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ABSTRACT

Our goal is to develop real-time vehicle detection and tracking schemes
for fisheye traffic monitoring video using the temporal information in the
compressed domain without decoding the entire video. Two algorithms
are proposed. The first algorithm starts with a conventional single-frame
detector, but we introduce a multi-frame information fusion stage to
improve the final detection and tracking accuracy, which is implemented
using multi-modal bi-directional LSTM (MM bi-LSTM) network. The
second algorithm first constructs multi-frame motion trail image, and
then a single-image multi-head detector is designed to produce bounding
boxes of an individual frame. The first scheme can be viewed as a detect-
to-track design, and the second scheme is track-to-detect. We tested
our proposals on the ICIP2020 VIP Cup dataset in H.265 video format.
The aforementioned algorithms are applied to the motion fields and
residual images in the H.265 compressed data set. It turns out that their
detection and tracking performances are on par with their pixel-domain
counterparts, and they can achieve the state-of-the-art accuracy of
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conventional video object detectors and trackers. If the decoding process
for video compression is not counted, their computational complexities
are much lower than the conventional pixel-domain video object detectors
and trackers.

Keywords: real-time, vehicle detection, vehicle tracking, fisheye camera, com-
pressed domain.

1 Introduction

The proliferation of fisheye cameras in monitoring road intersections is ham-
pered by lens distortion, which enlarges and distorts objects near the image
center while compressing those at the periphery. Consequently, conventional
object detectors like YOLOv5 [16] suffer from decreased accuracy at the image
border. This paper proposes an integrated detection and tracking approach
employing deep neural networks, where tracking vehicles across frames en-
hances detection accuracy, even in the periphery. This synergy leads to mutual
reinforcement, wherein effective tracking bolsters detection and vice versa.

In traffic surveillance, videos are typically stored in compressed formats
like AVI, AVC, or HEVC to conserve storage. Our study utilizes the H.265
coding standard wherein video sequences are divided into non-overlapping
segments termed GOPs, with the first frame being intra-coded (I-frame) and
the subsequent frames being predictive (P/B-frame). We exploit the inherent
motion vectors and residual information within P/B-frames to expedite the
detection process and enhance accuracy without decoding the entire video.
Contrary to the common notion that compressed-domain detection and tracking
are less accurate than pixel-domain methods, our algorithms demonstrate
comparable or superior performance.

We devised two compressed domain algorithms grounded on the integrated
detection and tracking principle. The first, a detect-to-track design, initiates
with single-frame object detection, whereupon the bounding boxes and cropped
images are processed by a multi-modal bi-directional LSTM (MM bi-LSTM)
network for simultaneous refinement in detection and tracking. The second, a
track-to-detect design, begins by creating a motion trail image from overlapping
motion fields and residual images. Simple object detectors identify trails,
followed by a multi-head detector, which extracts bounding boxes in individual
frames. An optional tertiary stage with MM bi-LSTM can further boost
detection accuracy at the expense of additional computation.

Our contributions in this paper can be summarized as follows.

1. We design a detect-to-track algorithm to detect and track vehicles in the
fisheye traffic videos. We employ an MM bi-LSTM network to integrate
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multi-frame detected bounding boxes and motion field/residual images
to improve detection and tracking accuracy.

2. We propose the “motion trail” representation in the compressed domain.
It is constructed by overlapping the motion field and residual image in
multiple frames. Although individual frame detection has high error
rates, the trail image that aggregates multi-frame information can be
reliably detected.

3. We extend the pixel-domain track-to-detect algorithm [4] to the compressed-
domain. That is, the motion trail in the compressed domain replaces
the original frame differences in the pixel domain, and the detection and
tracking performance is about the same or higher.

This paper is structured as follows: Section 2 surveys relevant literature;
Section 3 outlines the dataset and its attributes; Section 4 details the first
compressed-domain detection and tracking algorithm, accompanied by experi-
mental results; Section 5 introduces the second algorithm and its experiments;
Section 6 contrasts pixel-domain and compression-domain approaches; and
Section 7 offers conclusions.

2 Related Works

2.1 Image Object Detection

Object detector identifies instances of a specific class of objects inside a picture.
It is a fundamental component in many computer vision applications. Due
to the recent advancement in deep neural networks, many high-performance
image object detectors are now available. One-stage methods and two-stage
methods are the two primary classifications of contemporary techniques. One-
stage approaches address the inference speed, such as YOLO [26], SSD [24],
and RetinaNet [22]. Two-stage approaches prioritize detection precision, such
as Faster R-CNN [27], Mask R-CNN [14], and Cascade R-CNN [8]. These
schemes generate horizontal/vertical bounding boxes (bboxes). For specific
applications, the objects can be more accurately bounded by the oriented
(rotated) bbox. This is particularly true for, say, the remote sensing images
that contain, for example, the image of ships or airplanes on the ground. This
is also true for our traffic monitoring cameras, which have a bird’s eye view.
Several oriented bbox detection papers have been published [28, 44, 45]. The
recent state-of-the-art R3Det method [39] showed good performance on DOTA
(A Large-Scale Dataset for Object Detection in Aerial Images) dataset [38].
Therefore, it is adopted and modified as a module in our system.
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2.2 Video Object Detection

For image sequences containing multiple frames, video object detectors that
aggregate multiple frame information to improve detection accuracy have
been developed. Some well-known schemes are Detect-and-Track [11], SELSA
(SEquence Level Semantics Aggregation) [37], MEGA (Memory Enhanced
Global-local Aggregation) [9], and temporal ROI align [13]. The video object
detectors extract temporal information often using the techniques of optical
flow, attention mechanism, tracking, etc. Therefore, their systems typically
need a huge amount of computation and a very large model size. Because our
focus is on rigid-body cars and the cars have a rather simple movement on
fixed roads (fixed routes), we can design a much faster system that achieves
comparable accuracy.

2.3 Tracking and Detection

Object tracking is another popular computer vision research topic. A few
popular algorithms are Kalman filter [17] [19], SORT [6], DeepSORT [35],
FairMOT [47], and ByteTrack [46]. Typically, they assume objects are well
detected by single-frame detectors, and then a tracking method is designed to
track the bboxes of the same object over several frames. On the other hand,
there are joint detection and tracking methods. For example, Feichtenhofer
et al. [11] explicitly used the joint detection and tracking concept in algorithm
design, and H. Kieritz et al. [18] used SSD and RNN to update the tracklet
information. Also, FairMOT [47] used the encoder-decoder structure to directly
detect and extract the tracklet’s features. We adopted the concepts of detect-
to-track and track-to-detect in designing our schemes.

2.4 Motion History Image

Because the camera in the traffic monitoring video is stationary, the motion
field or residual image in the compressed bitstream provides the moving object
information. We thus can use the motion field and residual image to form
a trail image. A similar concept called “motion history image (MHI)” was
suggested by Bobick and Davis [7]. Because their application is mostly action
recognition [1], typically, there is only one object (person) in the picture and
its video has no severe lens distortion nor multiple object occlusion. That is,
the object can be well detected using simple techniques such as background
subtraction, and then the extracted moving pixels of objects are used for
constructing the MHI. In our case, the single-frame object detection error
rate is over 40% for nighttime videos. Our goal is to improve the detection
accuracy by collecting multiple frame information. The motion trail image
may contain a high percentage of single-frame errors, but the entire trail made
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of multiple frames can still be reliably detected. This principle is similar to
that of error-correcting codes. The one-bit error can be corrected in a 3-bit
repetitive code. Therefore, to differentiate its image characteristics and its use,
our multi-frame motion representation is named “motion trail”.

2.5 Compressed Domain Object Detection and Tracking

Most object detection and tracking algorithms were developed to work on the
RGB images in the pixel domain. Examples are YOLOv5 [16] and ByteTrack
[46]. Recently, a few schemes have been proposed to perform detection and
tracking tasks in the compressed domain. Deguerre et al. [10] proposed an
object detection scheme on a single compressed JPEG image by only partially
decoding the part of an image with high-density DCT blocks. It improves the
detection speed twice compared to using the same SSD [24] network to detect
the object in a fully decoded image. Liu et al. [23] used the compressed domain
data to develop a real-time person-tracking scheme. They conduct detection
only on the keyframe (I-frame) and construct the tracklets in the intermediate
frames (P/B-frame) using the motion vector field and residual image without
decoding the whole video. Their approach has a good accuracy performance,
only slightly lower than DeepSort, but its inference speed is close to a traditional
multi-object tracking method. Wang et al. proposed a scheme called Motion-
aided Memory Network (MMNet) [33], which detects objects using the motion
information in the compressed bitstream to speed up P-frame processing. They
applied the complete detector on the I-frames. The detected object information
propagates to P-frames with the aid of motion vectors. They showed results
on test videos containing few objects (less occlusion). Their mAP performance
is somewhat lower than the best deep-learning methods at that time, but its
speed can be twice as fast or even faster if a lower accuracy configuration is
in use. In contrast, we detect objects on the P/B-frames and propagate the
detected information to the I-frames. Therefore, we do not decode the I-frames.

3 Dataset and Metrics

In this section, we describe our dataset and its characteristics from the detection
and tracking viewpoint. We also describe how the compressed data are pre-
processed in order to feed into our proposed schemes. The evaluation metrics
are also briefly specified.

3.1 ICIP 2020 VIP Cup Dataset

Only a few open public fisheye traffic monitoring datasets with ground truth
are available; the rareness may be due to the reason that they may contain
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personal information. The ICIP 2020 Video Image Processing (VIP) Cup
dataset [43] was used in this study. The video was captured by a fisheye camera
mounted about 8 meters above the ground on several road intersections in a
Turkey city. It contains 26 daytime videos and five nighttime videos with a
resolution of 1024x1024. Among 31 total videos, 26 (including three nighttime
videos) are used for training, and 5 (including two nighttime videos) for testing.
Most training videos are around 1,000 frames each, but the nighttime videos
are 2,000 to 4,000 frames long. The test videos have about 500 to 600 frames
each.

The ICIP20 VIP Cup images were initially stored in JPEG format. We
encoded the JPEG-decoded images into the H.265 (High-Efficiency Video
Coding (HEVC)) video format using the FFMPEG software [29]. In the
H.265 format [34], an image sequence is partitioned into many non-overlapping
segments called Group-of Pictures (GOP). The first frame inside a GOP is
intra-coded (I-frame, single-frame image coding), and the rest are inter-coded
in the P/B-frame format (predictive coding). The P/B-frame data includes
the motion field (motion vectors) and the residual image (motion-compensated
errors). There are two motion vector lists in H.265, list 0 (L0), which came
from the previous reference picture, and list 1 (L1) from the next reference
picture. We combine them by summing and merging them into a single channel
input for the P/B-frame detection network.

The original motion vector contains two components: a horizontal com-
ponent and a vertical component. We convert a vector to a scalar by simply
adding the values of the horizontal component and vertical component together
since the purpose is object detection. Thus, the motion field data used in our
system has only one channel. The residual image originally contained three
components (RGB), but we converted it into a grey-level image (Value in HSV
color space), which has only one channel. Samples of the motion field and
residual image are shown in Figure 1. Also shown in Figure 1 are motion
trails constructed using motion field and residual image. The motion trails are
quantized grey-level images. The colors in the figure are for illustration only;
they are used to show different grey levels. Three Group-of Pictures (GOP)
sizes, 8, 16, and 32, and several coding bit rates are tested in the experiments.
More details will be provided in Sections 4.4 and 5.2, Ablation Study.

The ICIP20 VIP Cup competition organizers provided only the regular
bounding box (bbox) for the ground truth. We added the tracking information
and the moving status of the cars [3]. In addition, we added the rotated bbox
into the ground truth to detect the cars more precisely [4]. Not all vehicles
are included in the ground truth of the ICIP 2020 VIP Cup dataset. The
stationary cars that are not moving for the entire video are not counted. But
if a car moves for a period of time, it is counted as a moving car in the ground
truth, even during its stationary periods. For example, if a car starts moving
at frame 50, this car is counted as a moving car before frame 50. Thus, the
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Figure 1: Samples of motion vectors (MV), residual images, and their motion trails. Motion
trails are quantized grey-level images. The colors are used to show different grey levels for
illustration purposes.

stationary cars are removed in the performance evaluation to make it fair to
all object detection methods.

3.2 Dataset Statistics

Figure 2 is cited from [3]. Initially, the dataset has ground truth only for
detection (green boxes in Figure 2). We manually added car ID and non-
moving cars (red boxes in Figure 2) for tracking purposes. We divide the
fisheye image into three rings based on the CKMeans clustering algorithm [32].
The first inner circle starts from the center with a radius of 180, the second
middle ring with a radius from 180 to 320, and the third outer ring with a
radius from 320 to 512. Based on the statistics in this figure, most cars are
located in the outer ring. The rotated bbox is more precise than the normal
bbox in representing the vehicle on this top-view fisheye image. The average
bbox sizes are more evenly distributed in the inner circle (yellow), which is
easier to detect. The number of vehicles using the rotated bbox also spread
more evenly in the middle ring than in the regular bbox. Therefore, there
is an increase in detection accuracy when using a rotated bbox, as shown in
Table 1.

It is worth noting that nighttime and daytime videos have very different
image characteristics. This can be seen in Table 1. When we apply YOLOv5
[16] and Rotated YOLOv5 [45] to the ICIP20 VIP Cup dataset, the nighttime
video detection rate is much lower. This is due to strong disturbances such
as camera noise, car headlight, background light, fading color, etc., in the
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Figure 2: ICIP 2020 VIP Cup dataset samples and statistics. (top left) daytime scene,
(top right) nighttime scene, (middle left) average normal bounding box size at a given
radius, (middle right) number of cars located at a given radius using a normal bounding box,
(bottom left) average rotated bounding box size at a given radius, (bottom right) number of
cars located at a given radius using the rotated bounding box [3].

night videos. For example, the camera grain noise is higher under low light
conditions. The car headlight can be a clue for detecting a car, but the light
from the environment (buildings) may be mixed with it and the car headlight
may be occluded by the car in front of it.

The nighttime video characteristics also explain why the rotated bbox
produces a more significant improvement (4.6 pp in Table 1) over the regular
bbox on the nighttime video. We closely examined the cases where the rotated
detection model succeeded while the regular detection model failed. We
observed that the headlights of a vehicle in nighttime videos tend to contribute
to an inflated bbox when using regular box detection. This enlargement of
the bbox causes the Intersection over Union (IoU) score to fall below 50%
threshold, leading to a detection failure. An example is shown in Figure 3; the
regular detector fails to detect two cars close together, while the rotated object
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Table 1: YOLOv5 vs Rotated YOLOv5 detection accuracy on the ICIP20 VIP datasets.

AP50 Night Day Both
YOLOv5 0.541 0.820 0.772
Rotated YOLOv5 0.587 0.839 0.786

Figure 3: The normal box detector (left) fails to get the precise vehicle bounding boxes to
separate two cars, but the rotated detector (right) is able to construct two tighter bounding
boxes. Green box: ground truth. Red box: predicted vehicle location.

detector successfully detects both of them. Since the rotated bbox can adjust
its orientation to fit around the vehicle tightly, mitigating the issue caused by
various disturbances and thus maintaining an IoU above the 50% threshold.

3.3 Accuracy Metrics

Several accuracy measurements are used in this study, such as AP50 (Average
Precision) for object detection, rotated AP50 for oriented object detection,
MOTA (Multiple Object Tracking Accuracy), and MOTP (Multiple Object
Tracking Precision) [20] for multi-object tracking. The subscript 50 in AP
measurement means that the minimum IoU (Intersection over Union) between
the bbox prediction and ground truth is larger than 50%. AP50 is suitable
for our case since the traffic monitoring task does not need to be very precise
as long as the vehicle is detected. Figure 4 shows the IoU calculation for the
normal bbox (blue) and rotated bbox (green).

For tracking, MOTA and MOTP are the most popular metrics since they
were introduced in the MOT (Multi-Object Tracking) Challenge in 2015 [20].

Figure 4: IoU calculation.
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Equation (1) specifies the MOTA calculation and Equation (2) for MOTP.

MOTA = 1−
∑

t(mt + fpt +mmet)∑
t gt

(1)

where mt is the number of miss detections, fpt is the number of false positives,
mmet is the number of mismatches, and gt stands for the number of the ground
truth.

MOTP = 1−
∑

i,t d
i
t∑

t ct
(2)

where dit is the distance between the locations of objects in the ground truth
and the detection output, and ct is the total matches made between the ground
truth and the detection output. It is the average of the overall predicted
location error for all matched object-hypothesis pairings across all frames.

4 Scheme 1: Multi-frame Detection and Tracking

The first Multi-Frame Detection and Tracking (MFD&T) scheme in the com-
pressed domain is described in this section. Because the ICIP20 VIP Cup
performance metrics count only the non-stationary vehicles (including the will-
move vehicles), we first process the P/B-frames and then extend the extracted
information to the I-frames. Because the motion fields and residual images
generated by FFmpeg are quite accurate, we can use a relatively lightweight
neural net to detect the objects.

4.1 Proposed System

Figure 5 shows the data processing flow in our proposed system. Our system
contains two main stages. The first stage is detecting the objects in the motion
field and/or the residual image using a simplified rotated bounding box (bbox)
detector. The input sequence is divided into overlapped segments. The last
frame of the previous segment overlaps with the first frame of the current
segment. The overlapped frame is called Key Frame (KF), and the other
frames in a segment are Intermediate Frames (IFs). We use R3Det [39] with
KFIoU loss [42] to detect the car location because of its good performance
in the oriented object detection task. The system architecture is shown in
Figure 6. The segment in this example contains 3 frames: two KFs and one
IF. Because the inputs data have two channels (rather than 3 channels for the
original RGB images) and the image contents are rather simple (large dark
background as shown in Figure 1), we found that a smaller backbone network
such as ResNet18 for R3Det can produce satisfactory results.
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Figure 5: The data processing flow of MFD&T.

Figure 6: MFD&T system architecture.

The outputs of Stage 1 are the detected bounding boxes (bboxes). We
assigned ID numbers to the boxes of the first KF, and the ID numbers were
propagated between two nearby frames using a simple maximum IOU criterion.
The detected bbox information, together with ID and some clipped input
images are fed into the second stage, which refines the labeled bboxes in a
segment using a multi-modal bi-directional LSTM (MM bi-LSTM) network. It
is also used to fill in the missing bboxes in the I-frames because the I-frames
are not processed in the first stage.

The structure of our MM bi-LSTM is shown in Figure 7, which was inspired
by Wang [30] [31]. In their original design, they combine text and image
information using bidirectional LSTM for the purpose of image captioning.
Their neural network stacks two bi-LSTMs [12]. We replace the Text-LSTM
with Box-LSTM, which contains the information of rotated bboxes and ID
from the outputs of the first stage. The black arrows in Figure 7 are the
forward feed, and the red arrows are the backward feed. The yellow circle is
the LSTM unit containing 1000 hidden units. The Image-LSTM has the same
structure as Box-LSTM. The image inputs to Image-LSTM can be motion
field and/or residual image. We assume the maximum number of cars is 100
and each input image size is 64x64 pixels. The top input image is extracted
using the detected bbox on the first frame of this segment (first KF), and the
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Figure 7: Our multi-modal bi-LSTM architecture for the MFD&T scheme.

bottom image comes from the last frame of this segment (second KF). The
extracted image size is normalized to 64x64 before feeding to the Image-LSTM.

The tracking process is easy in our system. Because the KF is shared
by two neighboring segments. Once an object ID is assigned in the previous
segment, the car ID is passed to the next segment. Therefore, if an object
is tracked inside a segment, it is tracked for the entire car path in a video.
Because the car speed is relatively slow in passing a road cross, the car bboxes
in two neighboring frames typically overlap considerably. Therefore, a simple
IOU criterion produces quite promising results. Essentially, this approach is a
multi-frame detection and tracking method in the compressed domain; thus, it
is abbreviated as “MFD&T”.

4.2 Implementation and Training

The first stage of our system uses the R3Det detector [30] with KFIoU loss
[12]. We modified the original R3Det architecture for two cases. Because our
image (motion field/residual) can be one channel or two channels, we modify
the original 3-channel input port of the first convolution layer to one or two
channels, but the other parameters of that layer are not changed. In addition,
we simplify the backbone network of the original R3Det from ResNet50 to
ResNet18 because our motion field or residuals have simpler contents and are
easier to detect. Our experiment (Section 4.3) indicates this simplification has
little impact on performance.

We start with the pretrained R3Det model. The initial model weights of
ResNet18 were pretrained using the ImageNet1K dataset. Then, the R3Det
model is retrained using the VIP CUP dataset. We train our neural net using



Real-time Vehicle Detection and Tracking on Fisheye Traffic Monitoring Video 13

all the training data, including the daytime and nighttime videos. In the
inference (test) phase, we have three testing scenarios: (a) nighttime videos
(Night), (b) daytime videos (Day), and (c) both nighttime and daytime videos
(Both). In the following experiments, the same single model is used for all
three testing scenarios. We also tried to train dedicated models, for example, a
“Night model” is trained using the nighttime training data only. However, this
dedicated Night model has a slightly lower RD performance on the Night test
dataset when compared to the single model trained with all training data. The
segment size used in this and the following experiments is 3 unless otherwise
stated. Segment size 3 offers the best computing speed; however, the accuracy
is slightly lower (0.3 to 0.5 percentage points).

We made two modifications to the second stage bi-LSTM network. Because
the inputs to the Image-LSTM port are motion fields/residuals, we modify
the original 3-channel input to one-channel or two-channel input. Another
major change is that we bypass the first ResNet18 layer of the input port of
Image-LSTM and feed the image features directly to the LSTM nodes when
the image features are available. Since we use the same backbone, ResNet18,
in R3Det, we store the image features generated by R3Det at its Refinement
Stage output and feed them directly to the second stage of the Image-LSTM
port to save computation. In the implementation, the image features are
stored using PyTorch’s forward hook, then crop and scale the features to
64x64. Therefore, the speed of this modified MM bi-LSTM is comparable with
the box input-only LSTM network. The bi-LSTM has no pretrained model. It
is trained using the data generated by the first stage of the proposed scheme.

We train our schemes on four NVIDIA 1080Ti GPUs and an i9-9900x CPU
using PyTorch 1.7.0. The hyper-parameters are as follows: learning rate with
an initial value of 0.0025, momentum of 0.9, and weight decay of 0.0001. We
employ the SGD optimizer. With a batch size of 16, we trained the network
independently for each stage over the course of 100 epochs.

4.3 Detection Experiments

Table 2 shows the detection performance of the proposed method and its
variants. “5. Segment based” is the main scheme we proposed, which serves as
the benchmark in the following discussions. If we do not use the propagation
network (bi-LSTM), the detection rate is shown as “1. No Prop.” in Table 2. It
is essentially a single-frame detector performed on the P/B frames. Therefore,
there exist a number of miss detection cases particularly in the nighttime video.
The second one, “2. I-Frame only,” is the case that the bi-LSTM is used only
to fill in the missing I-frame vehicle detection. That is, The bi-LSTM net is
applied to the I-frame and its two neighboring frames; it does not apply to the
other P/B frames. It recovers some missing cars, and thus, it improves the
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Table 2: Variation of components in MFD&T.

Variant AP50 GFLOPS Speed
(FPS)Night Day Both

1.No Prop. 0.653 0.825 0.779 139 80
2.I-Frame only 0.789 0.874 0.851 148 74
3.ResNet50 0.820 0.882 0.865 166 66
4.Sliding window 0.823 0.883 0.867 186 59
5.Segment based 0.815 0.879 0.862 161 68

detection rate by about 7 percentage points (pp) (in the “Both” case), but the
computing speed is lower than “1. No Prop.” by 6 FPS (Frames Per Second).

The third variant, “3. ResNet50” is the case in which we use a deeper
backbone (ResNet50) for the P/B-Frame detection with segment-based LSTM.
The improved detection rate (in the “Both” case) is less than 0.3 percentage
points (pp), but the speed is lower by 4 FPS. Instead of segment partition, if
we use a sliding window that moves frame by frame, then the sliding window-
based LSTM (“4. Sliding window”) offers only about 1 percentage point (pp)
accuracy improvement over “5. Segment based” but at about an additional 9
FPS speed cost. For the nighttime videos, the segment-based bi-LSTM stage
improves the detection rate very significantly, about 16 pp, compared to the
“1. No Prop.” system. Therefore, we chose the segment-based LSTM with the
ResNet18 detector configuration (“5. Segment based”) since this combination
provides the best trade-off when the speed is a high priority.

Figure 8 shows some successful cases. There are some cases that a car
cannot be detected if we use only motion vectors (MV) or only residuals.
The purple box shows a car can only be detected if we include the residual
information in the detector. The red box indicates the case that a car is
detected only when the motion vector is included. In other words, sometimes,
one of them contains more information than the other, especially near the
border of a fisheye image. The bi-LSTM propagation network is able to recover
missing cars based on the detected car in another frame, as shown by a yellow
box in Figure 8. The blue boxes show three paused cars that are recovered by
the bi-LSTM network. In the previous frames, they ran into a red light, and
thus, they paused to wait for the green light. These paused cars cannot be
detected in the compressed domain without a propagation network (bi-LSTM)
since there is no movement of these cars. By examining many similar successful
cases, we have two observations. The tracking ability offered by bi-LSTM net
can recover a number of misdetection cases, particularly for the nighttime
video. Also, to achieve the best performance, our system should use both MV
and residual information. These points are verified by the simulations in the
next subsection.
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Figure 8: Compressed domain successful examples. Green box: detected cars on P/B-frames.
Purple box: cars that are detected only when we also use the residual information. Red box:
cars that are detected only when we use motion vectors. Yellow box: the car is not detected
at the current frame but recovered from the next frame where it is successfully detected.
Blue box: paused car recovered by bi-LSTM.

There are some failure cases that may be further improved, as shown in
Figure 9. When the image noise is very high, especially in the nighttime
video, the motion field, and residual image are noisy and hard to detect
objects (Figure 9(a)). Most cars in this dataset are white cars with white
headlights. The headlight reflection also causes difficulty in the compressed
domain (Figure 9(b)). The detected bounding box is much larger than the
real car. The camera was mounted at a pole about eight meters above
the ground. Sometimes a strong wind can shake the camera; it induces a
large amount of noise in the compressed data, and the object detector fails
(Figure 9(c)).

4.4 Ablation Study

4.4.1 Modality Variation

Table 3 shows the results when we use different modalities for the P/B-frame
detector. Using residual images only gives a lower accuracy than the motion
vector while their speeds are almost identical. The temporal information is
more important than the spatial information in detecting a moving object.
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Figure 9: Compressed domain failure examples. (a) Missing detection is caused by too much
noise in motion vectors and residuals. Also, the car movement is very small (the car starts
moving right after a pause for the traffic light), so the motion information is unclear. (b)
The bounding boxes are too big due to the car headlight reflection on the road. Green box:
ground truth; Red box: predicted bounding box. (c) Sometimes, a strong wind can shake
the pole where the camera is mounted. It induces a large amount of noise in the compressed
data.

In this experiment, the bi-LSTM network with (MV+R) input is used in
producing Table 3.

When the detector uses both MV and residuals to generate bboxes, we test
the propagation network (LSTM) with four variations on its input modalities,
and the results are shown in Table 4. In the “Box only” configuration, the
inputs to the bi-LSTM network contain only the bbox information. The
Box-LSTM-only case lowers the accuracy slightly and improves the detection
speed a little bit. Since we use the same backbone for the P/B-frame and for
the input port of the Image-LSTM, we stored the image features generated by
ResNet18 and fed them directly to the second stage of the Image-LSTM port
to save some computations. That is, we skip the ResNet18 in the first stage
of the Image-LSTM port. Therefore, the speed is comparable with the box
input-only LSTM network. As expected, we chose the MV+R modality for
both the R3Det detector and LSTM.
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Table 3: Modality variation on the P/B-frame detector in MFD&T.

Modality AP50 GFLOPS Speed
(FPS)Night Day Both

MV only 0.802 0.867 0.850 158 70
R only 0.761 0.843 0.821 157 70
MV+R 0.815 0.879 0.862 161 68

Table 4: Modality variation on the propagation network (LSTM) in MFD&T.

Modality AP50 GFLOPS Speed
(FPS)Night Day Both

Box only 0.810 0.873 0.856 158 70
MV only 0.814 0.877 0.861 160 69
R only 0.812 0.872 0.856 159 69
MV+R 0.815 0.879 0.862 161 68

4.4.2 GOP Size Variation

We also tested several GOP sizes in H.265 format when encoding our dataset.
Table 5 shows the bitrate, PSNR, accuracy, and speed trade-off between these
different GOP-size videos. By using a smaller GOP size, the coding bit rate
becomes higher (and a slightly higher PSNR in our setting). However, since we
only process the P/B-frames, smaller GOP leads to fewer P/B-frames, which
leads to a slightly lower accuracy but a slightly faster detection speed. The
GOP size of 32 has the highest accuracy but is a bit slower than the GOP
size of 8. To achieve a higher compression efficiency, a GOP size of 32 is more
often used.

4.4.3 Segment Size Variation

Our propagation network (bi-LSTM) can be expanded to accept different
numbers of frames in a segment. The purpose of using bi-LSTM is to track the

Table 5: GOP size vs detection accuracy and speed on MFD&T.

GOP
Size

Bitrate
(kB)

PSNR
(dB)

AP50 Speed
(FPS)Night Day Both

8 1,675 37.90 0.811 0.875 0.858 70
16 1,225 37.86 0.812 0.878 0.860 69
32 931 37.68 0.815 0.879 0.862 68
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Figure 10: Segment size vs detection accuracy and speed on MFD&T.

cars to reduce false negative and false positive cases. Therefore, a larger segment
size generally produces better results but at the expense of computational
complexity. Figure 10 shows the trade-off between the number of frames in
a segment and the accuracy and speed. Increasing the frame number in a
segment slightly enhances the accuracy but lowers the inference speed. In
the end, the three-frame setting is chosen as a suitable compromise between
accuracy and speed.

4.4.4 Compressed Video Quality

Lower image quality is expected to lower the object detection accuracy. We
trained another model at a bit rate of about 10% of the previous coding bitrate,
84 kbps, instead of 931 kbps. The H.265 encoding process performs quite well
on this type of video since the camera is not moving, and thus it only needs to
encode the moving objects for the most part. Therefore, the PSNR value drops
by about 3.3 dB. In this case, the accuracy decreases by about 2 pp to 3 pp.
Figure 11 shows the image quality comparison between these two bitrates. It is
apparent that the decoded RGB image at a lower bitrate has visible artifacts,
but the motion vectors and residual images do not change drastically.

We also conduct experiments using a wide range of compressed bit rates
(image quality) as inputs, as seen in Figure 12. The 84K trained model was
employed for the low bitrates (<900K), and the 931K model was used for
the higher bitrates (>900K). This figure shows an incisive analysis of the
performance of our object detection method under varying image quality
(bitrates). In Figure 12, the horizontal axis represents bitrates in kbps, and the
vertical axis denotes the AP50 scores for MF D&T. Three curves are displayed
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Figure 11: Visual quality comparison at two coding bit rates. At 84 kbps: PSNR = 34.36
dB, AP50 (night, day, both) = (0.782, 0.863, 0.841); at 931 kbps: PSNR = 37.68 dB, AP50
(night, day,both) = (0.815, 0.879, 0.862).

Figure 12: Bitrate (image quality) variations are affecting the detection accuracy of MFD&T.

corresponding to day, night, and combined test data. As the bitrate increases,
the AP50 scores ascend as well. It is interesting to see a cliff effect around
80 kbps (∼34.3 dB PSNR). The detection accuracy drops dramatically when
the video quality is lower than this corner point. On the other hand, the
detection accuracy saturates quickly above this point. For all three curves, the
detection rate increases only slightly above 800 kbps (∼37.5 dB). Although
their implementations are different, this “cliff effect” phenomenon is similar to
that of optimal signal detectors in digital communications [36], [25]. When
the signal strength surpasses a certain level, the error rate drops dramatically.
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Table 6: MFD&T tracking results (MOTA and MOTP [5]).

Method MOTA MOTP (IOU) Speed (FPS)
MFD&T 86.1 85.8 68

4.5 Tracking Experiments

In this method, when the detection task is completed at Stage 2, so is the
object tracking. As discussed in Section 4.1, the object detection and the
objection tacking tasks are merged in our approach. There is no additional
processing needed to generate the tracking result. Table 6 shows the MOTA
and MOTP metrics of our method, and they are all above 80 at 68 FPS.
In Section 6, we will compare our methods with some popular pixel-domain
tracking methods.

5 Scheme 2: Extract Objects from Detected Trails

The method proposed in this section uses the concept of “track to detect”. We
first construct a “motion trail” image of cars and then detect the car trail.
Next, we extract the object bbox in each individual frame. In the pixel domain,
frame differences of several frames (a segment) are overlapped to form trail
images. This scheme in pixel-domain was proposed in [4]. In the compressed
domain, the motion trail is formed by overlapping the motion field/residual
image of several frames. The definition of a segment in this section is the
same as before. That is, the first and last frames of a segment are KF, and
two neighboring segments share a common KF. We extend the pixel-domain
track-to-detect (TtoD) scheme in [4] to the compressed domain in this paper.

5.1 Proposed System

The TtoD method has two main stages and an optional third stage, as shown
in Figure 13. Stage 1 constructs the motion field/residual trails and then
detects the trails using the oriented object detection network, R3Det [39].
Ideally, a detected trail (rotated bbox) contains a single car. In Stage 2,
we designed a lightweight multi-head object extractor to generate individual
bboxes at different frames for each trail. All bboxes (cars) from the same trail
are assigned the same ID. This ID is propagated to the following segments. In
the last stage (Stage 3), we use multi-modal bidirectional-LSTM to further
improve the detection accuracy.

The trail image is constructed as follows. Similar to the definition of
Motion History Image (MHI) [7], the moving pixels of each object in each
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Figure 13: Our overall architecture consists of 3 stages. Stage 1 forms and detects the
motion trail. Stage 2 extracts object instances on the individual frame. Stage 3 is optional,
which can further improve the AP50 accuracy [4].

frame are first identified. This is called update function, D(x, y, t). D(x, y, t) is
a binary-value function at location (x, y) at frame t. When the motion field or
residual image is in use, we first apply the morphological operations (opening
and closing) in the image processing software package to reduce the image noise.
Then, the non-zero pixels are assigned value 1, which typically indicates the
location of moving objects. We thus obtain D(x, y, t) from the given motion
field and/or residual image. Then, Equation (3) is used to construct the trail
image H(·). The newer object (non-zero) pixels overwrite the previous frames.
H(·) is thus assigned quantized grey levels. The motion trails in Figs. 13 and
14 are color-coded (not greyscale value) only for illustration purposes.

H(x, y, t) =

{
t · 255/n if D(x, y, t) = 1

H(x, y, t− 1) otherwise
(3)

where H(x, y, t) is the greyscale trail for the t-th frame in a segment (t ∈
{1, . . . , n}) and n is the number of frames in a segment. The initial value of
H(x, y, t = 0) = 0 for all (x, y) pixels.

Our multi-head object extractor network in Stage 2 is shown in Figure 14.
The goal of this network is to generate the object bbox in each frame inside a
single trail. The input to this multi-head object extractor is the image of one
trail detected in Stage 1. The image size is normalized to 64x64. Because the
trail image content is rather simple, we use ResNet18 [15] for the backbone,
Feature Pyramid Network (FPN) [21] for the neck, and Feature Refinement
Module (FRM) from R3Det [39]. The same car ID is assigned to all detected
boxes from the same trail. Because two neighboring segments share a common
KF, this ID is reliably passed on to the next segment.

The third stage, multi-modal bidirectional LSTM, is the same network
used in Section 4. The bbox information and ID generated at Stage 2 are the
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Figure 14: Our multi-head object extractor (Stage 2) [4].

inputs to the Box-LSTM port. The trail image extracted in Stage 2 becomes
the input to the Image-LSTM port. Both the upper and lower image ports use
the same trail image. The purpose of the third stage is to refine the results
(detected bboxes) obtained from Stage 2. Often, Stage 2 already provides very
high accuracy. Therefore, Stage 3 can be dropped to reduce computation.

Because the basic components used in this scheme are the same as the ones
used in the last MFD&T scheme, its implementation and training procedure
are thus similar to that of MFD&T. We train three stages of the TtoD scheme
one by one.

5.2 Detection Experiments

In this section, we continue using the ICIP20 VIP Cup dataset for experiments.
We use the same settings in the previous section. One segment contains three
frames, and the default GOP size is 32 unless stated otherwise.

5.2.1 R3Det IoU Variation

In Table 7, various variants of R3Det using different IoU definitions are
compared in terms of mean Average Precision (mAP) and AP on two datasets:
DOTA [38], and ICIP [43] (in pixel domain and compressed domain). In
this table, the mAP values on the DOTA dataset are cited from Yang et al.
[42]; the AP50 values on the ICIP dataset are generated by our pixel-domain
TtoD algorithm (which will be explained in Section 6) and generated by our
compressed-domain TtoD algorithm described earlier. That is, in the training
phase, the IoU calculation in the first R3Det motion trail detection stage is
using different definitions.
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Table 7: Detection comparison in R3Det IoU variations.

AP50 ICIP AP50 ICIP [43]
mAP [43] Pixel Compressed

IOU Method DOTA [38] Domain Domain
Original R3Det [39] 0.765 0.755 0.762
GWD+R3Det [40] 0.802 0.803 0.798
KLD+R3Det [41] 0.806 0.825 0.828
KFIoU [42] 0.809 0.866 0.871

This table reveals that the original R3Det has been enhanced by incorpo-
rating Generalized Wasserstein Distance (GWD+R3Det) and Kullback–Leibler
divergence (KLD+R3Det), with both variants showing improvements in
mAP/AP across all datasets. Among the methods evaluated, the KFIoU
variant achieved the highest performance, suggesting that this method may be
particularly effective for object detection tasks.

5.2.2 GOP Size Variation

Table 8 shows the detection accuracy and speed when we change the GOP size
of the compressed video inputs. The best accuracy is achieved when we use the
GOP size 32 since more frames can be processed (more information extracted);
however, it has a slightly lower speed than the smaller GOP size. Smaller GOP
size increases the compressed bit rate when the image quality is kept the same.
That is, a smaller GOP lowers the compression efficiency. Since the image
quality is similar for three GOP sizes, their detection accuracies are about the
same. We will investigate the impact of image quality in Subsection B.5.2.5.

Table 8: GOP size vs detection accuracy and speed on TtoD.

GOP
Size

Bitrate
(kB)

PSNR
(dB)

AP50 Speed
(FPS)Night Day Both

8 1,675 37.90 0.835 0.882 0.869 56
16 1,225 37.86 0.836 0.885 0.871 55
32 931 37.68 0.838 0.886 0.873 53

5.2.3 Stage and Modality Variation

Table 9 shows the modalities affecting the detection accuracy on each stage.
Motion vector information is more important than residual. However, the
detection accuracy increases when we include both of them. Using both
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modalities increases the computational complexity slightly (about 2.6%) as
compared to using a single modality. We also compare the 2-stage configuration
vs. the 3-stage configuration. Stage 3 offers less than a 1 pp improvement
in accuracy, but it costs additional 20 GFLOPs or 5 FPS. For the remaining
experiments in this section, the default configuration is the 3-stage system.
However, in the next section for the pixel-domain vs compressed-domain
comparison, the 2-stage configuration is chosen for its superior speed.

Table 9: Stage and modality variation on TtoD.

Speed
Stages Modality Night Day Both GFLOPS (FPS)

2 MV Trail 0.823 0.87 0.857 185 60
2 Residual Trail 0.765 0.864 0.837 185 60
2 MV+Residual Trail 0.831 0.883 0.871 190 58
3 MV Trail 0.835 0.876 0.866 198 56
3 Residual Trail 0.784 0.866 0.845 198 56
3 MV+Residual Trail 0.838 0.886 0.873 210 53

5.2.4 Segment Size Variation

In this experiment, we like to find the best number of frames for each modality.
Figure 16 shows the detection accuracy and speed trade-off between various
compressed domain modalities (motion vector only, residual only, and motion
vector + residual). The test system is a 3-stage configuration. It shows
that using four frames instead of three frames gives slightly better detection
accuracy when using either motion vector or residual alone. When both input
modalities are in use, the 3-frame segment has about the same performance as
the 4-frame segment. However, the four-frame segment lowers the speed by
about 2 FPS in the inference process. In the nighttime video, we observe that
there is quite a bit of a drop in detection accuracy when using five frames or
more.

5.2.5 Compressed Video Quality

Similar to the MF D&T scheme (Section 4.4.4), the compressed image quality
(bitrate) has an impact on the detection accuracy of the TtoD scheme. We
explore this issue using the 3-stage system and a wide range of compressed
bitrates, as seen in Figure 15. Although the proposed algorithm is different,
performance curves similar to Figure 12 are shown here. A cliff effect with a
corner bitrate around 80 kbps (∼ 34.3 dB) also appears, and the AP50 value
reaches a plateau at around 800 kbps (∼ 37.5 dB). This finding is particularly
beneficial for resource-limited settings, allowing for efficacious implementations



Real-time Vehicle Detection and Tracking on Fisheye Traffic Monitoring Video 25

Figure 15: Bitrate (image quality) variations are affecting the detection accuracy of our
second scheme, TtoD.

Figure 16: Modality and segment size vs accuracy and speed on TtoD.
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without sacrificing precision. Moreover, Figures 12 and 15 indicate that an
image quality of approximately 38 dB is needed for optimal performance in
both schemes.

5.2.6 Visualization Examples

Figure 17 shows examples of our track-to-detect approach in the compressed
domain. The colors assigned to the MV and residual trails are simply for
illustration purposes. In processing, they are quantized greyscale images. Our
approach can detect and track the vehicles even in the nighttime video when

Figure 17: Visual examples of our track-to-detect approach in the compressed domain.
(left) RGB, (middle) MV trail, and (right) residual trail modality. Blue arrow: propagated
bounding box from other frames, Red arrow: wrong car size due to light reflection noise.



Real-time Vehicle Detection and Tracking on Fisheye Traffic Monitoring Video 27

there are more noises compared to the daytime. There are two cars (blue
arrows on the left image) waiting for the traffic light in frame #128, and
they start moving in frames #400 and #412. Therefore, these cars have no
motion information in frame #128. In frames #400 and #412, these cars are
moving slowly, and thus their motion vectors are almost invisible. However,
these cars can be detected in the residual trails. Typically, the residual trails
contain more noise than the MV trails, especially in the nighttime video. But
the residual trails can provide complementary information that may not be
available in the MV trails. Hence, using both MV trails and residual trails is
better than using MV trails alone.

5.3 Tracking Experiments

The tracking results of this track-to-detect approach can be found in Table 10.
The 3-stage configuration with a fusion bi-LSTM stage is somewhat better
in tracking. Both MOTA and MOTP measurements are above 80. As said
earlier, when the detection task is done, the tracking task is completed at the
same time. Therefore, it has a very fast speed, 58 FPS. We will compare this
method with some high-performance schemes in the pixel domain in the next
section.

Table 10: TtoD tracking results (MOTA and MOTP [5]).

Method MOTA MOTP Speed
(FPS)

2-stage TtoD 85.8 86.7 58
3-stage TtoD 86.3 87.1 53

6 Compressed-domain vs. Pixel-domain Performance Comparison

We have described two proposed schemes (MFD&T, Compressed TtoD) in
the compressed domain in the previous two sections. We like to compare
our proposed compressed-domain methods with several popular detection and
tracking methods in the pixel domain.

Object detection methods are classified into single-frame image object detec-
tion methods and multi-frame video object detection methods, as described in
Section 2. For image object detectors, we selected a popular high-performance
detector, YOLOv5 [16] as a representative of the regular bbox detector. Also,
we chose Rotated YOLOv5 [45] and R3Det [39] for the rotated bbox detectors.
Further, we included two leading multi-frame video object detectors, MEGA [9]
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and TRA [13] working with SELSA [37]. Previously, we proposed three multi-
frame detectors in the pixel domain. They are (1) Bounding Box Propagation
method (BBoxProp) in [3], (2) pixel-domain Detect-to-Track (Pixel DtoT) in
[2], and (3) pixel-domain Track-to-Detect (Pixel TtoD) method in [4]. These
three pixel-domain schemes are outlined below.

The main body of BBoxProp uses classical arithmetic and logical operations,
and thus it runs very fast. The tracking operation is performed by propagating
bboxes from reliable frames to less reliable frames. The first stage of the
pixel-domain DtoT method is a single-frame image object detector, R3Det.
Then, a multi-frame motion trail is constructed based on the detected bboxes
and the individual trail is detected by R3Det in the second stage. In the third
stage, an MM bi-LSTM combines the bboxes generated in the first stage and
the trail images generated in the second stage to produce the final object
bboxes [2]. Finally, the pixel-domain TtoD structure [4] is similar to that of
the compressed-domain TtoD method, except that the input signals are frame
differences. That is, the motion trail is constructed using frame differences.

Table 11 summarizes the detection experiments of all schemes when the best
model (trained with both daytime and nighttime videos) is in use and the input
image resolution is 1024. (A similar performance comparison was reported
in [4] but using a down-sampled input image resolution of 640. Therefore,
the reported AP50 values are slightly lower in [4].) In general, multi-frame
video object detectors are better than single-frame object detectors. However,
their computational complexity and model size are much larger. For single-
frame detectors, rotated bbox detectors are generally better than regular
bbox detectors. Our proposed three pixel-domain methods can be considered
multi-frame approaches, and indeed, their performance is close to the other
video detectors, but their computations are about half of that of the other
video detectors. Also, their model size is about 1/3. On the other hand, the
compressed-domain detectors have a detection rate slightly higher than their
pixel-domain counterparts and have lower computational complexity.

The daytime videos have good image quality, and thus all the multi-frame
pixel-domain detectors perform rather well and are pretty close to the best
performer, MEGA. However, compared to our proposed three schemes, the
MEGA speed is about three times slower, and its model size is three times
larger. On the other hand, for the very challenging nighttime videos, the
accuracy of Detect-to-Track and Track-to-Detect schemes in the pixel domain
is slightly better than that of the best video detector, MEGA (0.78 vs. 0.765).
In contrast, because the I-frames are not processed, the compressed-domain
schemes have faster speed. Particularly, the Multi-Frame Detection-and-
Tracking in the compressed domain is a 2-stage (not 3-stage) scheme; it has
the fastest speed, 68 FPS, with slightly lower accuracy. The H.265 encoding
process eliminates some noises caused by the low-light environment. Thus,
when the compression distortion is small or moderate, the nighttime detection
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Table 11: Detection comparison.

Method Night
AP50

Day
AP50

Both
AP50

GFLOPS Speed
(FPS)

Model
Size (MB)

Pixel domain - Regular bounding box
YOLOv5 [16] 0.598 0.827 0.772 220 58 170
SELSA [37] + TRA [13] 0.742 0.901 0.842 400 18 520
MEGA [9] 0.765 0.912 0.867 475 15 660
BBoxProp [3] 0.735 0.891 0.857 240 54 180
Pixel domain - Rotated bounding box
Rotated YOLOv5 [45] 0.587 0.839 0.786 270 48 160
R3Det [39] 0.705 0.881 0.812 251 45 319
Detect-to-Track [2] 0.782 0.898 0.857 270 44 329
Track-to-Detect [4] 0.784 0.904 0.866 255 50 185
Ours - Compressed domain
Multi-Frame Detect-and-Track 0.815 0.879 0.862 161 68 205
Track-to-Detect (2-stage) 0.831 0.883 0.871 190 58 156

accuracy in the compressed domain is higher than their counterparts in the
pixel domain (0.831 vs. 0.784).

Figure 18 shows our methods compared to the other object detection
methods in the accuracy vs speed plot. The methods using the regular bbox
are represented by circle markers. The triangle marker indicates the methods
with a rotated bbox. The compressed domain approaches are marked by the ×
marker. In addition to our proposed two methods in the compressed domain:
(a) 2-stage multi-frame detection-and-tracking (Comp. MFD&T), and (b)
2-stage Track-to-Detect in the compressed domain (Comp TtoD), we also
include our previously proposed methods in pixel-domain. They are bounding
box propagation (BBoxProp) scheme, pixel-domain Detect-to-Track (Pixel
DtoT) and Track-to-Detect (Pixel TtoD). Combining the metrics of AP50 and
speed, our proposed methods are located at the upper-right corner, which
implies our schemes have advantages in both accuracy and speed. There is
generally a trade-off between speed and accuracy.

Table 12 summarizes a comparison of our tracking methods with the
others. The settings (training model and input image size) of our schemes
here are the same as those in Table 11. Some post-processing methods can
be applied to both regular and rotated bboxes. Again, in addition to the two
proposed compressed-domain methods, there are three pixel-domain methods
we proposed earlier.

For the pixel-domain conventional schemes, we include several popular
methods: Kalman filter [19], SORT [6], DeepSORT [35], FairMOT [47], and
ByteTrack [46]. The regular bboxes were generated by YOLOv5 [16], except
for FairMOT [47], which is a joint detection and tracking method. The rotated
bboxes were generated by R3Det [39]. The BBOXProp method achieves the
best accuracy and precision in the category of using regular bboxes, and it is
two times faster than the others because we can process several frames at a time
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Figure 18: Detection comparison in (a) nighttime video, (b) daytime video, and (c) both
videos. A circle marker indicates using a regular bounding box, a triangle marker indicates
using a rotated bounding box, and a × marker indicates the compressed domain.

with a lightweight algorithm. The rotated bbox-based methods generally have
better performance than their counterparts using regular bboxes. The proposed
compressed-domain methods achieve comparable accuracy to the best pixel-
domain methods (TtoD and DtoT) but the compressed-domain methods have
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Table 12: Tracking comparison.

Method MOTA MOTP Speed
(FPS) GFLOPS

Pixel domain - Regular bounding box - YOLOv5 [16]
KF [19] 54.0 50.1 29 390
SORT [6] 56.4 53.5 26 435
DeepSORT [35] 62.6 60.3 18 627
*FairMOT [47] 77.3 79.2 13 870
ByteTrack [46] 79.8 80.6 26 435
Our BBoxProp [3] 81.0 81.9 54 209
Pixel domain - Rotated bounding box - R3Det [39]
KF [19] 65.7 59.2 24 470
SORT [6] 68.3 64.6 20 565
DeepSORT [35] 78.5 68.8 14 800
ByteTrack [46] 81.8 82.5 22 520
Detect-to-Track [2] 84.8 87.1 44 257
Track-to-Detect [4] 86.1 87.5 50 230
Ours - Compressed domain
Multi-Frame Detect-and-Track 86.1 85.8 68 170
Track-to-Detect (2-stage) 85.8 86.7 58 190

lower computational complexities. In terms of GFLOPS, compressed-domain
MFD&T is lower than the pixel-domain DtoT by 34%.

Figure 19 shows various algorithms on the precision vs. speed plots. The
labels in this figure are the same as those in Figure 18. Our methods offer up
to 4 pp performance improvement as compared to the best ByteTrack and
they run about two to three times faster. The enhanced performance comes
from the use of a trail that integrates detection and tracking together in our
methods. Using a more precise rotated bbox can improve the tracking accuracy
of a low-performance tracktor such as the Kalman Filter. However, it has
only a marginal effect on high-performance trackers such as ByteTrack [46].
Our method is much faster because we use a lightweight network designed
specifically for the fisheye traffic monitoring video.

7 Conclusions

We designed two detection and tracking schemes in the compressed domain
using the joint detect-and-track concept to detect and track cars in fisheye
monitoring videos. Modern compression standards such as ITU/MPEG H.265
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Figure 19: Tracking comparison in (a) MOTA and (b) MOTP compared to speed. The circle
marker indicates the regular bounding box, the triangle indicates the rotated bounding box
and the × marker indicates the compressed domain schemes.

generate compressed bitstreams containing I-frames and P/B-frames. Our
schemes process the motion vector and residual information in the P/B-
frames. The first method coincides with the “Detect to Track” principle. The
conventional DNN-based detector is used to detect single-frame bounding
boxes and then the input images together with bounding boxes are fed to a
modified multi-modal bi-LSTM network to further track objects and improve
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the detection rate. The second method is a design that follows the “ Track
to Detect” principle. Multiple frame inputs are condensed into a motion
trail image, and the trail is detected by a single-frame conventional detector.
Then, a multi-class object extractor is designed to extract bounding boxes
in the individual frame. The experiment results indicate that our proposed
compressed-domain detection and tracking schemes have better performance,
particularly on the very challenging nighttime videos than the other DNN-
based image and video object detectors and trackers. And our schemes are
roughly 1/3 in the model size and 3 times faster in speed as compared to
the conventional high-performance video object detectors. In addition, the
compressed-domain versions of our schemes can have about equal or better
detection and tracking accuracy than their pixel-domain counterparts, and
generally, they are faster.
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