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ABSTRACT

Parkinson’s disease (PD) is a chronic and long-term disease that seri-
ously affects patients’ quality of life. In underdeveloped areas, early
detection of PD is primarily based on medical observation and patient
self-description. Early diagnosis of PD can effectively reduce the disease’s
progression. Recent studies have suggested that the motor symptoms
of PD can be reflected in plantar pressure. However, traditional ma-
chine learning models require manual feature selection, which can be
time-consuming. Furthermore, although deep learning has seen rapid
development, many clinical characteristics have not been taken into
consideration. To address these limitations, a dual self-attention Trans-
former model is proposed to explore the spatial correlation of plantar
space and the temporal correlation of the gait cycle. Considering the
presence of symptoms such as foot tremors in PD patients, a masking
mechanism is designed to focus locally on the unilateral foot during the
support phase. An experimental paradigm is designed to evaluate the
model’s generalization capability across different subjects. The experi-
mental results demonstrate that the proposed model achieves superior
classification performance for the early detection of PD based on plantar
pressure data.
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1 Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative disease,
after Alzheimer’s disease (AD) [22]. It was first described by James Parkinson
in his essay published in 1817 [28]. There are currently over 6 million PD
patients worldwide, and the majority of them are middle-aged or older adults
[5]. The disease is caused by a deficiency of dopamine neurons in the substantia
nigra of the brain [18]. While a cure for PD is not currently known, treatments
are available to alleviate the symptoms associated with it. Consequently,
computer-assisted techniques have emerged to assist in the diagnosis and
monitoring of PD.

Abnormal gait is one of the most apparent symptoms of PD progression [21,
30]. Mico-Amigo et al. [25] demonstrated that gait characteristics can serve as
a predictor of an increased risk of conversion to PD. Since chronic abnormal
gait is elusive, early self-detection and diagnosis of PD are challenging. As a
result, regular gait assessments in specific populations become critical.

Presently, a clinical examination for PD patients relies heavily on patient
self-reports and questionnaires conducted by clinicians using tools such as the
Unified Parkinson’s Disease Rating Scale (UPDRS) [32], the Freezing Of Gait
Questionnaire (FOG-Q) [12], and the Hoehn& Yahr scale (H&Y scale) [13].
However, this method is highly subjective, time-consuming, and challenging for
professionals. The variability of results between different physicians constrains
the diagnostic and monitoring processes.

Brain imaging techniques, such as Positron Emission Tomography (PET)
and Single-Photon Emission Computed Tomography (SPECT), are capa-
ble of detecting PD. However, these techniques have their inherent limita-
tions. They rely on expensive and specialized medical equipment, which
makes them difficult to use widely. It hinders their application in large-scale
screening.

In recent years, wearable sensor technology has rapidly advanced, with
miniaturized and portable devices being developed for daily use, especially in
remote health monitoring [15, 29, 37]. Among these devices, wearable plantar
pressure shoes have emerged as a promising tool that is portable, low-cost,
and enables large-scale data collection compared to brain image techniques.
They allow for the continuous, non-intrusive collection of Vertical Ground
Reaction Force (VGRF) data, enabling tracking of daily activities and disease
progression in PD patients [8]. VGRF is the force exerted by the ground on
a person’s foot during walking or any other weight-bearing activity. Due to
possible motor impairments, postural balance issues, and other problems in PD
patients, their walking patterns may exhibit greater individual variations. As
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shown in Figure 2, it is evident that the walking pattern of the PD patient does
not exhibit a distinct bimodal pattern typically observed in healthy individuals.
This indicates an abnormal distribution of forces during walking in the PD
patient. In addition, plantar pressure has been utilized to explore fall risk
assessment in the elderly in several studies [33, 35].

Regarding the PD diagnosis task, there are many computer-assisted diag-
nosis systems based on plantar pressure data, most of which are hand-crafted
features combined with traditional machine learning methods. Balaji et al.
[7] extracted several temporal and spatial features from the data, which were
utilized as inputs for PD diagnosis and severity rating through some super-
vised machine learning models. Abdulhay et al. [1] extracted various time
features, such as stride time, stance phase, and swing phase, then employed
a Support Vector Machine (SVM) to differentiate between PD patients and
healthy controls. The machine learning approach of manual feature extraction
requires more complex and time-consuming feature selection.

Deep learning methods for the task of PD diagnosis have gained significant
momentum recently. One of the advantages that these methods offer over tra-
ditional machine learning methods is that they eliminate the need for manual
analysis and selection of characteristic parameters. This advantage becomes
more pronounced as the data volume and complexity of problems increase.
For instance, Zhao et al. [39] proposed a two-channel model that combined
Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM)
to extract temporal and spatial information from VGRF data. El Maachi
et al. [9] utilized 1D CNNs to analyze 18 1D VGRF data points simultaneously
from the soles for PD detection. Transformer has been successfully applied
in the field of natural language processing and image recognition in recent
years. Nguyen et al. [27] proposed a new method for PD detection based
on gait analysis using automatic feature extraction through 1D Transformer.
However, these methods do not adequately consider the clinical characteristics
of plantar pressure data. Furthermore, CNN and LSTM architectures may
struggle to capture the global context and manage long-term dependencies
effectively, potentially impacting their performance in PD diagnosis. Therefore,
this paper proposes a PD detection algorithm based on a dual self-attention
mechanism. The mechanism is based on the idea of the Transformer model
[34]. The parallel extraction of spatio-temporal features from plantar pressure
data enhances analysis and preserves important information. Additionally,
the proposed model incorporates a masking mechanism to consider clini-
cal characteristics. The proposed approach leverages the advantages of the
Transformer model, such as capturing long-range dependencies and provid-
ing interpretability, surpassing the limitations of LSTM. The cross-subject
experimental results on a public dataset demonstrate the state-of-the-art perfor-
mance of the proposed model, achieving an accuracy of 82.35% and a sensitivity
of 86.77%.
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In summary, the main contributions of this paper are as follows:

1. Considering the spatial-temporal characteristics of the plantar pressure
data and the Transformer model, a novel Transformer model is designed
to explore the variability characteristics of plantar pressure in PD patients.
In particular, a dual self-attention encoder obtains the spatial correlation
of plantar space and the temporal correlation of the gait cycle.

2. For the clinical characteristics of unilateral foot tremors that appear
early in PD, the masking mechanism of channel self-attention is designed
so that different heads use different masks in multi-head self-attention.
Thus, the model gives more local attention to the spatial correlation of
the unilateral foot in the support phase.

3. In terms of experimental design, most of the current work is not strictly
cross-subject, which may lead to data leakage. Therefore, this paper
adopts a strict cross-subject experimental paradigm and validates the
cross-subject generalization of the model using a public dataset.

2 Relate Work

In detecting PD motor symptoms, many studies [9, 27, 36, 39] have been
conducted on plantar pressure data. Plantar pressure analysis is a non-invasive
and cost-effective method used to assess foot function and diagnose pathologies
related to the foot. It provides valuable information about pressure distribu-
tion and timing during gait, which can aid in the evaluation of therapeutic
interventions and improve patient outcomes [31].

The plantar pressure space is the distribution of forces between the human
foot sole and the contact surface during walking or movement. By measuring
and analyzing plantar pressure data, the force on the sole of the foot in different
regions can be obtained, including pressure magnitude, time variation, and
force distribution maps [23]. Additionally, studying the changes in pressure
across the plantar aspect at different time points and regions enables the
extraction of gait cycle information [26]. Figure 4 illustrates a standard gait
cycle for a normal individual. Most studies have also extracted spatio-temporal
feature information from this plantar space and gait cycle. We categorize the
relevant methodologies into traditional machine learning methods and deep
learning methods.

Traditional machine learning-based methods: The detection of PD
motor symptoms currently rely on hand-crafted features combined with tra-
ditional machine learning techniques. Alam et al. [2] selected meaningful
features based on sequential forward feature selection, oscillation time, step
time variability, and center of pressure features and used different classifiers
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to build models to classify PD patients and healthy controls. Farashi [10]
used a comprehensive set of temporal, frequency, and time-frequency features
extracted from VGRF data to distinguish. Zhao et al. [40] used the Ensemble
K-Nearest Neighbor algorithm for the diagnosis of PD severity. Alkhatib
et al. [3] performed a spatial and temporal signal analysis of VGRF data to
classify gait as balanced and unbalanced. Simple features such as correla-
tions were then used to further distinguish between balanced-health controls
and balanced-PD patients. Finally, a linear decision boundary was used for
classification. However, these methods have their limitations, as they require
expert knowledge and are not robust to data distribution changes or domain
shifts.

Deep learning-based methods: Deep learning has been rapidly devel-
oping and has shown great potential in PD detection. A significant advantage
of deep learning models is their ability to automatically extract features. For
instance, Xia et al. [36] believed that the left and right lower limbs have
different kinematic characteristics during walking. Therefore, CNN and LSTM
were used to model the left and right feet respectively, and finally the ex-
tracted features were combined for classification. In a similar way, Liu et
al. [24] proposed a two-branch hybrid model for PD diagnosis. The model
extracted spatial and temporal information using CNN and LSTM in the
left and right feet, respectively. After the features were retrieved from the
left and right feet, the LSTM model was used to merge them. Alle and
Priyakumar [4] employed a 1D CNN with deeply separable convolutions to
diagnose PD. They derived discriminative patterns from VGRF data by us-
ing linear prediction residuals (LPR). Aversano et al. [6] used deep neural
networks for early PD detection using plantar pressure sensor data. Zhao
et al. [39] proposed a two-channel model that combined CNN and LSTM to
extract temporal and spatial information. El Maachi et al. [9] constructed
a Deep Neural Network (DNN) classifier using a one-dimensional CNN and
obtained the final classification results by parallelizing the 1D-CNN and the
fully connected network. Nguyen et al. [27] used Transformer to get spatio-
temporal features for PD detection. In addition, Jane et al. [20] proposed
a Q backpropagation time delay neural network (QBTDNN) model for di-
agnosing the severity of gait disorders. These deep learning methods show
great potential for early PD detection because they can capture subtle changes
in the data and achieve higher accuracy than traditional machine learning
methods.

It can be seen that most existing deep learning methods mostly explore
spatio-temporal features with CNN and LSTM, and the model design does
not take clinical characteristics well into account. The idea of this paper is to
take advantage of the Transformer to capture the spatio-temporal features of
data more effectively. And considering the clinical characteristics, improve the
capture of important gait features.
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3 Methodology

3.1 Method Overview

The overall architecture of the proposed Plantar Space-Gait Cycle Transformer
(PSGCTR) model is depicted in Figure 1. The purpose of the proposed model
is to distinguish whether a subject is a healthy control or a PD patient based
on plantar pressure. In contrast to existing methods that often overlook
clinical characteristics, our model incorporates relevant clinical characteristics
to enhance performance. Through a dual self-attention mechanism with a
mask, the model can pay more attention to important feature information.
The proposed PSGCTR model comprises five main components, as follows:
data preprocessing module, data input module, dual self-attention encoders
module, classification module, and voting module.
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Figure 1: The Overall architecture of the proposed Plantar Space-Gait Cycle Transformer
(PSGCTR) for PD detection. Each basic block of the PSGCTR mainly consists of five main
components: data preprocessing, data input, dual self-attention encoders, classification, and
voting.

The data preprocessing module slices the raw data into gait cycles and
normalizes them. The data input module is divided into two forms: sensor
channels and time points as tokens, respectively. Tokens are embedded into
the network with corresponding positional information. The dual self-attention
encoders module explores the correlation between plantar space and gait cycle
time points. Lastly, the classification module obtains sample classification
results and votes to obtain the subject results. Further details about each of
these components are presented in the subsequent sections.

3.2 Data Preprocessing

The gait cycle refers to the time interval between consecutive heel strikes of
the same foot during walking [19]. Tt comprises two primary phases, namely
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the stance phase, which covers the interval when the foot is in contact with the
ground, and the swing phase, which encompasses the interval when the foot is
not in contact with the ground. Figure 4 presents an image of the entire gait
cycle of an individual with a normal walking pattern.

In this study, each subject collected vertical ground reaction force (VGRF)
data through eight plantar pressure sensors on both feet, with the total
VGRF data from all eight sensors computed. The data is presented as a
two-dimensional matrix of size 18 x L, where L denotes the duration of data
collection. This matrix captures the pressure variations of the sensors located
at different positions on the soles of both feet over time, encompassing the
entire data collection process. In Figure 2, it can be seen that the VGRF data
of PD patients may exhibit irregular fluctuations and lack a clear bimodal
pattern. This may be due to impaired motor control in the PD patient,
resulting in variability of the gait cycle and instability of walking. Based on
this observation, we utilize prior knowledge to preprocess the data, enhancing
its quality and making it ready for future analysis.

In the human body, there exist substantial differences in body weight
between males and females, which can lead to notable variations in the observed
vertical ground reaction forces (VGRF) among different subjects. To eliminate
the potentially confounding effect of body weight on VGRF measurements,
we perform a weight removal operation on the VGRF data. This process

Health control PD patient

VGREF of the right foot(N)

VGREF of the left foot(N)

B H
Time(Seconds) Time(Seconds)

Figure 2: A graphical representation of the vertical ground reaction force (VGRF) data for
the left and right feet of a typical PD patient and a healthy individual.
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Figure 3: The force-sensitive sensors are positioned on the left and right feet.
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Figure 4: A diagram of a standard gait cycle.

involves subtracting the participant’s body weight from the raw VGRF data
to obtain net VGRF data that better reflects the actual forces exerted during
gait.

In existing works [9, 27, 39], a fixed-length sliding window is commonly used
to segment the data. However, since human walking is a periodic movement
based on the gait cycle, it would be more reasonable to divide the subject’s
data into multiple samples according to the gait cycle. This segmentation
method based on the gait cycle can make the data more aligned. Conse-
quently, it enhances the reliability and accuracy of subsequent analyses and
models.

Therefore, we proceed to split the data acquired from each participant
into distinct samples based on the gait cycle to facilitate the analysis of the
characteristics of gait. Additionally, we conduct an experimental investigation
to examine the influence of sample length on the performance of our proposed
model. Finally, to address the issue of imbalanced class samples after splitting
the data, we utilize the Borderline-SMOTE algorithm [16] to oversample the
healthy control group samples. This approach helps mitigate prediction bias
problems that may arise in the model.
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3.3 Position Embedding (PE)

The aim of the original Transformer model was to overcome the deficiency of
inherent sequence information in Recurrent Neural Networks (RNNs). This
model employs a different method to encode the positional information between
sequence elements as a way of capturing long-range dependencies more effec-
tively. In our proposed approach, the location information of each sensor time
series is added before encoding to enhance the model’s ability to comprehend
the structure and context of the input sequence. Therefore, we follow the
method in [34] to add relative position markers so that the model can make
full use of the position information embedded in the sequences. The specific
formula is as follows:

_sin (PO
PE(pos, 2t) = sin (100002t/dmodel ) (1)
—eos (— PO
PE(pos,2t+ 1) = cos (100002t/dmodel ) (2>

pos is the sensor position index, ¢ is the time step, and d is the dimension of
the embedding vector. At each time position of the vector, PE at even and
odd time points is described by sine and cosine functions, respectively.

3.4 Plantar Space-Gait Cycle Dual Self-Attention

The Transformer model [34] was originally developed for natural language
processing tasks, but it has been successfully applied in various domains,
including computer vision and signal processing. The Transformer model
utilizes a self-attention mechanism to capture global dependencies between
different elements in the input sequence, which makes it particularly effective
for modeling long-range dependencies. In the proposed Plantar Space-Gait
Cycle Transformer (PSGCTR) model, dual self-attention is designed to cap-
ture the correlations between each sensor and each time point, enabling the
model to effectively capture the complex interdependencies within the input
signal. Additionally, a masking mechanism is incorporated based on clinical
characteristics to improve local attention to the unilateral plantar space, which
further enhances the model’s ability to focus on important features.

The self-attention mechanism in the Transformer model calculates the
importance of each element in a sequence with respect to all other elements,
allowing the model to capture global dependencies between them. The PS-
GCTR model that extends the self-attention mechanism by introducing dual
self-attention that considers both sensor-channel and time-point dependencies
is proposed in this study. Specifically, the PSGCTR model consists of two
modules: channel self-attention (CSA) and time self-attention (TSA). The
CSA operates on the channel tokens, which represent the sensor data input
vector with the shape eR°*!, where ¢ and [ represent the number of sensor
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channels and length of the time series, respectively. The TSA operates on
time tokens, which are the transposition of the channel tokens. Multi-head
self-attention (MSA) is then applied to both the CSA and TSA, allowing the
model to perform multiple self-attention operations in parallel.

Time Self-Attention (TSA): The TSA is a technique used to explore
correlations between distinct time steps. Since a single sample after segmen-
tation contains multiple steps, TSA can help to discern correlations between
consecutive gait cycles and capture dependencies between different time steps.
It is a useful technique to investigate the temporal relationships in VGRF data
effectively. By incorporating the TSA module, the PSGCTR model enhances
its ability to capture the temporal dependencies present in VGRF (Vertical
Ground Reaction Force) data. In this module, time points are treated as tokens,
where each token’s dimension corresponds to the VGRF values of different
sensors at the same time point. This enables us to perform self-attention
calculations on the relationships between time points, effectively exploring the
temporal dependencies within the VGRF data from all sensors. Similar to the
self-attention process described in [34]. The self-attention operation in TSA
uses a set of weight matrices to obtain the query vector (Q), key vector (K),
and value vector (V) from the input vector. The attention weights are then
calculated by computing the dot product between Q and K and dividing it
by the square root of the feature dimension. The self-attention calculation
formula can be expressed as follows:

Attention(Q, K, V) = softmax (QKT> Vv (3)
o Vi

where dj, is the key dimensionality and T is transposed. MSA is a powerful
mechanism that allows the model to attend to multiple parts of the input
sequence simultaneously by dividing the input into multiple smaller components.
By breaking down the input into smaller components, each head can focus on
distinct features, enabling the model to capture intricate dependencies and
interactions between different input components. Additionally, MSA allows the
model to attend to different “representation subspaces” of the input, which can
be useful for tasks where different aspects of the input are relevant at different
positions. In this method, the input is divided into smaller components,
referred to as heads, which will perform attention simultaneously. The formula
can be explained as follows:

MSA = Concat(heady, . . ., head,, )W° (4)
head; = Attention(Q;, K;, V;) (5)
where t=head number.

Channel Self-Attention (CSA): The CSA is a mechanism that aims
to explore the correlations between different channel tokens. This method
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enables the model to capture the dependencies and relationships between
different sensors, thereby extracting the most important information. In
contrast to TSA, CSA employs a masking mechanism that integrates clinical
prior knowledge.

The masked multi-head self-attention (MMSA) mechanism incorporates
both preprocessed data characteristics and clinical prior knowledge. Each
preprocessed sample contains three steps for the left foot and two steps for
the right foot, as people typically alternate between their left and right feet
while walking, as illustrated in Figure 4. However, PD patients may exhibit
unilateral foot abnormalities during the support phase due to tremors, slow
movement, and postural balance disorders. Therefore, the design is consistent
with the characteristics of the sample. Different masks are used for different
heads to enable the model to pay more local attention to the channel tokens of
the support phase. Because only the plantar sensors in the support phase cycle
have data generation, while the swing phase has no data generation because
the foot is suspended. So we need to get the data of the support phase cycle
more accurately. This method is highly relevant to the preprocessed sample
information since normal individuals alternate between their left and right feet
in the same pattern. By masking the channel tokens of the right foot plantar
space when the left foot is used as the support phase, the model can capture
different "representation subspaces" more effectively and better distinguish
the difference between normal controls and PD patients.

Figure 5 illustrates the process of calculating the multi-mask QKT matrix
in MMSA. In contrast to the self-attention mechanism process described in [34].
This process, known as masked self-attention, enables the model to attend to
relevant information while disregarding irrelevant information. The formula
for masked self-attention is as follows:

QK™
Vi,

MMSA differs from MSA in that it uses masked self-attention for different
heads, which are then concatenated. Next, the features obtained from MSA and
MMSA are summed after layer normalization (LN) and residual concatenation
to obtain the fused features. Finally, the features are fed into the feedforward
neural network to get the final result of this encoder. The encoder process can
be expressed as follows:

Mask Attention(Q, K, V') = softmax(M x

WV (6)

2’ = (LN(MMSA(z)) + ) + (LN(MSA(z")) 4+ 2T)T (7)
y=LN(MLP(z")) + 2’ (8)
where x represents the input of the encoder and y represents the output of

the encoder. After getting the encoder output result, it will pass into the next
encoder.
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Figure 5: A multi-mask QKT matrix.

3.5 Voting Module

This voting module is designed to decide whether the subject is a PD patient or
not. Due to the small number of subjects in the dataset, the data collected from
each subject was too long. Therefore, existing works [9, 24, 27, 36, 39| split
the data of a subject into multiple segmented samples, and our preprocessing
method does the same. The input of the network is a segmented sample, and
the output of the network is the classification result of the segmented sample.
Therefore, after getting the classification results of all the segmented samples
of an object, we follow the majority vote to determine whether the object is
PD or not. Specifically, if more than 50% of all the segmented samples of this
object are predicted to be PD, then this object will be predicted to be PD.

4 Experiments

4.1 Dataset

In this study, the dataset used is obtained from PhysioNet! [14], which is a
public repository of physiological and biomedical data. The dataset consisted
of contributions from three different researchers, namely Ga [38], Ju [17], and
Si [11]. The three researchers had different collection times and collection
subjects, but the same collection equipment. The main difference was that
the Ju and Si groups recorded normal walking at a self-selected speed. Ga
repeated this part and added an additional task for each participant in which
they performed a dual task while walking [38].

Participants were instructed to walk normally for approximately two min-
utes while wearing shoes equipped with pressure sensors. These shoes had
eight pressure sensors on each foot, and their locations are depicted in Figure 3.
The pressure data were sampled at a frequency of 100 Hz. Table 1 shows the
demographic statistics of the subjects included in the dataset.

Lhttps://physionet.org/content/gaitpdb/1.0.0/.
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Table 1: Statistics about the dataset.

Groups Total subjects Male Female
PD patients 93 58 35
Healthy controls 73 40 33

4.2 FExperimental Setup

All experiments were performed on NVIDIA gtx1080ti GPU. We trained the
baseline networks according to the implementation procedures described in the
respective papers. In most existing works [9, 24, 36, 39|, cross-subject training
and testing were often not performed, which could have led to overfitting and
inaccurate evaluation results. To address this issue, we adopt a strict cross-
subject method for the experiments. Specifically, the dataset is randomly split
into training, validation, and testing sets based on the subject ID, with a ratio
of 8:1:2 for each class. This ensures that samples from the same subject do not
appear in both the test and training sets. To reduce the impact of randomness,
each experiment is repeated 10 times, and the average result is used as
the final performance metric. The cross-entropy loss function is optimized
using the Stochastic Gradient Descent (SGD) algorithm with a momentum
of 0.9. Training uses 100 periods with early stops. Early stops are monitored
using validation loss. The remaining model parameters are shown in Table 2.
Subject-level results are obtained by averaging the results of individual samples
belonging to the same subject, with a threshold of 50% used for classification.
Additionally, experiments without cross-subject evaluation are also conducted
to demonstrate the importance of cross-subject evaluation. The results are
evaluated by specificity (Sp), sensitivity (Se), and accuracy (Acc).

Table 2: Parameters of the model.

Parameter Value Parameter Value
Input shape 64x1x18x390 Channel heads 5
Batchsize 64 Time heads 2
Encoders 3 Mlp dim 1024
Learning rate 0.001 Dropout 0.2
4.3 Results

4.3.1 Sample Length Analysis

One advantage of the Transformer model is its ability to capture long-range
dependencies in input data. However, in the case of multi-step data such
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as walking time, taking one step of gait splitting as the same sample may
not account for the correlation between asynchronism, which refers to the
time correlation between different gait cycles. To address this problem, we
conducted experiments on asynchronism splitting as the sample and found
that the model achieved the best performance when three steps of the left foot
were taken as the sample. It should be noted that the masking mechanism
was not used in this experiment.

When determining the length of the samples, previous studies have shown
that the length of a gait cycle is typically between 100-160 steps [24]. Moreover,
the stance phase is approximately 1.5 times longer than the swing phase [1].
Therefore, we set the length of a gait cycle to 150 steps, with 90 steps for the
supporting phase and 60 steps for the swinging phase. To unify the lengths,
zeros are used to fill those samples where the gait cycle length is less than the
set length. The sequence lengths to be used in each step were calculated based
on these parameters and are presented in Table 3.

Table 3: The influence of different sample lengths as input on the results.

Sample Size Sp(%) Se(%) Ace(%) Length
1 74.42 82.45 78.92 100
2 67.99 86.31 78.23 240
3 71.42 86.46 79.83 390
4 68.33 84.21 77.43 540

4.8.2  Comparison Analysis

The proposed method was compared with representative current methods. All
the methods were classified into two groups based on the experimental design.
The first group used a strict cross-subject experimental setup, while the other
group used a non-cross-subject experimental setup to compare and emphasize
the importance of cross-subject experiments. The cross-subject experimental
design is to divide the training set and test set by subject ID. There were 132
subjects in the training set and 34 in the test set, with 55% PD patients. Due
to conducting multiple experiments, the training set and test set subjects are
not the same, and the number of collections per subject is also different. After
dividing the number of samples, there are fluctuations in the training set and
test set sample sizes, so the average training set sample is 22425 and test set
sample is 5823.

In addition to our proposed method, we carefully select a set of baseline
techniques that are widely recognized and representative of the existing meth-
ods used in the field of PD detection. These baseline techniques encompass
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both deep learning models and traditional handcrafted feature models, all
of which were evaluated on the same task and dataset as our proposed ap-
proach. We compared eight baseline techniques: four deep learning models
(1D-Transformer [27], DUAL-CLSTM [24], 1D-Convnet [9], and CNN-LSTM
[39]) and four traditional handcrafted feature models (Support Vector Ma-
chine (SVM), K-Nearest Neighbors (KNN), Gradient Boosting Decision Tree
(GBDT), and Random Forest (RF)). For the traditional methods, we employ
feature selection as proposed by Alam et al. [2]. The results of the cross-subject
experiments are shown in Table 4, and the non-cross-subject experiments are
shown in Table 5. The results evaluation indices include Specificity (Sp),
Sensitivity (Se), Positive Predictive Value (PPV), and Accuracy (Acc).

Table 4: Cross-subject results for different methods.

Methods Sp(%) Se(%) PPV(%) Acc(%)

1D-Convnet 78.18+9.9 79.91+11.5 82.68+7.4 79.14+7.7
1D-Transformer 70.02+£13.7 81.57+7.8 77.55+8.2 76.47+5.6
CNN-LSTM 66.67+9.8 86.32+7.1 77.07£5.9 78.57+4.9
DUAL-CLSTM 71.43£9.7 84.21£8.1 78.89+7.2 78.78+4.2
sy 73.9848.3  82.89+7.3  80.29+5.5  78.9446.3
KNN 82.85+6.1 71.42+3.8 83.11+4.9 76.46+£2.2
GBDT 78.37£9.4 78.41+£8.9 81.12+6.5 78.36£7.3
RF 75.55+13.1 79.83£8.5 80.31£8.8 77.94+6.1

PSGCTR(ours) 74.2949.4 86.77+9.2 82.9448.5 82.35+3.1

Table 5: Non-cross-subject results for different deep learning methods.

Methods Sp(%) Se(%) PPV(%) Acc(%)

1D-Convnet 92.92+2.1 99.12+0.3 96.82+1.5 97.23+0.5
1D-Transformer 94.954+0.8 98.87+0.4 97.61+0.6 97.67+£0.4
CNN-LSTM 94.07+1.7 97.32+1.5 97.40+1.2 95.45+0.7
DUAL-CLSTM 94.06+1.1 97.34£0.8 97.38%+0.9 95.25+0.5

PSGCTR(ours) 95.45+0.7 98.79+0.3 97.99£0.5 97.77+0.4

After comparing cross-subject experiments with those without cross-subject,
we observed a significant performance difference of more than 10%. Therefore,
cross-subject validation is essential for meaningful results and to avoid inflated
outcomes. It ensures the model’s ability to generalize effectively to unseen
individuals and extends its performance beyond the training data.
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Table 6: Ablation studies for various key components.

Methods Sp(%) Se(%) Acc(%)

PSGCTR (ours) 74.20 + 9.4 86.77 £ 9.2 82.35 + 3.1
-M 71.42+ 7.8 86.46 + 4.1 79.83 £3.3
-TSA 65.99 £+ 8.6 88.42 £ 7.7 78.52 £ 3.7
-CSA 76.19 £ 3.2 80.45 £ 6.6 78.57T+£24

4.3.3  Ablation Study

In addition to the main experiment, we conducted ablation experiments to
evaluate the effectiveness of key components in PSGCTR. Specifically, we
removed the channel self-attention (-CSA) encoders, the temporal self-attention
(-TSA) encoders, and the masking (-M) mechanism. The results of the ablation
experiments are shown in Table 6.

As can be seen, removing either the -CSA or the -TSA encoders significantly
decreases the performance of the model, indicating the importance of both
types of self-attention. Removing the -M mechanism also results in decreased
performance, suggesting that the masking is helpful in learning meaningful
representations from the data. Overall, these ablation experiments demonstrate
the effectiveness of the key components in PSGCTR.

4.8.4  Model Interpretability Analysis

The dual self-attention mechanism in PSGCTR can automatically learn the
weights of different plantar spaces and gait cycle time points, which reflects
their importance for PD detection. This allows professionals to focus on crucial
plantar spaces and time points with the assistance of the weight information,
which can improve the detection performance and model interpretability.

To further explicate this idea, we selected a PD patient sample and visual-
ized the attention matrix in the CSA of the last encoder. The heat map of
the attention matrix weights is shown in Figure 6 (a), which provides valuable
insight into the decision-making process of the model and helps interpret its
predictions. The heat map shows that the learned weights are concentrated in
the lower right area, which is the right foot area. To confirm this, we presented
the data of the right foot of the preprocessed sample, as depicted in Figure 6
(b). Based on the figure, it is evident that the subject exhibited a flat-footed
landing and small broken step anomalies. Thus, we conclude that the sample
of this subject is likely to exhibit abnormal performance on the right foot.

The distribution of samples in the dataset is illustrated in Figure 7, where
the feature dimensions are reduced to 2 dimensions for visualization using the
t-Distributed Stochastic Neighbor Embedding (t-SNE) technique. Figure 7 (a)



Plantar Space-Gait Cycle Transformer For Early Parkinson Disease Detection 17

017s

0150

0125

g

0100

400

VGREF of the right foot(N)

0050 200

@ O

Figure 7: Visualization of the t-SNE results on the dataset, with samples of PD patients
denoted by red dots and samples of healthy controls denoted by blue dots.

displays the feature representation of each sample after preprocessing. Due
to the segmentation of each subject’s data into multiple samples, the t-SNE
visualization reveals that the samples from each subject tend to form distinct
clusters in small localized regions. As a result, it becomes challenging to
differentiate between PD patients and healthy controls using a linear classifier.
In contrast, Figure 7 (b) shows that features extracted by the PSGCTR model
can linearly separate PD patients and healthy control samples more effectively.
The proposed PSGCTR model is able to better capture the PD-related features
between samples, thus achieving better discriminatory ability.

4.8.5 Result Analysis

The sensitivity of the proposed PSGCTR model is 86.77%, indicating a high
ability to correctly identify PD patients. However, false-negative results in
medical diagnosis can be critical, potentially causing misdiagnosis and delaying
treatment. To further evaluate the performance of the proposed model for
early PD detection, we analyze the correctness percentage for different PD
levels, using the Hoehn&Yahr scale (H&Y scale) recorded in the dataset.
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However, the dataset only includes three PD grades. Therefore, we compare
the performance of the proposed PSGCTR model with traditional machine
learning methods.

Table 7 shows the correct percentage of different PD levels in the test set.
The results indicate that the proposed PSGCTR model achieves the highest
accuracy in all PD levels when compared to traditional machine learning
methods, suggesting its superior performance in early PD detection. For
example, for PD level 2, the proposed PSGCTR model achieves a correct
percentage of 86.11%, while the traditional machine learning methods only
achieve 66.35%-72.89%. This result demonstrates the potential of the proposed
PSGCTR model for early PD detection, which can help clinicians diagnose
PD patients earlier and provide better medical care.

Table 7: Severity Level statistics: PD results in the test set.

Methods 2(%) 2.5(%) 3(%)
1D-Convnet 71.58 87.74 96.67
1D-Transformer 64.53 97.14 100
CNN-LSTM 81.57 94.44 100
DUAL-CLSTM 80.05 93.12 100
svm 722 9665 95.83
KNN 66.35 79.82 80.95
GBDT 72.89 85.05 95.00
RF 69.75 95.29 88.85
PSGCTR(ours) 8611 9714 100

5 Discussion

In most of the existing works, rigorous cross-subject experiments were not
done. Specifically, the data of all subjects were split into a number of samples
according to certain rules and then directly disordered into training and testing
sets. This results in the appearance of a training set and a test set with different
samples of data from one subject at the same time. This practice will cause the
result to be inflated. So we perform both cross-subject and non-cross-subject
experiments, and we can find that the cross-subject experiment results will be
more than 10% lower.

As shown in Table 4, the proposed PSGCTR model achieved the best
performance. Compared to the deep learning models, the 1D-Convnet [9] and
the 1D-Transformer [27] extracted time-domain features of different sensor
channels through convolution and self-attention mechanisms, respectively,
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and then fused all the information. However, neither of these approaches
adequately explores the correlation between different sensor channels at the
same moment, which is crucial for PD patients. For instance, PD patients
may appear to land on their entire foot while walking. As in Figure 7 (b),
all plantar sensor VGRF values reached maximum at the same moment. For
traditional machine learning methods, gait statistical features are used [2]. For
example, the Coeflicient of Variation (CV) of swing time, standard deviation
of Center of Pressure (CoP) of x-coordinate, and mean peak force at heel
strike. The feature dimensions are relatively small. In addition, the hand-
extracted features can only extract the global features, but cannot capture
the spatio-temporal features with more subtle variations. Furthermore, the
methods require manual feature extraction and professional knowledge. This
approach is complex and time-consuming.

The proposed PSGCTR model is a Transformer model with a dual self-
attention mechanism, which incorporates clinical characteristics. This model
allows extracting of features from two spatial-temporal dimensions simulta-
neously. Compared to the 1D-Convnet [9] and the 1D-Transformer [27], by
cascading. Our proposed model extracts the two-dimensional features in
parallel and then fuses them. Our approach provides more comprehensive
access to the spatio-temporal relationships in the data. And we use a different
data segmentation method than in previous work, by using a cut-by-step
approach rather than a sliding window cut. This preprocessing method is more
reasonable and makes the different samples more aligned. And we discuss the
effect of the number of sample steps on the model results, which are shown in
Table 7.

However, this paper also has limitations. First, the number of subjects
in the dataset is relatively small. More representative subjects are needed so
that the generalization ability of the model can be better verified. Second, the
model does not address the issue of individual variability among subjects well.
In the gait data, there are differences among different subjects, which may
be influenced by various individual factors such as individual height, weight,
and personality. Finally, with only eight different position sensors provided
per foot at the time of data acquisition, the spatial granularity may not be
sufficient. And there may be other aspects of PD symptoms. Collecting only
plantar pressure data may not be sufficient.

In real life, a false-positive result means misdiagnosing a healthy person as
a PD patient, which may lead to a healthy person going to the hospital for
additional medical tests. However, the task of our study was to perform early
PD screening, and the final diagnosis needs to be confirmed by a specialized
hospital. Accurate identification of individuals with PD is crucial in the early
screening task, as early intervention and treatment can significantly improve
the prognosis of patients. Although the sensitivity of the proposed PSGCTR
model is higher than other methods, the specificity still needs to be improved.



20 Wang et al.

6 Conclusion and Future Work

In this paper, we propose a PD detection model based on a transformer
with a dual self-attention mechanism. The model takes into account the
correlation between plantar space and gait cycle, while also considering clinical
characteristics. We further introduce a masking mechanism to prioritize
important information during the support phase. To evaluate the model’s
effectiveness, we conduct experiments using a cross-subject approach to assess
its generalization ability.

For future work, we will be divided into two parts. Firstly, we aim to address
the challenge of individual variability in plantar pressure data to enhance the
robustness of our model. Second, we will collect and use a multimodal dataset
that takes into account that PD symptoms are not limited to lower limb motor
abnormalities, but may also include voice disorders, upper limb tremors, and
memory loss. Multimodal data will be more favorable to distinguishing PD
patients, thus further improving PD detection.
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