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ABSTRACT

Point cloud upsampling can provide a dense and uniform representation,
which is crucial for improving the quality of 3D reconstruction. While
many traditional and deep learning methods of point cloud upsampling
have been proposed, their performance need to be further improved.
Additionally, most of the existing methods are networks with a single
sampling rate, which is inefficient and inconvenient in practical appli-
cations. To address these limitations, we propose an arbitrary-rate
upsampling network based on a lightweight Transformer for 3D point
cloud in this paper. First, a Light-Transformer with skip-attention is
designed to extract point cloud features, this method not only has a
strong learning ability, but also saves computing and storage resources.
Then, after expanding features using 2D grid mechanism and shuffle op-
eration, a coordinate regression module with residual refinement unit is
designed to rectify and obtain the precise upsampled point cloud. Next,
through the proposed upsampling network based on Light-Transformer,
the upsampled point cloud with the maximum sampling rate can be
getted, followed by Farthest Point Sampling, we can obtain the point
cloud with arbitrary sampling rate. Extensive experiments demonstrate
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that our proposed method achieves superior upsampling performance,
and achieves arbitrary-rate point cloud upsampling.

Keywords: Point cloud upsampling, deep learning, light-transformer, residual
refinement unit, arbitrary-rate upsampling.

1 Introduction

With the rapid development of 3D sensors, point cloud has emerged as an
important data format. Because point clouds can provide rich information
such as shape, scale, and color for 3D geometry, they have been widely used in
autonomous driving, virtual reality, robotics, and other fields. However, point
clouds obtained by 3D sensors are often sparse, non-uniform, and noisy, which
will affect the subsequent processing and practical applications. Therefore,
point cloud upsampling is necessary to make it dense, uniform, and evenly
distributed on the underlying surface, which can be beneficial for downstream
tasks such as 3D visual analysis and graphic modeling [10].

Traditional methods [2, 3, 6, 9, 21] for point cloud upsampling are
optimization-based, they heavily rely on local geometric prior knowledge
such as normal vectors and curvatures. With the success of deep learning,
deep learning-based methods [7, 8, 11, 17, 19, 26–28] have achieved better
performance than traditional methods. These deep learning upsampling net-
works typically include feature extraction, feature expansion, and coordinate
regression module to estimate the distribution of generated dense points after
learning representative features of sparse point clouds. For example, PU-Net
[28] uses PointNet++ [16] to extract features, PU-GCN [17] uses graph convo-
lutional network [14] to extract features. These CNNs and MLPs have limited
expression and generalization capabilities, therefore a more powerful model is
needed to extract fine-grained point features for high-fidelity upsampling. PCT
[4] is the first to use the advanced Transformer [20] for feature extraction, which
has more powerful learning abilities than other feature extraction methods.
However, Transformer also has the problem of high overhead of computing
resources and storage resources. Considering these issues, this paper proposes
a lightweight Transformer for feature extraction, which can retain powerful
learning capabilities and save resources. Furthermore, relative coordinates
can highlight small changes better than absolute coordinates, therefore, a
residual refinement unit is added in the coordinate regression module to obtain
more accurate 3D coordinates of the point cloud. So far, a Light-Transformer
upsampling network with residual refinement unit is proposed to improve the
performance of the upsampling method.
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In addition, most upsampling networks only train a single network at a time
to generate a point cloud with a defined sampling rate. To obtain point clouds
with different upsampling rates, multiple networks need to be trained, which
consumes too much computational and storage resources, and is not convenient
for practical applications. To this end, a network that can achieve arbitrary-
rate upsampling is needed. Existing methods [18, 24, 30] have achieved good
results, but their structures are relatively complex. Therefore, we propose a
simple arbitrary-rate upsampling method for point cloud. Through the former
proposed Light-Transformer-based upsampling network, we can obtain a point
cloud with a maximum sampling rate, and then use FPS [13] to select any
number of points to achieve point cloud upsampling at any rate.

In summary, the contributions of this paper are as follows:

1. We propose a Light-Transformer-based upsampling network for point
cloud. This Light-Transformer with skip-attention can better extracts
point cloud features and saves computing and memory resources, while
the newly added residual refinement unit can obtain more accurate point
cloud coordinates.

2. We propose a simple arbitrary-rate upsampling network for point cloud.
This network combined with the FPS algorithm, can upsampling point
cloud at any rate with only one network and one training.

3. We evaluate our network on public datasets and demonstrate that the
proposed upsampling method can achieve good performance and can
achieve arbitrary-rate upsampling.

2 Related Work

2.1 Traditional Upsampling Method for Point Cloud

The traditional point cloud upsampling methods are optimization-based, in-
cluding the following: Alexa et al. [2] insert new points at the vertices of the
Voronoi diagram of local tangent planes on surfaces to achieve point cloud
upsampling. To get rid of the local planar fitting, Lipman et al. [9] proposed
a local optimization projection operator (LOP) to approximate the surface,
where we can resample the point cloud to obtain dense point cloud. Similarly,
Huang et al. [6] developed an edge-aware point set resampling method, called
EAR, where LOP is used to push points away from the edges. Recently, Wu
et al. [21] proposed a pooling method based on deep point representations to
fill in points in missing regions. To achieve point cloud upsampling, Borges
et al. [3] proposed a super-resolution method via self-correlation. Although
these methods can achieve good upsampling results, they heavily rely on
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hand-crafted geometric priors of the point cloud. For the complex geometric
structures of 3D objects, the performance of these methods is limited by poor
geometric priors.

2.2 Deep Learning Upsampling Method for Point Cloud

PU-Net [28] was the first end-to-end deep network for 3D point cloud upsam-
pling. It learned multi-level features for each point, then performed feature
expansion, and finally utilized the expanded point features to generate 3D coor-
dinates of dense point cloud. Later, EC-Net [27] learned edge-aware features to
better capture the local geometric structure of the point cloud and preserve the
sharp features. MPU [26] was a patch-based progressive upsampling network
that constructs cascaded upsampling structures on point cloud at different
levels to capture detailed information. Point cloud generation [1, 12, 22], which
aimed at generating the 3D point cloud directly from latent prior, laid the
foundation for various tasks such as shape completion, upsampling, synthesis,
etc. PU-GAN [7] was a Generative Adversarial Network (GAN) designed to
learn upsampled points distributions of point cloud from latent space. PU-
GCN [17], which used graph convolutional networks as feature extractors,
also achieved good performance. Dis-PU [8] consisted of two sub-networks
to perform generation and optimization tasks respectively. PC2-PU [11] has
two new modules named Patch Correlation and Position refinement for point
cloud upsampling, which combine the information of adjacent patches and the
relative position relationships between points to improve performance and mit-
igate the influence of noise points and outliers. Most of the above methods use
CNNs and MLPs when extracting point cloud features. Because Transformer
has shown strong learning capabilities in point cloud, as the first network
to combine Transformer with point cloud upsampling, PU-Transformer [19]
showed significant quantitative and qualitative improvements over state-of-the-
art CNN-based methods on different point cloud datasets, but its structure
is relatively complex. In addition to the above supervised learning methods,
there are also some point cloud upsampling networks based on self-supervised
learning [31] that have become a new research direction.

2.3 Arbitrary Rate Upsampling Method for Point Cloud

For arbitrary-rate upsampling, inspired by the Meta-SR [5] in image processing,
Ye et al. proposed Meta-PU [24] for flexible point cloud upsampling, where a
meta sub-network is learned to dynamically adjust the weights of the upsam-
pling blocks. Qian et al. designed a neural network Flexible-PU [18], which
adaptively learns unified and sorted interpolation weights as well as high-order
refinements by analyzing the local geometric structure of input point clouds. In
addition to supervised methods, a self-supervised method called SSASPU [30]
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based on implicit neural representation for point cloud upsampling can achieve
both self-supervised and flexible point cloud upsampling. However, these
methods have relatively complex structures and require more computational
and storage resources.

3 Proposed Method

3.1 Overview

Based on the research and bottleneck analysis of the above upsampling methods,
in this paper, we propose a point cloud upsampling network based on Light-
Transformer. An overview of our network is shown in Figure 1. Given a sparse,
non-uniform point cloud P ∈ RN×3, our network extracts the point features
through a novel Light-Transformer to obtain the features F ∈ RN×d , which
is then extended to F1 ∈ RrN×d1 by feature expansion module, where r is
the upsampling rate, and finally uses the coordinate regression module with
a residual refinement unit to get a dense, uniform upsampled point cloud
Q ∈ RrN×3. This upsampling network is trained by a joint loss function
including the sampling loss and the regularization loss.

Figure 1: The overview of the point cloud upsampling network based on Light-Transforme.

3.2 Feature Extraction Module based on Light-Transformer

Relying on attention mechanism and parallel processing, Transformer achieved
excellent performance in vision tasks. And it has permutation invariance to
input, which is very suitable for point cloud with irregular structure. So, in
our upsampling network, we will use Transformer to extract the features of
point cloud.

Among the existing works, the earliest combination of point cloud and
Transformer are PCT [4] and PT [29]. Due to the strong learning ability, their
classification accuracy is greatly improved compared with PointNet [15], but
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the computational cost and model size are also greatly increased. In order to
capture the accurate global context information with limited computational
cost and storage space, we propose a lightweight Transformer as the feature
extraction module. The structure of the Light-Transformer is shown in Figure 2.

A general Transformer usually consists of Input Embedding, Positional
Encoding, Multi-Head Attention, Add&Norm, Feed Forward, etc. In the Multi-
Head Attention Layer, every head has performed self-attention calculations,
which requires expensive computational costs. But these attention information
are highly relevant and have a lot of redundancy, so calculating attention
values multiple times causes excessive unnecessary resource consumption. In
our network, we address this problem by adding a skip-attention strategy to
the Multi-Head Attention layer.

Considering that the 3D coordinates of the point cloud can represent its
position information, we first replace the Input Embedding and Positional
Encoding in Transformer with a simple Linear layer to obtain the initial features,
transform the original point cloud P ∈ RN×3 into features Fi ∈ RN×d.

Secondly, in Multi-Head Attention layer, as shown in the lower part of
Figure 2, we only perform self-attention calculations in the first attention
head. Send the point cloud feature Fi ∈ RN×d obtained by the simple Input
Embedding layer into the first attention head, after transformation via Linear
layer, we can get the Value v ∈ RN×d , the Query q ∈ RN×d , and after the
transpose operation, the Key k ∈ Rd×N is also obtained. Multiply k and q
to get the N × N Attention Map, then multiply v and the Attention Map
to get the Attention Value AV ∈ RN×d. After getting the Attention Value,
make the residual with the input features Fi ∈ RN×d, and then through Linear
transformation, we can get the features F1 of the first attention head. In the
second attention head, we will no longer perform attention value calculations,

Figure 2: The structure of the Light-Transformer for feature extraction.
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but use the Attention Value in the first head. We then make the residuals of
F1 and AV , which are fed into the Linear layer to obtain the output feature
F2 of the second attention head. By analogy, the output features Fk ∈ RN×d

of the k-th head is obtained, k is the number of the multi-head. Next, these
above features are concat together to get the point cloud features Fo. This
process can be expressed by the following Equation (1).

AR = softmax(q · kT ) · v
F1 = Liner(Fi −AR)

F2 = Liner(F1 −AR)

Fk = Liner(Fk−1 −AR)

Fo = concat(F1, F2, . . . Fk)

(1)

Finally, we input the feature Fo obtained by the Multi-Head Attention layer
to the Feed Forward network that composed of Linear layer, Normalization
layer and Rectified Linear layer to get the point cloud features F ∈ RN×d .

Such a Light-Transformer not only satisfies the powerful learning capabili-
ties of the Transformer, but also saves memory and computing resources. And
the attention mechanism can help the network select more important features
of point cloud for subsequent tasks.

3.3 Feature Expansion Module

Points and features are interchangeable, we can regard N points with rd-
dimensional features as rN points with d-dimensional features, so the feature
expansion module can realize the increase of points number.

As shown in Figure 3, we first use the MLPs to get the d1-dimensional
features of N points, and then copy r times to obtain the d1-dimensional
features of rN points. However, such simple convolution and replication will
make the generated points too similar, which is not conducive to generate
the dense and uniform upsampled point cloud. Therefore, we learn from the
2D grid mechanism in FoldingNet [23] to form a unique 2D vector for each
feature, which is then added to the features of each point to obtain different
point features F ∈ RrN×(d1+2). It increases the diversity of the point cloud
features and thus makes the individual points subtly different. Finally, we use
the Shuffle operation to get the extended features F1 ∈ RrN×d1 .

3.4 Coordinate Regression Module with a Residual Refinement Unit

The coordinate regression module regresses the d1-dimensional feature F1 into
three-dimensional coordinates and obtains the dense point cloud Q. Con-
sidering that the absolute coordinates vary more than the relative offsets in
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Figure 3: The structure of the feature expansion module.

Figure 4: The structure of the coordinate regression module with a residual refinement unit.

3D space, and the residuals can highlight slight variations, in this paper, we
propose to add a residual refinement unit to obtain more accurate point cloud
coordinates.

As shown in Figure 4, first, through the fully connected layer, the feature
F1 ∈ RrN×d1 is transformed into the 3D coordinates of rN points. At this
time, the 3D coordinates C0 are coarse. To reduce the effect of noise, and
generate a better dense point cloud, we add a residual refinement unit to refine
the coarse coordinates. The residual refinement unit consists of Convolution
layer, Batch Normalization layer, and Rectified Linear Units, which regresses
the residual offsets C1 of each point’s coordinates. Finally, add the offsets
C1 obtained by refinement to the coarse coordinates C0 to get the fine 3D
coordinates C ∈ RrN×3.

3.5 Loss Function

We propose a joint loss function consisting of the sampling loss and the
regularization loss for end-to-end training of upsampling network. As shown
in Equation (2), the sampling loss constrains the generated dense point cloud,
which includes the reconstruction loss and the repulsion loss. The regularization
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loss constrains the parameters in the upsampling network.

Lup = λsamplingLsampling + λregularizationLregularization

= λrecLrec + λrepLrep + λregLreg
(2)

where λ is the parameter for balancing each item.
Specifically, as shown in Equation (3), the reconstruction loss is calculated

by CD (Chamfer distance) to evaluate the difference between the generated
dense point cloud and the ground truth:

Lrec=LCD(Q,Q) =
1

Q

∑
q∈Q

min
q∈Q

∥q − q∥22 +
1

Q

∑
q∈Q

min
q∈Q

∥q − q∥22 (3)

where, Q is the dense upsampled point cloud, Q is the ground truth, ∥∥22 is a
2-norm. The former of Lrec ensures that the upsampled points Q are as close
as possible to the ground truth Q, and the latter ensures that Q are evenly
distributed in the ground truth Q .

The repulsion loss as shown in Equation (4) ensure that the generated
points are evenly distributed on the underlying surface:

Lrep =

N∑
i=o

∑
i′∈K(i)

η (∥qi′ − qi∥2)w (∥qi′ − qi∥2) (4)

where, N is the number of generated points, K(i) is the k nearest neighbor
set of the point qi, η (r) and w (r) are the decay function. If qi is too close to
other neighbor points, this loss will be big.

The regularization loss is shown in Equation (5):

Lreg = ∥θ∥2 (5)

where θ refers to the parameters in the upsampling network.

3.6 Arbitrary-Rate Upsampling Network

Now we have proposed a new Light-Transformer-based upsampling network
that can get dense point cloud, but the problem is that each training can only
get point cloud at a fixed upsampling rate. In practical applications, we may
need different point clouds at the same time, which requires to train different
upsampling networks with multiple times. Such a solution not only consumes
computing and memory resources, but also is inconvenient to apply.

To this end, we propose a simple arbitrary-rate upsampling network. As
shown in Figure 5, with the proposed upsampling network based on Light-
Transformer, we can get a point cloud Q0 ∈ RrmaxN×3 with a maximum
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Figure 5: The overview of the arbitrary-rate point cloud upsampling network.

upsampling rate rmax , e.g. rmax =16. The point cloud at this time has
lots of points, is dense and uniform enough to meet the requirements of
upsampling. Afterwards, we use a simple re-sampling module with FPS
algorithm to downsample the points from Q0 to get the arbitrary rate point
cloud Qi ∈ RriN×3. This simple design enables arbitrary-rate upsampling
while consuming less computational and memory resources.

4 Experiments and Discussions

4.1 Experimental Setup

4.1.1 Dataset

We use the PU1K dataset [17] in PU-GCN for experiments, which includes
1147 3D models, 1020 models are used for training and the rest 127 are used
for testing. The training set contains 120 models from the dataset of PU-GAN
and 900 models from ShapeNet [25] . The testing set contains 27 models from
PU-GAN and 100 models from ShapeNet. They cover a wide range of 3D
objects, including simple and complex shapes.

4.1.2 Evaluation Metrics

In order to evaluate different upsampling methods objectively and fairly, we
use common evaluation metrics including Chamfer Distance(CD), Hausdorff
Distance(HD), Point-to-surFace(P2F) Distance. The smaller these distances,
the higher the quality of the upsampling point cloud.

4.1.3 Experimental Setup

We use a computer with NVIDIA Quadro RTX 8000 GPU for our experiments,
and train the proposed network on the TensorFlow platform for 100 epochs with
the batch size of 64. We then choose the Adam optimizer and set the initial
learning rate to 0.001. The Linear layer dimension d is 256, the head of the
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Table 1: The quantitative results of different upsampling methods on r = 4.

Method CD HD P2F Model Size Param

PU-Net 1.118× 10−3 15.797× 10−3 4.961× 10−3 10.1M 812× 103

PU-GAN 0.667× 10−3 9.676× 10−3 2.485× 10−3 9.6M 684× 103

PU-GCN 0.676× 10−3 10.023× 10−3 2.675× 10−3 1.8M 76× 103

Dis-PU 0.485× 10−3 6.145× 10−3 1.802× 10−3 13.2M 1047× 103

PU-Transformer 0.451× 10−3 3.834× 10−3 1.277× 10−3 18.4M 970× 103

Ours 0.520× 10−3 6.450× 10−3 2.166× 10−3 8.5M 429× 103

Attention layer k is 4, d1 is 1024. We set the corresponding hyperparameters
of the loss function λrec , λrep, λreg to 100, 10, 1, respectively. Other settings
remain the same as PU-GCN.

4.2 Comparsion with Other Different Upsampling Method

We compared our network with state-of-the-art learning-based methods PU-
Net, PU-GAN, PU-GCN, Dis-PU and PU-Transformer. For a fair comparison,
we trained these networks on the same dataset with the sparse input of 256
points and the upsampling rate r set to 4. We get the quantitative results
shown in Table 1.

We can see that our network performs better than PU-Net, PU-GAN,
PU-GCN in terms of all metrics CD, HD, P2F. This is due to the fact that
our network uses Light-Transformer to extract features, which has a strong
learning ability and can select more representative features of point cloud.
Secondly, the residual refinement unit makes the upsampled point cloud more
accurate and close to the ground truth. But unfortunately, the performance
of our method is not as good as Dis-PU and PU-Transformer. We analyzed
the reasons may be that Dis-PU decomposes the point cloud upsampling
into two sub-networks, a dense generator and a spatial refiner, the dense
generator infers a coarse but dense output while the spatial refiner further
fine-tunes the coarse output, this is equivalent to performing two upsampling
operations. In addition, PU-Transformer uses a new Transformer to extract
the features, this Transformer has a more powerful feature learning ability
than our proposed Ligh-Transformer due to its Positional Fusion block and
Shifted-Channel Multi-head Self-Attention block. However, although the above
two methods achieve better performance, they also increase parameters and
model size as shown in Table 1. From the experimental results, it can be
seen that compared with PU-Net, PU-GAN, Dis-PU, and PU-Transformer,
our method has a smaller model size and fewer parameters, which has a
great advantage in resource consumption. It is only larger than PU-GCN,
but outperforms PU-GCN. Therefore, our method is more practical due to
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Figure 6: The visualization of the point clouds with different upsampling methods.

trading off upsampling performance and storage resources, and can guarantee
comparable performance while reducing model size.

To demonstrate the performance of our network more intuitively, Figure 6
shows the subjective comparison results of different methods.

The first row is the visualization of the chair and the second row is the
visualization of the camel. Each row from left to right is the input point cloud,
the ground truth, the upsampling results of the PU-Net, PU-GAN, PU-GCN,
and ours. It can be clearly seen that compared with other methods, our result
is closest to the ground truth, and it can achieve better reconstruction effect in
the local details, such as the back of the chair and the ears of the camel. This
is because that our network uses Light-Transformer to extract point cloud
features, the attention mechanism in Transformer helps the network learn to
select more representative and important features and points, and the residual
refinement unit helps to obtain more accurate points.

4.3 Comparsion with Arbitrary-Rate Upsampling Method

To demonstrate the effectiveness and simplicity of our proposed arbitrary-rate
upsampling method, we compared the single-rate and arbitrary-rate networks.
We compare the results of directly upsampling to 4× point cloud using a
single-rate network versus first upsampling to 16x and then FPS to 4x using
an arbitrary-rate network. As shown in Table 2, there is little difference
between the two methods, and even due to upsampling to a high rate, the
result is more accurate than upsampling to a relatively low rate. But the
single rate network needs to be trained one by one according to the sampling
rate, while the arbitrary-rate network only needs to be trained once, the total
training time is greatly shortened. This arbitrary-rate network has great
significance for practical applications, which can save computing and memory
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resources. Regrettably, our arbitrary-rate network is not flexible in arbitrary-
rate upsampling, but it only needs to add a re-sampling module based on FPS
to the previous upsampling network, so its advantage is simple and convenient.

Table 2: Comparison of the arbitrary rate upsampling network with the single rate network
at r = 4.

Method CD HD P2F

single-rate network 0.520× 10−3 6.450× 10−3 2.166× 10−3

arbitrary-rate network 0.507× 10−3 6.180× 10−3 2.009× 10−3

4.4 Ablation Study

In this paper, we proposed Light-Transformer to extract the point cloud fea-
tures. To illustrate the efficiency of our method, we compared five feature
extraction methods, namely PointNet, PointNet++, GCN, Transformer and
our Light-Transformer. In order to verify their performance and easy imple-
mentation, we apply them to the simplest point cloud task, that is, point
cloud classification, to see their overall accuracy. The higher the accuracy, the
better the performance of the feature extraction methods. In the point cloud
classification task, we use the ModelNet40 as dataset, which contains 12311 3D
objects in 40 categories, of which 9843 are used for training and 2468 are used
for testing. We also recorded the test time and GPU memory consumption
for the entire test dataset to reflect on the efficiency of the method. The
experiment results are shown in Table 3.

As shown in Table 3, the Light-Transformer proposed in this paper achieved
an overall accuracy of 92.6%, which is higher than PointNet, PointNet++ and
GCN. In the case of obtaining an accuracy comparable to that of Transformer,
the test time was shorter, and the GPU occupancy was smaller than that of
Transformer.

Table 3: Comparison of different feature extraction methods in point cloud classification
task.

Method Accuracy Test Time GPU Memory

PointNet 89.2% 32s 1147M
PointNet++ 90.7% 75s 5603M
GCN 91.6% 94s 1663M
Transformer 93.2% 7s 7379M
Light-Transformer 92.6% 5.8s 4613M
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Figure 7: The trade-off accuracy vs. test time and GPU memory consumption.

Table 4: Comparison of different feature extraction methods in point cloud upsampling task.

Method P2F Test Time GPU Memory

PointNet 7.69× 10−3 0.05s 871M
PointNet++ 6.30× 10−3 0.14s 1865M
GCN 6.57× 10−3 0.08s 1189M
Transformer 4.74× 10−3 0.10s 3271M
Light-Transformer 5.03× 10−3 0.08s 2239M

The trade-off of accuracy vs. test time and GPU memory consumption are
shown in Figure 7. The closer this method is to the upper left in the figure, the
better the performance. We can see our method achieved a significantly better
accuracy vs. the test time trade-off and the GPU memory consumption trade-
off compared with other methods. With similar accuracy, our method was the
fastest. Also, with similar accuracy, our method saved on GPU consumption
compared with Transformer. However, the fly in the ointment is, its GPU
memory consumption was more than that of PointNet and GCN.

In addition, we apply the above five feature extraction methods to the
upsampling task to see the performance, and keep the same feature expansion
module and coordinate regression module as PU-Net. We use P2F to evaluate
the upsampling performance, the smaller the P2F, the better the upsampling
performance. We also use the test time and the GPU memory for the entire
test dataset to evaluate the resource consume. In point cloud upsampling,
we use the PU-Net dataset, which has 60 different models from the Visionair
repository, 40 for training, and the rest 20 for testing. The experimental results
are shown in Table 4 and Figure 8.
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Figure 8: The trade-off P2F vs. test time and GPU memory consumption.

It can be seen from the Table 4 that the P2F value of the upsampling method
based on Light-Transformer is lower than that of PointNet, PointNet++, GCN,
and it is not much different from Transformer. At the same time, the test time
and GPU consumption of the method based on Light-Transformer are also
smaller than those of Transformer. The experiment results indicate that when
the Light-Transformer proposed in this paper is applied to the point cloud
upsampling task, it can obtain relatively high task performance and achieve a
better trade-off with time and GPU consumption.

The trade-off of P2F vs. test time and GPU memory consumption are
shown in Figure 8. The closer this method is to the lower left in the figure, the
better the performance. We can see our method achieved a better upsampling
performance vs. the test time trade-off and the GPU memory consumption
trade-off compared with other methods.

To further verify our Light-Transformer, we added the ablation experiments
to see the effectiveness of different parts of the Transformer. We compared four
kinds of networks, first is the complete Transformer, second is the Positional
Encoding module and Input Embedding module were replaced by Linear layers
while the Multi-Head Attention layer and Feed Forward network remained
unchanged with the complete Transformer, third is the Positional Encoding
module and Input Embedding module were replaced by Linear layers while
the Multi-Head Attention layer was changed to Single-Head Attention layer,
and fourth is the Light-Transformer where Positional Encoding module and
Input Embedding module were replaced by Linear layers while the Multi-Head
Attention layer uses the four heads based on skip-attention mechanism. We
then use the simplest point cloud classification task to evaluate the performance
of these Transformer, the higher the classification accuracy, the better the
Transformer model. The experimental results are shown in Table 5.
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Table 5: Ablation study for different parts of the Transformer.

Method Accuracy Test Time Model Size

compelte Transformer 93.2% 7.0s 11.0M
Transformer with four attention layer 92.9% 6.4s 10.4M
Transformer with one attention layer 92.0% 4.5s 5.7M
Light-Transformer with skip attention layer 92.6% 5.8s 7.4M

Table 6: Ablation study for residual refinement unit.

Method CD HD P2F

Ours w/o residual refinement unit 0.588× 10−3 7.032× 10−3 2.415× 10−3

Ours 0.520× 10−3 6.450× 10−3 2.166× 10−3

As shown in Table 5, the complete Transformer can obtain the highest
classification accuracy, but its model size is also the largest and the test time
is the longest correspondingly. After replacing the Positional Encoding module
and Input Embedding module with the Linear layer, the accuracy, model size,
and test time all drop slightly. When the Multi-Head Attention layer was
changed to Single-Head Attention layer, the accuracy, model size, and test time
drop significantly. The Light-Transformer we proposed can obtain a relatively
high classification accuracy while the model size is smaller and the test time is
shorter than the complete Transformer, achieving a better trade-off between
performance and efficiency.

Next, We conducted an ablation study to quantitatively evaluate the
performance of the residual refinement unit. The result is shown in Table 6.
We can see that our network with all the proposed components performs
best. When the residual refinement unit was removed, the performance of the
network decreased.

To demonstrate the effectiveness of the residual refinement unit more
intuitively, we performed surface reconstruction on the point cloud using
MeshLab. The visualization result is shown in Figure 9. The first column
is the reconstruction result of the ground truth, the second column is the
reconstruction result of the point cloud obtained by our upsampling network
without residual refinement unit, and the third column is the reconstruction
result of the point cloud obtained by our complete upsampling network.

It can be seen from the Figure 9 that the reconstruction result of the
ground truth is uniform and smooth, with few holes. The reconstruction result
generated by the upsampling network without residual refinement unit has
many holes, especially the joints of curves and surfaces, such as the hair of
the face and the bend of the finger. After adding the residual refinement unit,
the number of holes is greatly reduced, and the reconstruction result at the



An Arbitrary-Rate Upsampling Network based on Light-Transformer 17

Figure 9: The reconstruction results of the network with or without residual refinement
unit.

bends is significantly improved, which shows that the residual refinement unit
is necessary, making the generated upsampling point cloud are closer to the
ground truth and evenly distributed on the surface of the object.

5 Conclusion

In this paper, we present a novel and simple arbitrary-rate point cloud up-
sampling network based on Light-Transformer. Firstly, a Light-Transformer is
proposed to extract features of point cloud, which not only retains the powerful
learning ability of Transformer, but also reduces computing and storage re-
sources. Then a coordinate regression module with residual refinement unit is
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proposed to refine the coarse 3D coordinates of the point cloud. Next, in order
to facilitate applications and save resources, an arbitrary-rate upsampling
network combined with the FPS algorithm is proposed, which can obtain point
cloud at arbitrary upsampling rate simply. Extensive experiments demonstrate
that our upsampling network achieves better performance and resource trade
off than other similar methods.

Unfortunately, there are still some problems with our method, such as the
inability to deal with the occluded parts of point cloud. In the future, we will try
to use the generation model to solve these problems. In addition, we will also
explore other methods for point cloud upsampling, such as semi-unsupervised
learning and continual learning. The former can reduce the dependence on the
ground truth, and the latter can greatly apply the knowledge learned before
to the learning of future tasks, both of which will improve learning efficiency
and thus improve the performance of point cloud upsampling. Finally, our
arbitrary-rate upsampling network is just a simple and easy-to-implement
idea, we will improve and design a method that can truly achieve flexible
arbitrary-rate upsampling.
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