148] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “DistilBERT, a distilled
version of BERT: smaller, faster, cheaper and lighter”, arXiv preprint
arXiv:1910.01108, 2019.

[149] G. Saon and M. Padmanabhan, “Data-driven approach to designing
compound words for continuous speech recognition”, IEEE transactions
on Speech and audio processing, 9(4), 2001, 327–32.

[150] R. Sarikaya, M. Afify, and Y. Gao, “Joint morphological-lexical language
modeling (JMLLM) for Arabic”, in 2007 IEEE International Conference
on Acoustics, Speech and Signal Processing-ICASSP’07, Vol. 4, IEEE,
2007, IV–181.

[151] N. Saunshi, S. Malladi, and S. Arora, “A mathematical exploration
of why language models help solve downstream tasks”, arXiv preprint
arXiv:2010.03648, 2020.

[152] T. Schick and H. Schütze, “Exploiting Cloze-Questions for Few-Shot
Text Classification and Natural Language Inference”, in Proceedings of
the 16th Conference of the European Chapter of the Association for
Computational Linguistics: Main Volume, 2021, 255–69.

[153] T. Schick and H. Schütze, “Few-shot text generation with natural lan-
guage instructions”, in Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, 2021, 390–402.

[154] M. Schuster and K. Nakajima, “Japanese and korean voice search”, in
2012 IEEE international conference on acoustics, speech and signal
processing (ICASSP), IEEE, 2012, 5149–52.

[155] R. Schwartz, J. Dodge, N. A. Smith, and O. Etzioni, “Green ai”, Com-
munications of the ACM, 63(12), 2020, 54–63.

[156] H. Schwenk, “Continuous space language models”, Computer Speech &
Language, 21(3), 2007, 492–518.

[157] H. Schwenk and J.-L. Gauvain, “Training neural network language mod-
els on very large corpora”, in Proceedings of human language technology
conference and conference on empirical methods in natural language
processing, 2005, 201–8.



44 Wei et al.

[158] R. Sennrich, B. Haddow, and A. Birch, “Neural Machine Translation of
Rare Words with Subword Units”, in Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), 2016, 1715–25.

[159] C. Shan, C. Weng, G. Wang, D. Su, M. Luo, D. Yu, and L. Xie,
“Component fusion: Learning replaceable language model component
for end-to-end speech recognition system”, in ICASSP 2019-2019 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), IEEE, 2019, 5361–635.

[160] O. Sharir, B. Peleg, and Y. Shoham, “The cost of training nlp models:
A concise overview”, arXiv preprint arXiv:2004.08900, 2020.

[161] J. Shin, Y. Lee, and K. Jung, “Effective sentence scoring method using
bert for speech recognition”, in Asian Conference on Machine Learning,
PMLR, 2019, 1081–93.

[162] T. Shin, Y. Razeghi, R. L. Logan IV, E. Wallace, and S. Singh, “Auto-
Prompt: Eliciting Knowledge from Language Models with Automatically
Generated Prompts”, in Proceedings of the 2020 Conference on Empir-
ical Methods in Natural Language Processing (EMNLP), 2020, 4222–
35.

[163] M. Siu and M. Ostendorf, “Variable n-grams and extensions for conver-
sational speech language modeling”, IEEE Transactions on Speech and
Audio Processing, 8(1), 2000, 63–75.

[164] A. Sriram, H. Jun, S. Satheesh, and A. Coates, “Cold Fusion: Training
Seq2Seq Models Together with Language Models”, Proc. Interspeech
2018, 2018, 387–91.

[165] H. Stiff and F. Johansson, “Detecting computer-generated disinforma-
tion”, International Journal of Data Science and Analytics, 13(4), 2022,
363–83.

[166] E. Strubell, A. Ganesh, and A. McCallum, “Energy and Policy Consid-
erations for Deep Learning in NLP”, in Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, 2019, 3645–
50.

[167] Y. Su, D. Cai, Y. Wang, D. Vandyke, S. Baker, P. Li, and N. Collier,
“Non-Autoregressive Text Generation with Pre-trained Language Mod-
els”, in Proceedings of the 16th Conference of the European Chapter
of the Association for Computational Linguistics: Main Volume, 2021,
234–43.

[168] B. Suhm and A. Waibel, “Towards better language models for sponta-
neous speech”, 1994.

[169] M. Sundermeyer, R. Schlüter, and H. Ney, “LSTM neural networks for
language modeling”, in Thirteenth annual conference of the international
speech communication association, 2012.



An Overview of Language Models 45

[170] I. Sutskever, J. Martens, and G. E. Hinton, “Generating text with
recurrent neural networks”, in ICML, 2011.

[171] I. Tenney, D. Das, and E. Pavlick, “BERT Rediscovers the Classical NLP
Pipeline”, in Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, 2019, 4593–601.

[172] I. Tenney, P. Xia, B. Chen, A. Wang, A. Poliak, R. T. McCoy, N.
Kim, B. Van Durme, S. R. Bowman, D. Das, et al., “What do you
learn from context? Probing for sentence structure in contextualized
word representations”, in 7th International Conference on Learning
Representations, ICLR 2019, 2019.

[173] N. C. Thompson, K. Greenewald, K. Lee, and G. F. Manso, “The
computational limits of deep learning”, arXiv preprint arXiv:2007.05558,
2020.

[174] R. Thoppilan, D. De Freitas, J. Hall, N. Shazeer, A. Kulshreshtha,
H.-T. Cheng, A. Jin, T. Bos, L. Baker, Y. Du, et al., “Lamda: Language
models for dialog applications”, arXiv preprint arXiv:2201.08239, 2022.

[175] J. Thorne and A. Vlachos, “Automated Fact Checking: Task Formu-
lations, Methods and Future Directions”, in Proceedings of the 27th
International Conference on Computational Linguistics, 2018, 3346–59.

[176] S. Toshniwal, A. Kannan, C.-C. Chiu, Y. Wu, T. N. Sainath, and K.
Livescu, “A comparison of techniques for language model integration
in encoder-decoder speech recognition”, in 2018 IEEE spoken language
technology workshop (SLT), IEEE, 2018, 369–75.

[177] I. Turc, M.-W. Chang, K. Lee, and K. Toutanova, “Well-read students
learn better: On the importance of pre-training compact models”, arXiv
preprint arXiv:1908.08962, 2019.

[178] A. Uchendu, T. Le, K. Shu, and D. Lee, “Authorship attribution for
neural text generation”, in Conf. on Empirical Methods in Natural
Language Processing (EMNLP), 2020.

[179] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need”, Advances in
neural information processing systems, 30, 2017.

[180] L. Verwimp, J. Pelemans, P. Wambacq, et al., “Character-Word LSTM
Language Models”, in Proceedings of the 15th Conference of the Euro-
pean Chapter of the Association for Computational Linguistics: Volume
1, Long Papers, 2017, 417–27.

[181] A. Vijayakumar, M. Cogswell, R. Selvaraju, Q. Sun, S. Lee, D. Crandall,
and D. Batra, “Diverse beam search for improved description of complex
scenes”, in Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 32, No. 1, 2018.



46 Wei et al.

[182] E. Voita, D. Talbot, F. Moiseev, R. Sennrich, and I. Titov, “Analyzing
Multi-Head Self-Attention: Specialized Heads Do the Heavy Lifting,
the Rest Can Be Pruned”, in Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics, 2019, 5797–808.

[183] A. Wang and K. Cho, “BERT has a Mouth, and It Must Speak: BERT
as a Markov Random Field Language Model”, in Proceedings of the
Workshop on Methods for Optimizing and Evaluating Neural Language
Generation, 2019, 30–6.

[184] A. Wang, Y. Pruksachatkun, N. Nangia, A. Singh, J. Michael, F. Hill,
O. Levy, and S. Bowman, “Superglue: A stickier benchmark for general-
purpose language understanding systems”, Advances in neural informa-
tion processing systems, 32, 2019.

[185] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. Bowman,
“GLUE: A Multi-Task Benchmark and Analysis Platform for Natural
Language Understanding”, in Proceedings of the 2018 EMNLP Workshop
BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP,
2018, 353–5.

[186] B. Wang and C.-C. J. Kuo, “SBERT-WK: A sentence embedding
method by dissecting bert-based word models”, IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing, 28, 2020, 2146–
57.

[187] B. Wang and H. Li, “Relational Sentence Embedding for Flexible
Semantic Matching”, arXiv preprint arXiv:2212.08802, 2022.

[188] B. Wang, G. Wang, J. Huang, J. You, J. Leskovec, and C.-C. J. Kuo,
“Inductive learning on commonsense knowledge graph completion”, in
2021 International Joint Conference on Neural Networks (IJCNN),
IEEE, 2021, 1–8.

[189] B. Wang, C. Zhang, C. Wei, and H. Li, “A Focused Study on Sequence
Length for Dialogue Summarization”, arXiv preprint arXiv:2209.11910,
2022.

[190] B. Wang, C. Zhang, Y. Zhang, Y. Chen, and H. Li, “Analyzing and
Evaluating Faithfulness in Dialogue Summarization”, in Proceedings
of the 2022 Conference on Empirical Methods in Natural Language
Processing, Abu Dhabi, United Arab Emirates: Association for Compu-
tational Linguistics, December 2022, 4897–908, https://aclanthology.
org/2022.emnlp-main.325.

[191] Q. Wang, B. Li, T. Xiao, J. Zhu, C. Li, D. F. Wong, and L. S. Chao,
“Learning Deep Transformer Models for Machine Translation”, in Pro-
ceedings of the 57th Annual Meeting of the Association for Computa-
tional Linguistics, 2019, 1810–22.

[192] X. Wang, Q. Liu, T. Gui, Q. Zhang, Y. Zou, X. Zhou, J. Ye, Y. Zhang,
R. Zheng, Z. Pang, et al., “Textflint: Unified multilingual robustness
evaluation toolkit for natural language processing”, in Proceedings of

https://aclanthology.org/2022.emnlp-main.325
https://aclanthology.org/2022.emnlp-main.325


An Overview of Language Models 47

the 59th Annual Meeting of the Association for Computational Linguis-
tics and the 11th International Joint Conference on Natural Language
Processing: System Demonstrations, 2021, 347–55.

[193] X. Wang, T. Gao, Z. Zhu, Z. Zhang, Z. Liu, J. Li, and J. Tang, “KE-
PLER: A Unified Model for Knowledge Embedding and Pre-trained
Language Representation”, Transactions of the Association for Com-
putational Linguistics, 9, 2021, 176–94, doi: 10.1162/tacl_a_00360,
https://aclanthology.org/2021.tacl-1.11.

[194] Y.-C. Wang, X. Ge, B. Wang, and C.-C. J. Kuo, “GreenKGC: A
lightweight knowledge graph completion method”, arXiv preprint arXiv:
2208.09137, 2022.

[195] Y.-C. Wang, X. Ge, B. Wang, and C.-C. J. Kuo, “KGBoost: A classification-
based knowledge base completion method with negative sampling”,
Pattern Recognition Letters, 157, 2022, 104–11.

[196] Y.-C. Wang, J. Xue, C. Wei, and C.-C. J. Kuo, “An Overview on
Generative AI at Scale with Edge-Cloud Computing”, 2023.

[197] Z. Wang, J. Wohlwend, and T. Lei, “Structured Pruning of Large
Language Models”, in Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), 2020, 6151–62.

[198] C. Wei, B. Wang, and C.-C. J. Kuo, “Synwmd: Syntax-aware word
mover’s distance for sentence similarity evaluation”, Pattern Recognition
Letters, 170, 2023, 48–55.

[199] C. Wei, B. Wang, and C.-C. J. Kuo, “Task-Specific Dependency-based
Word Embedding Methods”, Pattern Recognition Letters, 2022.

[200] C. Wei, S. M. Xie, and T. Ma, “Why do pretrained language models help
in downstream tasks? an analysis of head and prompt tuning”, Advances
in Neural Information Processing Systems, 34, 2021, 16158–70.

[201] M. Weiss, “Deepfake bot submissions to federal public comment websites
cannot be distinguished from human submissions”, Technology Science,
2019.

[202] C.-J. Wu, R. Raghavendra, U. Gupta, B. Acun, N. Ardalani, K. Maeng,
G. Chang, F. Aga, J. Huang, C. Bai, et al., “Sustainable ai: Environmen-
tal implications, challenges and opportunities”, Proceedings of Machine
Learning and Systems, 4, 2022, 795–813.

[203] C.-S. Wu and C. Xiong, “Probing Task-Oriented Dialogue Representa-
tion from Language Models”, in Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP), Online:
Association for Computational Linguistics, November 2020, 5036–51,
doi: 10.18653/v1/2020.emnlp-main.409, https://aclanthology.org/2020.
emnlp-main.409.

[204] W. Xiong, J. Du, W. Y. Wang, and V. Stoyanov, “Pretrained encyclo-
pedia: Weakly supervised knowledge-pretrained language model”, arXiv
preprint arXiv:1912.09637, 2019.

https://doi.org/10.1162/tacl_a_00360
https://aclanthology.org/2021.tacl-1.11
https://doi.org/10.18653/v1/2020.emnlp-main.409
https://aclanthology.org/2020.emnlp-main.409
https://aclanthology.org/2020.emnlp-main.409


48 Wei et al.

[205] J. Xu, W. Zhou, Z. Fu, H. Zhou, and L. Li, “A survey on green deep
learning”, arXiv preprint arXiv:2111.05193, 2021.

[206] Z. Xu, B. Liu, B. Wang, C.-J. Sun, X. Wang, Z. Wang, and C. Qi,
“Neural response generation via gan with an approximate embedding
layer”, in Proceedings of the 2017 conference on empirical methods in
natural language processing, 2017, 617–26.

[207] L. Xue, A. Barua, N. Constant, R. Al-Rfou, S. Narang, M. Kale,
A. Roberts, and C. Raffel, “Byt5: Towards a token-free future with
pre-trained byte-to-byte models”, Transactions of the Association for
Computational Linguistics, 10, 2022, 291–306.

[208] K. Yamada and K. Knight, “A decoder for syntax-based statistical
MT”, in Proceedings of the 40th Annual meeting of the Association for
Computational Linguistics, 2002, 303–10.

[209] Y. Yang, C. Huang, L. Xia, and C. Li, “Knowledge graph contrastive
learning for recommendation”, in Proceedings of the 45th International
ACM SIGIR Conference on Research and Development in Information
Retrieval, 2022, 1434–43.

[210] Z. Yang, Z. Dai, R. Salakhutdinov, and W. W. Cohen, “Breaking the
softmax bottleneck: A high-rank RNN language model”, arXiv preprint
arXiv:1711.03953, 2017.

[211] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and
Q. V. Le, “Xlnet: Generalized autoregressive pretraining for language
understanding”, Advances in neural information processing systems, 32,
2019.

[212] M. Yasunaga, A. Bosselut, H. Ren, X. Zhang, C. D. Manning, P. S.
Liang, and J. Leskovec, “Deep bidirectional language-knowledge graph
pretraining”, Advances in Neural Information Processing Systems, 35,
2022, 37309–23.

[213] M. Yasunaga, H. Ren, A. Bosselut, P. Liang, and J. Leskovec, “QA-
GNN: Reasoning with Language Models and Knowledge Graphs for
Question Answering”, in Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Online: Association for Computational
Linguistics, June 2021, 535–46, doi: 10.18653/v1/2021.naacl-main.45,
https://aclanthology.org/2021.naacl-main.45.

[214] Y. Zang, F. Qi, C. Yang, Z. Liu, M. Zhang, Q. Liu, and M. Sun,
“Word-level Textual Adversarial Attacking as Combinatorial Optimiza-
tion”, in Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, 2020, 6066–80.

[215] R. Zellers, A. Holtzman, H. Rashkin, Y. Bisk, A. Farhadi, F. Roesner,
and Y. Choi, “Defending against neural fake news”, Advances in neural
information processing systems, 32, 2019.

https://doi.org/10.18653/v1/2021.naacl-main.45
https://aclanthology.org/2021.naacl-main.45


An Overview of Language Models 49

[216] D. Zhang, Z. Yuan, Y. Liu, F. Zhuang, H. Chen, and H. Xiong, “E-
BERT: A phrase and product knowledge enhanced language model for
e-commerce”, arXiv preprint arXiv:2009.02835, 2020.

[217] X. Zhang, A. Bosselut, M. Yasunaga, H. Ren, P. Liang, C. D. Manning,
and J. Leskovec, “GreaseLM: Graph REASoning Enhanced Language
Models”, in International Conference on Learning Representations, 2022,
https://openreview.net/forum?id=41e9o6cQPj.

[218] Y. Zhang, A. Warstadt, X. Li, and S. Bowman, “When Do You Need
Billions of Words of Pretraining Data?”, in Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), 2021, 1112–25.

[219] Z. Zhang, X. Han, Z. Liu, X. Jiang, M. Sun, and Q. Liu, “ERNIE:
Enhanced Language Representation with Informative Entities”, in Pro-
ceedings of the 57th Annual Meeting of the Association for Compu-
tational Linguistics, Florence, Italy: Association for Computational
Linguistics, July 2019, 1441–51, doi: 10.18653/v1/P19-1139, https:
//aclanthology.org/P19-1139.

[220] T. Zhao, R. Zhao, and M. Eskenazi, “Learning Discourse-level Diversity
for Neural Dialog Models using Conditional Variational Autoencoders”,
in Proceedings of the 55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), 2017, 654–64.

[221] Z. Zhong, D. Friedman, and D. Chen, “Factual Probing Is [MASK]:
Learning vs. Learning to Recall”, in Proceedings of the 2021 Conference
of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, 2021, 5017–33.

[222] Y. Zhou, A. I. Muresanu, Z. Han, K. Paster, S. Pitis, H. Chan, and J.
Ba, “Large language models are human-level prompt engineers”, arXiv
preprint arXiv:2211.01910, 2022.

[223] J. E. Zini and M. Awad, “On the explainability of natural language
processing deep models”, ACM Computing Surveys, 55(5), 2022, 1–31.

https://openreview.net/forum?id=41e9o6cQPj
https://doi.org/10.18653/v1/P19-1139
https://aclanthology.org/P19-1139
https://aclanthology.org/P19-1139

	Introduction
	Types of Language Models
	Structural LM
	Bidirectional LM
	Permutation LM

	Linguistic Units
	Characters
	Words and Subwords
	Statistics-based Subword Tokenizers
	Linguistics-based Subword Tokenizers

	Phrases
	Sentences

	Architecture of Language Models
	N-gram Models
	Maximum Entropy Models
	Feed-forward Neural Network (FNN) Models
	Recurrent Neural Network (RNN) Models
	Transformers

	Pre-trained Language Models
	Pre-training
	Fine-Tuning, Adapter Tuning and Prompt Tuning

	Model Evaluation
	Intrinsic Evaluation
	Extrinsic Evaluation
	Relation between Intrinsic and Extrinsic Evaluations
	Beyond Single Metric for LM Evaluation

	Language Models in Text Generation
	Decoding Methods
	Dialogue Systems
	Automatic Speech Recognition
	Machine Translation
	Detection of Generated texts

	Efficient Models
	Data Usage
	Model Size
	Inference Latency

	Future Research Directions
	Integration of LMs and KGs
	Incremental Learning
	Lightweight Models
	Universal versus Domain-Specific Models
	Interpretable Models
	Machine Generated Text Detection

	Conclusion

