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ABSTRACT

The cocktail party effect refers to a challenging problem in speech
perception where one is able to selectively attend to one sound source in
a noisy and multi-talk environment. The recent studies in neuroscience
and psychoacoustics shed light on how the human brain solves the
cocktail party problem, that inspires many computational solutions.
With the advent of novel physiological techniques and deep learning
algorithms, it is now possible to effectively detect auditory attention
based on brain signals. In this paper, we provide a comprehensive
overview of the most recent EEG-based auditory attention detection
techniques and the methods to evaluate their performance. We examine
both statistical and deep learning approaches, exploring their strengths
and limitations. Furthermore, we also point out the gaps between the
state-of-the-art and the practical needs in real-world applications. We
also offer an overview of the available resources for EEG-based auditory
attention detection research.
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1 Introduction

Speech perception is a cognitive process that enables us to interpret and un-
derstand our acoustic environment. Although we often take the discrimination,
identification, and interpretation of acoustic signals for granted, speech percep-
tion is a complex motor process that begins in the cochlea, travels through the
auditory nerve and several auditory nuclei, and ends in the primary auditory
cortex and different brain regions [91]. For individuals with normal hearing,
speech perception may seem straightforward, yet the limitations of this ability
are revealed in the presence of background noise, particularly among the elderly
and those with hearing loss [93]. Indeed, high-intensity non-speech noise can
obscure sounds and make words ambiguous or unintelligible. When the noise
is composed primarily of other speakers, it may also distract the listener’s
attention, creating a more complicated scenario, namely the cocktail party
problem [27].

The inability to follow a single speaker in a cocktail party situation is
usually the first symptom of a speech perception problem for most people [90].
Such a speech perception problem is not only common in elders but also
afflicts young adults with mild hearing loss and cochlear implant recipients [91].
Moreover, many people with normal hearing thresholds may experience diffi-
culties understanding speech in noisy environments [7]. With the increasing
number of people with hearing problems, it is crucial to explore the underlying
mechanisms of selective listening at cocktail party scenarios for a better under-
standing of hearing loss, and further improve the hearing function in difficult
listening conditions. Since the 1950s, the cocktail party problem has been
the subject of research in a wide range of disciplines, including physiology,
neurobiology, psychophysiology, cognitive psychology, biophysics, computer
science, and engineering [17, 56].

In the context of a cocktail party, speech perception entails two fundamental
tasks: speech separation and selective auditory attention [75]. Human ears
collect a mixture of signals from all sound sources in the auditory scene.
However, the listener may be interested only in one particular sound source.
Hence, empowering a hearing-aid device to extract the target speech from the
mixture will greatly benefit speech perception for hearing-impaired individuals.
The study of computational solutions to speech separation is worthy of another
full overview, which is not the focus of this article. Interested readers are
referred to [112] for in-depth discussions. In this paper, we are particularly
interested in the second task, that is to automatically detect the auditory
attention of a listener from his/her brain signals. As the human brain is
born with the auditory attention ability in the cocktail party, the findings
on the brain’s “magic” not only advance the understanding of related clinical
studies, but also offer valuable insights into effective interventions for clinical
populations who may experience challenges in speech perception.
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The exploration of how the human brain solves the cocktail party problem
has been a sustained effort. It is common to keep the subject in a cocktail
party environment and monitor the associated neural response in his/her
brain. The functional methods in these experiments mainly fall into two broad
categories [98]. One is the hemodynamic measurements including functional
magnetic resonance imaging (fMRI), positron emission tomography (PET),
and functional near-infrared spectroscopy (fNIRS), among others, in which we
learned the neural activity in the whole brain through the changes to blood
flow. For instance, Peelle and Wingfield discovered that focusing on a speech
at a cocktail party environment activates more brain regions than hearing
speech that is acoustically clear [91]. Another is the studies of the activity in
brain neurons using various biological signals, including both invasive meth-
ods such as Electrocorticography (ECoG) and stereoelectroencephalography
(sEEG), as well as non-invasive methods like electroencephalography (EEG)
and magnetoencephalography (MEG). These studies revealed that biological
signals respond preferentially to critical features of the attended speech (such
as temporal representations [5, 39, 78, 88, 96] and spatial locations [37, 114,
116]) rather than mixture speeches.

The advancement of these neuroimaging and neurophysiological studies
has greatly benefited speech perception in cocktail party scenarios as well. As
the neural response of the brain is closely related to attention, it is logical to
hypothesize that one can detect auditory attention from brain signals. This
topic has gained increasing traction in the past decade, and is generally re-
ferred to as auditory attention detection (AAD). The success of AAD opens
up the possibilities of neuro-steered smart hearing devices, which detect a
listener’s auditory attention so as to select a sound source from a complex
acoustic environment just like what humans do. A number of biological signals
may carry such auditory attention trace. Not all of them are appropriate for
neuro-steered hearing devices. For instance, hemodynamic measurements have
a long data collection latency, the invasive EEG and ECoG may be harmful to
the population outside of the clinical treatment, and MEG is not wearable. In
contrast, EEG enjoys the superiority of being less expensive, more widely avail-
able, and easier to use, making it a viable option for integration into everyday
devices and future brain-computer interface (BCI) applications. Therefore, we
mainly limited the scope of this article to EEG-based AAD methods.

The training and run-time inference of a typical EEG-based speech per-
ception system is illustrated in Figure 1. In the offline training phase, the
model learns to associate the EEG signals and their speech stimuli. During
the run-time inference, the attended speech will be determined and enhanced
to improve speech perception. These techniques can be categorized in different
ways, for example, according to the type of speech stimulus - clean speech
vs speech mixtures; the type of attention focus - speaker vs locus, the type
of EEG data - full scalp EEG vs ear-EEG; the workflow of the AAD model -
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Figure 1: Typical flow of EEG-based speech perception in a cocktail party environment
involves training the auditory attention detection (AAD) model, represented by the green
box, and applying the detection in real-time, represented by the blue box.

stimulus-reconstruction vs direct classification; the generalization ability -
subject-dependent vs subject-independent. From the viewpoint of the speech
stimulus, early EEG-based speech perception research was premised on the
assumption of ideal speech separation performance. These studies utilized the
ground truth of speech stimulus directly as a reference. With clean speech, one
can study a linear or non-linear reconstruction function to estimate the acoustic
features of the attended speech, e.g. envelope, spectrogram, Mel-spectrogram,
linguistic speech representations, from the full scalp EEG recordings, or vice
versa. Although such reconstruction functions cannot perfectly reconstruct
the stimuli, auditory attention can be determined by the correlation between
the output with the ground-truth feature. This pipeline has been widely
studied with different approaches, just name a few, linear regression (LS) [88],
canonical correlation analysis (CCA) [28], averaging decoders [88], averaging
auto-correlation matrices [12]. Later, with the advancements in deep learning,
some studies aimed to reconstruct the envelope of the target speaker’s signal
from EEG signals using non-linear neural networks (NNs) [105] and long
short-term memory (LSTM) model [82].

We posit that the stimulus-reconstruction approach exhibits two limitations.
Firstly, the process of stimulus reconstruction and correlation evaluation is not
optimized to effectively detect attention. Secondly, the compression of multi-
channel EEG signals into a single waveform through stimulus reconstruction
reduces the available information for analysis. While such transformation
interprets well how brain signals correlate with speech stimulus, it doesn’t
necessarily represent the best way for auditory attention detection. To avoid
any information loss in data compression, some recent works intended to classify
the attended speaker [29] or locus [110] directly, and have achieved great success.

Since clean speech is not always available, especially in real-life scenarios,
studies on EEG-based speech perception are conducted to estimate the selective
attention from the mixture to improve the feasibility of the neuro-steered
hearing devices. Coordination with speech separation [11, 33, 109] is one of the
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research directions to overcome this challenge. Besides, in [25, 63], the attended
speech is directly extracted from the mixture with the additional feature
estimated from EEG data. Another direction to increase the practicability is
making the system more portable, which is achieved by reducing the number
of the required EEG electrodes [22, 81, 83–85, 101], using different types of
EEG recording equipment, such as ear-EEG [14, 15, 36, 38, 42, 43, 61, 64–66,
73, 76, 77, 80].

Geirnaert et al. [49] presented an overview of EEG-based AAD, which sum-
marizes the traditional modeling approach. With the advent of deep learning,
EEG-based speech perception techniques have seen a significant advancement.
The neural solution has not only enhanced the existing state-of-the-art methods
but also bridged the gap between the ideal model and the practical implemen-
tation of neuro-steered hearing devices in noisy environments. Additionally, it
opens up a new avenue of research beyond the existing stimulus-reconstruction
and direct classification AAD methodologies. Nonetheless, these classical AAD
approaches have played a critical role in advancing the understanding of speech
perception in cocktail party environments and provided valuable insights into
various aspects of the research challenge. With this paper, we aim to offer a
comprehensive overview of EEG-based AAD research for speech perception in
cocktail party scenarios by presenting a perspective that highlights the core
design principles, ranging from the ideal AAD model to practical implementa-
tion, along with the challenges encountered and the future directions of the
field.

This paper is organized as follows: Section 2 introduces the fundamentals
of how the brain’s auditory system perceives speech. In Section 3, we provided
a brief overview of works that reconstructed speech from brain signals and
explained the reason why employ the EEG-based AAD to support speech
perception in a cocktail party environment. Followed with Sections 4 and 5,
we introduced the conventional AAD algorithms and emerging works with
deep learning, In Section 6, we focused on the application-oriented AAD
works towards speech perception in cocktail parties. In Sections 7 and 8, we
summarize the publicly available research resources for EEG-based AAD in
cocktail party scenarios and discuss the challenges and future directions. We
conclude this paper in Section 9.

2 Fundamental of the Speech Perception

Before delving into how a listener reacts to the cocktail party speech mixture, it
will be helpful to review how the human brain completes the speech perception
process. Speech perception occurs within a hierarchical processing system in the
auditory system, involving several core brain regions [91]. A typical example is
depicted in Figure 2. The speech is produced by the vocal folds and primarily
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Figure 2: The auditory processing pathway. The speech perception begins with the cochlear
nucleus and proceeds through a series of relay nucleus, including the superior olivary complex,
the inferior colliculus, and the medial geniculate nucleus. Each of these nuclei decodes
and integrates the incoming auditory information before forwarding it to the next stage
of processing. Finally, the auditory cortex receives and analyzes the integrated signals,
enabling the perception of speech. (Adopted from [91]).

received by the inner ear. The cochlea, as the main hearing organ in the
inner ear, contains numerous nerve endings that convert sound vibrations into
electrical impulses. These impulses, which correspond to different pitches or
frequencies of sound, are then transmitted along the auditory nerve. These elec-
trical impulses are further processed by various auditory nuclei, allowing for the
estimation of physical characteristics such as spatial location cues by comparing
signals from both ears. Finally, the auditory information reaches the auditory
cortex, where the streams of nerve impulses are converted into meaningful
sound, and multiple brain regions are engaged in the comprehension of speech.

Although the auditory system processes speech in a hierarchical manner,
it cannot be solely regarded as a linear, feedforward process. Traditional
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perception theories previously suggested that the brain processes stimuli in a
bottom-up manner, constructing perceptions through the combination of sen-
sory inputs [40]. However, recent theories propose that the brain is a dynamic
system that interacts with sensory inputs [16]. This interaction is facilitated
by the “top-down processing” mechanism, where perception is influenced by
prior experiences and expectations. This top-down processing allows the brain
to process sensory information more efficiently [89]. Furthermore, the interplay
between bottom-up and top-down processing enables the brain to achieve
precise perception, even in the presence of degraded sensory inputs [99].

In the field of speech perception, the brain is portrayed as a “prediction
machine” where top-down expectations are constantly predicting bottom-up
information [108]. Such a mechanism is especially noticeable in acoustically
challenging scenarios. Despite potential degradation of the speech signal, such
as background noise, overlapping speakers, or minor disruptions during commu-
nication, individuals with normal hearing can still, to a certain degree, follow
the speaker. The predictive coding theory [13] offers a plausible explanation
for this phenomenon, suggesting that top-down information generates prior
expectations about speech content. This top-down information is constructed
based on sensory inputs from various domains, such as speaker identity, speech
knowledge, and language comprehension, and is further consolidated as cog-
nitive factors. This also explains why, when people listen to strangers speak,
their speech perception efficiency gradually improves over time, all due to the
accumulation of the speaker’s prior knowledge [91].

In the cocktail party problem, the top-down processing mechanism is also
essential for speech perception. Previous studies have demonstrated that
the brain responds to all stimuli, and top-down attention forces the neural
activity to be selective in order to construct a representation only of the
attended stream [3]. Consequently, decoding the target speaker in a noisy
social environment necessitates extracting the relevant stream from the brain’s
signals, a task often accomplished using biological signals.

3 Speech Reconstruction from Brain Signal

Researchers have spent decades trying to figure out the neural representations of
speech signals along the brain’s auditory system. The stimulus reconstruction
was proposed to interpret neural responses in the stimulus domain intuitively [4].
However, with the advent of the BCI concept, it is thought that reconstructing
speech from the human auditory cortex is one of the ways for machines to
establish direct communication with the brain. Considering the sampling
rate gap between speech signals and brain signals, the reconstruction target is
typically chosen as acoustic representations rather than the original waveforms.
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The acoustic representations of the stimulus fall into two categories, i.e.,
discrete units and continuous speech. Common discrete units used include
phonemes [68], phonetic categories [58], and words [67]. However, using discrete
units eliminates prior knowledge provided by the top-down processing mecha-
nism, such as paralinguistic information (e.g., speaker identity). Therefore, in
this section, we concentrated on reconstructing the acoustic representations of
continuous speech from continuous electronic brain signals. Previous studies
primarily employed acoustic representations in either the time-frequency do-
main, such as the magnitude of the Short-Time Fourier Transform (STFT)
spectrogram or Mel spectrogram, or the temporal domain, such as the enve-
lope [44, 88]. Typically, brain signals are collected using multiple electrodes,
making the stimulus reconstruction a multiple-input-multiple-output (MIMO)
process when using time-frequency representations and a multiple-input-single-
output (MISO) process when using temporal representations.

Regardless of representations, the concept of reconstruction can be divided
into two categories: linear and nonlinear. The linear stimulus reconstruction
method is first introduced in [79] and further adopted in various tasks, including
the cocktail party problems. The fundamental idea of the linear stimulus
reconstruction method is estimating a linear mapping between the acoustic
representations and the population neural activity. With the spectrogram as
an example, let us denote the ground-truth spectrogram as S(t, f) and the
reconstructed spectrogram as Ŝ(t, f). With the response at electrode n at
time t as R(t, n), the linear reconstruction is described as [79]:

Ŝ(t, f) =
∑
n

∑
τ

g(τ, f, n)R(t− τ, n) (1)

where g(τ, f, n) represents a spatio-temporal filter that maps R(t, n) to S(t, f).
When the stimulus is an envelope, the filter becomes only temporal, and linear
reconstruction is described as:

Ŝ(t) =
∑
n

∑
τ

g(τ, n)R(t− τ, n) (2)

The estimation of the filter g(·) is achieved by reducing the mean squared
error (MSE) between the actual and reconstructed stimuli through the use of
normalized reverse correlation.

By combining recent advances in deep learning, the nonlinear methods
based on deep neural network (DNN) [4, 118] have significantly improved the
reconstruction accuracy. In these methods, the stimulus reconstruction can be
described by a composition of 2 networks with specific functions as:

Ŝ = (A ◦ F)(R) (3)

where F(·) denotes the feature extraction network that reflects the neural
responses R to high dimensional. A(·) denotes the feature summation network
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that nonlinearly regresses the high dimensional representations to the acoustic
representations Ŝ. On one hand, deep learning models have demonstrated their
effectiveness in capturing statistical patterns of speech signals accurately. On
the other hand, nonlinear regression methods have shown remarkable results
in reconstructing the nonlinear encoding of speech features in neural data.

The works in the field of stimulus reconstruction also benefit speech percep-
tion in cocktail party problems. Research has shown that the human auditory
system is capable of reconstructing the representation of the speaker being
attended to and suppressing irrelevant speech, as if the person was listening to
that speaker alone [62, 78, 88]. Besides, it has been verified that the selection of
the acoustic representations of the stimulus [71] and the selection of frequency
band of the brain signals [114] will significantly impact the estimation of the
attentions in cocktail party problem.

In the prior studies, it was found that the attended speech envelope, that is
a low-frequency component of the original speech, can be reconstructed from
brain signals, such as ECoG or sEEG. The low-frequency signal can be used to
identify the attended sound source, therefore, detecting the attended speaker.
Unfortunately, ECoG or sEEG signals are collected from invasive devices,
which is not practical for daily applications. The non-invasive EEG signals can
be a convenient substitute [62, 70]. However, EEG has a lower signal-to-noise
ratio, higher sensitivity to movement and artifacts, and lower bandwidth
than ECoG or sEEG. Normally, most EEG studies focus primarily on the
low-frequency range, including the δ (< 4 Hz), θ (4-8 Hz), α (8-12 Hz), and β
(13-30 Hz) bands that are commonly associated with speech production and
perception in the human cortex [30]. Unfortunately, the gamma-band (around
70-150 Hz) within this range tends to be overlooked [103]. However, it is
important to recognize that the γ-band has demonstrated a strong correlation
with perception, cognitive function, and motor tasks [31].

To summarize, studies show that it is possible to reconstruct low-resolution
speech stimuli from brain signals. This lays the foundation for auditory
attention detection (AAD). By combining a speech separation module that
separates multiple speakers from an input speech mixture [49], i.e. cocktail
party, and an AAD module that detects and selects the attended speech or
speaker, one may construct a neuro-steered hearing device.

4 Typical EEG-based Auditory Attention Detection

At a cocktail party, it’s common to have multiple speakers talking at the same
time. For ease of illustration, we only limit our discussion to two competing
speakers, i.e. an attended and an unattended speaker. Most existing AAD
models assume the availability of clean speech from the mixture of speakers
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during run-time inference, so as to find the correlation between such clean
speech and the EEG signals.

Let’s denote a decision window of three time-aligned signals, i.e. the
attended speech source, the unattended speech source, and the EEG signals as
s0, s1, and e respectively. As will be discussed later, AAD aims to detect the
attended speaker or locus index, which is denoted as y ∈ {0, 1}, representing
one of the two speakers. As human attention may switch between the two
speakers, a long speech-EEG signal can be segmented into a number of decision
windows of length τ . The AAD function can be formulated as follows,

y = A(s0; s1; e) (4)

where A(·) is also called the window-wise AAD function in the rest of this
paper. There are two typical ways to implement the AAD function, stimulus
reconstruction or direct classification.

4.1 Stimulus Reconstruction

The stimulus reconstruction approach seeks to reconstruct the attended stimu-
lus from the EEG signals and detect the attention in three steps.

1) Speech feature extraction
Since speech signals are sampled at a higher rate than EEG signals, it

is essential to extract speech features that are synchronized with the EEG
signals. Such monaural speech features can be represented by either one single
signal (e.g., envelope [12, 88, 113]) or multiple signals (e.g., spectrogram).
Let’s denote the feature of s0 and s1 as f0 and f1, the feature extraction can
be described by a function,

f0 = F(s0) f1 = F(s1) (5)

For instance, F(·) could be a speech envelope or a spectrogram.
2) Stimulus reconstruction
The mapping between acoustic features of speech stimulus and observed

EEG signals can be done in both ways [6, 74]. In this paper, we only discuss
the reconstruction of acoustic features from EEG signals. Let’s denote the
output of the decoder as f̂ , the mapping can be described as:

f̂ = D(e) (6)

The prediction function D(·), also discussed in Section III, can be implemented
by either linear regression or non-linear DNN.

3) Attention selection
With the reconstructed stimulus f̂ and the actual stimuli f0 and f1, one may

easily detect the attended speech source by comparing through a similarity
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function C(·), e.g. a cosine similarity or Pearson correlation, we have y0 =

C(f̂ , f0) and y1 = C(f̂ , f1).

y = argmax
m={0,1}

ym (7)

4.2 Direct Classification

The direct classification approach [29] doesn’t rely on the reconstructed stim-
ulus. It employs a neural network R(·) that takes the EEG signals and two
speech features as input, and predicts the attended speaker through a regression
function.

y = R(f0, f1, e) (8)

R(·) can be a neural network to perform the regression task. In [29], R(·)
is achieved with 2 convolutional layers and 4 fully connected layers, that are
trained with the cross-entropy cost function.

The typical EEG-based AAD techniques are also reported in [29, 49]. They
laid the foundation for the recent deep learning approaches, that are discussed
next.

5 Deep Learning Approaches

With the advent of deep learning, several EEG-based AAD studies have re-
ported superior performance to traditional methods. The success of deep
learning approaches is built on the previous studies, namely stimuli reconstruc-
tion and direct classification, that can be summarized in three aspects.

1) Deep stimulus reconstruction
Deep learning models have shown superior performance for regression tasks

in signal processing. The stimulus reconstruction task can be considered as an
EEG-to-speech regression. It is generally believed that higher quality speech
reconstruction leads to more accurate auditory attention detection for stimulus
reconstruction approach to AAD. There have been recent studies exploring
deep learning techniques for high-dimensional representations. For instance,
the CNN-based vocoder [4], the dilated convolutional neural network [1, 2, 94],
Long Short-Term Memory (LSTM) based [82] and, etc. With the improved
modeling capability, these deep learning models improve the reconstruction
quality with a short decision window, therefore, lower detection latency.

2) Deep EEG representation learning
Deep learning is known for its capability to learn representations that are

highly effective for various downstream tasks, often outperforming traditional
feature extraction or selection techniques. EEG signals pose significant chal-
lenges due to their high levels of noise and dimensionality, making traditional
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feature representations less effective. In light of the successes of deep learning
in signal processing and pattern classification, deep representation learning
has emerged as a compelling alternative for EEG analysis.

One approach is the use of a CNN-based model as described in [82], which
employs a data-driven approach to find the optimal representation. The
other approach leverages prior knowledge from neuroscience to apply deep
learning techniques and extract specific information from EEG signals. For
example, a frequency-channel neural attention mechanism was introduced
in [23] to dynamically assign differentiated weights to EEG signals based on
their differing physiological origins. Additionally, the use of a Spiking Neural
Network (SNN) has been explored in [18, 41] to learn the EEG representation
from alpha power. The SNN is designed to imitate the neural computation
and coding strategies in the brain, making it a promising approach for EEG
representation.

3) Deep regression model
To associate EEG signals with speech stimuli, a regression model is often

employed in either direct classification or stimulus reconstruction techniques.
Notable examples of successful approaches include linear methods and non-
linear neural networks. Deep neural networks represent the recent advances [19],
where cross-model attention was used to dynamically adjust the weights of
audio components based on the EEG attention vector, and show superior AAD
performance.

However, it is important to note that EEG-based AAD is primarily studied
in controlled laboratory settings with acoustic environments. To facilitate the
application of EEG in real-world BCI systems, such as neuro-steered hearing
devices, several implementation challenges must be addressed. In the following
section, we will delve into these practical considerations and discuss their
significance.

6 Towards Neuro-steered Hearing Devices

Figure 3 depicts a general diagram of a neuro-steered hearing device for speech
perception. The microphone picks up a speech mixture, whereas the wearable
EEG device records the corresponding EEG signals. The neuro-steered hearing
device, guided by the EEG signals, seeks to extract the desired targeted speech
from the mixture. In other words, the EEG-based AAD directs the speaker
extraction mechanism to focus the attention on the target speaker. Therefore,
a neuro-steered hearing device is also called neuro-steered speaker extraction.
We next summarize the studies to overcome several implementation challenges.

• The clean target speech stimulus is unavailable during training and
testing.
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• The practical EEG signal acquisition on the move.

• The label of the attention is not available during training.

There have been studies in addressing the challenges, that also point to
the emerging research directions as summarized next.

Figure 3: A neuro-steered hearing device for speech perception in a cocktail party environ-
ment.

6.1 Modeling without Clean Speech Stimuli

In a real-world acoustic environment, it is technically challenging to record
the individual sound sources that make up a speech mixture. The individual
sound sources are required as the reference during the training of an auditory
attention detection model. Capturing each individual sound source during
run-time inference is nearly impossible, which necessitates the development
of neuro-steered speaker extraction solutions that can function without clean
speech stimuli.

6.1.1 Training AAD Model with Separated Speech as Reference

A neuro-steered speaker extraction can be implemented by two parallel pro-
cesses, speech separation, and auditory attention detection. Van Eyndhoven
et al. [109] combined EEG-based auditory attention detection and non-negative
blind source separation to effectively eliminate interfering sources, including
the speaker not being attended to, from noisy multi-microphone recordings
in a two-speaker acoustic environment. With the conventional envelope-
reconstruction-based AAD and classical energy-based blind source separation,
a system [11] was reported to show promising results in a cocktail environment.
The viability of such an approach was further tested in [33], where the focus
was on a binaural hearing aid in noisy environments with same-gender speakers
positioned in different relative locations. Deep clustering [59] was used as
the DNN-based speech separation algorithm instead of the previously utilized
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training-free linear signal processing algorithm. The findings of the study
indicated that AAD utilizing linear methods yielded comparable or superior
performance compared to pure DNN-based methods. Multiple microphones
were shown to improve speaker separation and the AAD performance over a
single microphone. Despite the positive outcomes, one should note that both
of these studies still necessitate the use of clean speech stimuli during training
or calibration to develop the EEG decoder. This means that the need for clean
speech stimuli has not been completely eliminated.

In real-world situations, it is not always necessary to separate all sources
as a listener typically is interested in one of the speakers. Ceolini et al. [25]
introduced the Brain-inspired Speech Separation (BISS) model which directly
performs speech extraction, without the need of speech separation. In this
study, a brain decoder is trained first to translate the brain signal into the
speech envelope, which is then used as supplementary information along with
short-time Fourier transform (STFT) features to train the extraction mask.
Additionally, in [63], a Brain Enhanced Speech Denoiser (BESD) was proposed
for end-to-end speech extraction from a mixture using Feature-wise Linear
Modulation (FiLM) [92]. While the end-to-end training in BESD is simpler
than the two-step approach in BISS, its performance is behind the state-of-
the-art. Generally, the performance of deep learning-based speech extraction
models is largely impacted by the availability of a large training dataset, which
can be challenging to obtain using cocktail party datasets. In comparison,
the extraction network in BISS was trained using a large artificial dataset,
resulting in robust and good extraction performance.

In short, there have been studies to avoid the need of clean speech stimuli
for auditory attention detection modeling. This can be achieved by working
with a separately trained speaker extraction or speech separation model.

6.1.2 Training Spatial AAD Model without Speech Reference

Other than detecting the attended speaker, it is possible to detect the spatial
location of the target speaker from EEG signals. It was found in neuroscience
research that the location of auditory attention is reflected in brain activity [45,
114]. This has motivated the study of a particular type of EEG-based AAD
to detect the spatial location of the target speaker, even in noisy or cluttered
environments. This is also referred to as spatial AAD. There are two types of
models, linear and nonlinear, in general. The spatial AAD takes a collection
of EEG signals as input and predicts the contrastive spatial location of the
attended speaker, e.g. left or right, front or rear. The training of such an AAD
model doesn’t rely on clean speech stimulus as the reference.

Bednar et al. [8] demonstrated that EEG responses to stimuli from differ-
ent directions could be accurately classified using a support vector machine
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(SVM) with a success rate significantly higher than the chance level of 25%.
Furthermore, it was shown that EEG data could be utilized to track the path
of an attended sound source with a linear reconstruction model [9]. Although
a linear reconstruction model was employed in their study, its performance
was inferior compared to envelope-based methods. Geirnaert et al. [51] im-
plemented a data-driven linear filtering technique called filterbank common
spatial pattern filters (FB-CSP) to achieve fast AAD, which outperformed
the stimulus reconstruction approach in terms of accuracy on short signal
segments. Further improvement was achieved by using a Riemannian geometry
classifier instead of a traditional CSP filter [54].

Just like in many pattern classification tasks, the convolutional neural
network (CNN) is an effective nonlinear model that detects the spatial focus of
attention in multi-speaker scenarios [110]. The algorithm is effective in making
accurate detection within 1-2 seconds. Feature representation is a crucial aspect
of AAD, as raw EEG signals have low signal-to-noise ratios. To tackle this
issue, Cai et al. [24] developed a method for spectro-spatial feature extraction
in AAD using a CNN based on the alpha power’s topographic specificity. This
was followed by the development of the end-to-end spatiotemporal attention
network (STAnet) [102]. STAnet integrates spatial and temporal attention
mechanisms to capture both the modulation weights of EEG channels and
the relevant temporal features of AAD. This spatiotemporal encoding method
provides higher information density and outperforms traditional linear and
non-linear methods on two widely used datasets. The use of deep learning
in AAD has led to the development of more effective algorithms, and with
continued advancements in feature extraction techniques, we can expect these
algorithms to continue to evolve and make a significant impact in the field.

6.2 Simplifying EEG Acquisition

A sophisticated EEG cap is commonly required for EEG signal acquisition.
For a practical neuro-steered hearing device, we call for a simplified EEG
signal acquisition setup.

6.2.1 EEG Channel Selection

To simplify the standard EEG cap, it is desirable to remove some redundant
EEG electrodes. The channel selection techniques are proven effective [81]. A
low-density setup is expected to improve wearing comfort and reduce prepara-
tion time.

Mirkovic et al. [81] performed an iterative backward elimination algorithm
to reduce electrodes from the initial electrode set and reported the first evidence
that detection performance remains stable at a low number of EEG electrodes
(from 96 channels to 25). Narayanan and Bertrand [83] developed a miniature
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EEG device by using a greedy group-utility-based channel selection strategy
and optimizing the channel combination through a mixed integer quadratic
equation (MIQP) solver. They also examined the effect of reducing the inter-
electrode distance and found that accuracy decreases significantly when the
distance is less than 3 cm [85].

Unlike hard selection of EEG channels, some studies seek to adjust the
weighting of EEG channels to derive more discriminative representations of
AAD [22, 101], that is soft selection. This approach leverages the fact that
some channels provide more insight into the brain’s decision-making process in
AAD, while others may provide less information. By assigning different weights
to different channels, soft selection takes full advantage of the information
provided by all channels, resulting in a more complete picture of AAD. In
comparison to the hard selection, the soft selection is better suited to handle
the variability and complexity of EEG signals, which can often be difficult to
capture using a fixed set of channels. By taking a more flexible approach, the
soft selection is able to account for the variability of EEG signals and provide
a more accurate representation of AAD.

6.2.2 Ear-EEG

In practical AAD tasks, the EEG signals are acquired from the subjects in a real-
world environment as opposed to a controlled setup in the lab. Unfortunately,
conventional scalp EEG data collection is typically done in the lab, which is
cumbersome and unsuitable for mobile applications. To address this, ear-EEG
has been developed as an alternative to traditional scalp EEG. It provides
less coverage of the brain but has the benefit of being more convenient and
portable.

As shown in Figure 4 (a), in-ear EEG places multiple electrodes in the exter-
nal auditory canal and over the outer ear through individualized earplugs [73].
Several studies have demonstrated that relevant neural signals can be success-
fully extracted from in-ear EEG recordings for AAD purposes [15, 65]. Despite
having weaker amplitude compared to scalp EEG recordings [42, 43], in-ear
EEG provides a convenient, portable, and virtually unnoticeable solution.

The around-the-ear EEG approach utilizes electrodes that are positioned
close to the ear in a circular configuration around the outer ear, as shown in
Figure 4 (b). Debener et al. [36] introduced the first flexible, printed Ag/AgCl
electrode system with 10 electrodes arranged in a c-shape to fit comfortably
on the ear. It’s called cEEGrid and offers a promising solution for neuro-
steered hearing aids. A series of validation studies demonstrated that the
cEEGrid could achieve reliable ear-EEG recordings [14, 66, 77]. Denk et al.
conducted a comparison between the signal properties of around-the-ear and
in-ear EEG electrodes [38]. They found that around-the-ear electrodes had
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Figure 4: Illustration of the ear-EEG design and layout (a) Ear-EEG in the ear (adopted
from [15]) (b) Ear-EEG around the ear. (Adopted from [36]).

several advantages over in-ear electrodes, including larger amplitude, improved
channel independence, and a higher signal-to-noise ratio (SNR). These benefits
were attributed to the greater inter-electrode distance in around-the-ear EEG
recordings.

Inspired by these findings, several research explored whether ear-EEG
recorded by cEEGrids can be used for detecting auditory attention. The study
by Mirkovic et al. [80] was the first to show that the cEEGrid ear-EEG method
can detect the attended speaker with an average accuracy of 69.3%, which is
above the chance level. On the other hand, the 84-channel cap-EEG resulted in
an accuracy of 84.8%. This difference in accuracy can be attributed to the signal
loss from the scalp to the ear. Specifically, Meiser and Bleichner [76] found that
cEEGrid ear-EEG recordings showed a reduction in signal loss of 21% to 44% for
four different auditory ERPs (N100, MMN, P300, and N400), when compared
to 96-channel cap-EEG. Despite the lower AAD accuracy, the cEEGrid method
has a practical advantage as it is portable, operated using a smartphone, and
nearly invisible [64]. It is worth noting that Holtze et al. [61] modified the
cEEGrid ear-EEG method inc̃itemirkovic2016target with individually chosen
hyperparameters and significantly improved AAD performance. This also
suggests that cEEGrid has the potential to be considered as a suitable EEG
acquisition tool for use in neural-guided hearing aids, and thus, deserves further
investigation to improve its performance.

6.3 Unsupervised Learning

Training an AAD model, one may expect that the label of the attended speaker
is known. However, such a label collection procedure is labor-intensive and
less practical in hearing devices. Therefore, unsupervised learning could be
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an alternative [52, 53]. The first AAD work based on stimuli reconstruction
approach with unsupervised learning is proposed in [53]. It assumes that only
the two envelopes of the competing speakers and EEG data are presented
during the training phase.

As it has been verified that the brain encodes attended and unattended
speakers differently, it is possible to identify which envelope is the attended one
and which one is unattended by using a decoder. This can be done by iteratively
replacing the ground truth attention labels utilized in supervised training with
the predicted labels obtained from the testing phase. This creates a self-
reinforcing effect, where each iteration improves the decoder’s performance,
even in the presence of labeling errors. This idea has been expanded upon in
a study by Geirnaert et al. [52], who developed a time-adaptive, unsupervised
stimulus reconstruction method that operates online. The method continually
adjusts and improves itself as new EEG and audio data streams in, through
the use of sliding window training or recursive training. Both of these methods
perform better than traditional time-invariant supervised decoders.

6.4 AAD for the Hearing-Impaired

While EEG-based AAD is mostly studied for normal hearing (NH) subjects,
neuro-steered hearing devices could assist hearing-impaired (HI) subjects as
well. In most of the publicly available EEG-based AAD datasets, the listening
subjects are mostly young and normal-hearing people, that don’t represent
the demography of the hearing impaired. Globally, 34 million children are
deaf or have hearing loss, and approximately 30% of people over the age of
60 have hearing loss [26]. Caution should be taken before applying previous
results or technologies to detect auditory attention in subjects with hearing
impairments.

Hearing loss in children can be present at birth (congenital) or develop
later in childhood (acquired). As for elderly people, several studies have shown
that, in addition to peripheral hearing loss, speech perception is also affected
by changes in brain structure as well as changes in brain function [57, 106,
115]. Given that aging and hearing loss are major causes of neuromodulation
decline in the listening brain [57, 107], AAD research needs to take these
effects into account. Nogueira et al [86] first compared the EEG-based AAD
performance of NH and HI listeners. 12 NH listeners (age: 26 ± 4.4 years)
and 12 bilateral implanted cochlear implant users (age: 60 ± 11.0 years) were
involved in this study. Results demonstrated that in principle it is possible
to detect selective attention in individuals with HI with an accuracy of up to
70%, while an average accuracy of NH listeners is higher than 80%. This is
also supported by that the HI listeners rated the competing speech task to be
more difficult [46]. Meanwhile, some studies have also verified the feasibility of
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detecting selective attention through the ear-EEG signals of HI subjects [48,
55, 87].

6.5 Implementation of Practical Hearing Devices

To bring the above AAD research from the laboratory to real life, there are
many other challenges that we need to overcome.

• It is known that movements and distractions are reflected in brain signals
associated with auditory attention during daily life. However, most AAD
research has so far been performed in controlled laboratory settings.
This potentially limits the generalizability of existing studies to complex
acoustic environments outside the laboratory.

• A practical system calls for real-time detection of auditory attention.
Usually, a complex model leads to high accuracy when operating at high
temporal resolutions. However, the computing cost and the limited data
resource need to be taken into consideration. We need to find a tradeoff
between the model’s complexity and accuracy. Furthermore, real-time
implementation is a causal system that can only use historical data.
That is different from the offline system.

• The coupling between the AAD system and the hearing device is also a
challenge. A fully mobile EEG recording system is needed. Moreover, a
compact design that includes brain signal acquisition, processing, speech
signal acquisition, and processing units, and their communications. Fur-
thermore, it usually introduces communication delays between hardware
components.

However, this study is still in its infancy. In [60], cEEGrids were placed
near the left and right ears of the participants to record ear-EEG signals related
to speech perception. For the first time, this was done for a continuous period
of six hours as the participants carried out various activities such as working
on a computer, conversing with coworkers, and taking lunch breaks, while also
performing auditory oddball tasks in and out of the laboratory. The results
indicated that the participants were able to differentiate between target and
non-target sounds even while engaged in their daily activities. Additionally, it
was found that the participants had higher ERP amplitudes in response to
target tones as compared to standard tones. These findings suggest that it is
possible to study auditory attention outside of traditional laboratory settings.

Inspired by this, a hearing aid-EEG research platform has been developed
in [34, 35]. As shown in Figure 5, the Portable Hearing Laboratory (PHL)
is a comprehensive hearing aid research system that can be used to present
auditory stimuli to subjects and perform low-latency audio signal processing.
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Figure 5: A hearing aid with ear-EEG recordings platform (Adopted from [35].)

As for the EEG system, it consists of cEEGrid, a mobile EEG amplifier, and
a smartphone. Therefore, both audio and EEG data can be acquired and
synchronized using this hearing aid-EEG research device. While the PHL and
cEEGrid are not entirely suitable for daily use, this setup provides a potential
platform for exploring closed-loop EEG & audio applications in a research
context.

7 Datasets for Auditory Attention Detection Study

In recent years, there are few EEG datasets suitable for AAD research. Typ-
ically these datasets were collected from a dozen of young normal-hearing
subjects. To reduce the cognitive load, it is best that we recruit speakers
to listen to their native languages. Since the data were recorded in different
countries, the languages vary from dataset to dataset. The characteristics of
all publicly available data sets are summarized in Table 1.

The collection of AAD datasets typically follows a similar procedure. Take
ESAA [20, 21] as an example, the participants were instructed to focus on
one speaker while disregarding the other in a scenario with two overlapping
speakers. The speech material consisted of various Chinese narratives narrated
by two native speakers and was normalized to have the same root mean squared
intensity, making the stimuli appear equally loud. The stimuli were processed
using a head-related transfer function (HRTF) to simulate speech sources
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Table 1: The characteristics of different AAD datasets. NH = Normal-hearing, HI =
Hearing-impaired.

NH HI # cap-EEG Duration per
Dataset subjects subjects Language channels subject (min)

Das-2015 [32] 16 0 Flemish 64 48
Fuglsang-2018 [47] 18 0 Danish 64 50
Fuglsang-2020 [46] 22 22 Danish 64a 40
ESAA [21] 20 0 Chinese 64 38
Neural Tracking to go [100] 20 0 German 24b 30

Note: aIn-ear EEG was also recorded for 19 of the 44 subjects. bA fully mobile EEG Device.

located at 90-degree intervals to the left and right of the subjects. EEG
data was acquired using a BrainAmp system operating at a sampling rate of
8,192 Hz, with a 64-channel recording setup. To ensure that the participants
were attentive during the experiment, participants were asked to complete a
multiple-choice questionnaire following each trial to assess their comprehension
of two separate narratives. To avoid fatigue or loss of focus, participants were
given short breaks after each trial and longer breaks after 8 consecutive trials.
To control for potential biases, the position of the target streams and the
gender of the speakers were randomized for each participant throughout the
course of the experiments.

Overall, the size of AAD datasets is highly limited, especially in the
context of deep learning. This calls for a great effort in data collection.
Furthermore, there is a rising interest in augmenting speech processing tasks
with additional biological signals [97], such as surface electromyography (sEMG)
and Electrooculography (EOG) signals. The integration of these multimodal
physiological signals holds promise for AAD-enabled applications. Such studies
rely on multimodal physiological signals to unlock the AAD potential.

8 Challenges and Directions

EEG-based speech perception has achieved promising success in solving the
cocktail party problem, but there are challenges associated with its adoption
for neuro-steered hearing devices that merit further discussion.

8.1 Process of the Noisy EEG Signals

Several traditional signal processing techniques have been studied in the area
of EEG-based speech perception, as demonstrated in recent review articles [29,
49]. Despite these efforts, the EEG signal still exhibits a poor signal-to-noise
ratio, resulting in limited success in achieving optimal AAD performance.
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Deep learning techniques that process raw input data are referred to as
representation learning methods. The objective of representation learning is
to extract the most significant features from raw data, leading to improved
pattern recognition performance [10]. Unfortunately, most previous AAD archi-
tectures have not benefited from representation learning. In recent years, some
researchers have suggested the use of advanced deep learning methods [23, 102],
which have the potential to extract discriminative features that can improve
AAD performance. Therefore, it is worth further investigating deep learning
frameworks that extract representations directly needed for classification or
detection from raw EEG signals. Specifically, to extract relevant attention
features from raw EEG, information about the EEG signals needed to be
further exploited, e.g., the characteristics in the time, frequency, and spatial
domains. However, because most deep learning models benefit from large
model sizes, how to adapt them to AAD’s small dataset remains a challenge.
Transfer learning has gained popularity in EEG signal processing as a potential
solution to overcome the limitations of small datasets [111]. This technique
involves utilizing pre-trained models that have been extensively trained on
larger EEG datasets or similar tasks. The pre-trained models are then fine-
tuned using smaller, task-specific EEG datasets. By leveraging the knowledge
acquired during pre-training, transfer learning allows for rapid adaptation
towards specific EEG-based AAD tasks [117].

8.2 Generalization of AAD models

There are two main aspects of generalization. One is the generalization across
subjects, another is the generalization across scenarios.

The variability of brain signals in individuals presents a challenge for EEG-
based BCI systems, particularly in subject-independent conditions. Brain
signals of each individual can change over time due to differences in their
physiological and psychological traits [69]. Additionally, the unique spatial
origin, amplitude, and variability of brain signals can make it difficult to detect
auditory attention tasks in a subject-independent manner [95]. In general,
traditional auditory attention detection methods in EEG-based BCI systems
work well in subject-dependent conditions but struggle in subject-independent
conditions. This may be due to the fact that brain signals from different
individuals are highly variable, discriminative, and carry specific meaning in
auditory attention detection tasks. To compensate for these variations, BCI
systems often require a calibration process, which adds an extra burden for
the user and hinders the practical use of BCIs.

In addition to generalization across subjects, generalization across scenarios
is also a challenge for EEG-based BCI systems. Most AAD studies are
conducted in controlled laboratory settings, which limits the generalization of
findings to complex acoustic environments in real-life scenarios. In real-life
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situations, subjects often handle multiple tasks, which are reflected in their
brain activities. Selective listening is just one of these tasks, and detecting
auditory attention from the mixture of brain activities in EEG signals is an
area that requires further study.

8.3 Complexity, Cost, and Tracking Latency

In most auditory attention studies, we make a decision based on a single
window of the signal. However, selective listening in the human brain is a
continuous process. It is likely that human cognitive resources, loaded by the
cognitive process of auditory attention to the speech sources, are affected by its
previous cognitive states, as well as other factors such as distracting auditory
events, moving auditory events, or other cognitive and motor activities. In
short, tracking auditory attention is of practical need and yet an unexplored
challenging research problem.

In general, deep neural networks have a high demand for energy consump-
tion, data requirements, and computational power. However, these demands
are particularly pronounced in BCI applications, including neuro-steered hear-
ing devices, due to the limited data size, energy supply, and the need for
real-time response. To address these challenges, various hardware accelerators
have been developed to manage the high computational demands of deep
learning models. Despite these advances, there remains a need for a low-cost,
energy-efficient AAD algorithm that can be implemented on a single chip.

The human brain is a sophisticated network of neurons and synapses
that transmit information through electrical impulses referred to as spikes.
This remarkable processing capability has led to the evolution of spiking
neural networks (SNNs) as a potentially valuable computing framework. SNNs
operate by allowing neurons to communicate with each other through spikes
with adjustable weight values that are transmitted via synapses connecting
the neurons [72]. Research has demonstrated that the low computational cost
of SNNs makes them well-suited for deployment on low-power hardware [104].

Considering that the AAD model is built to process brain signals, a brain-
like model should be a natural choice. The utilization of SNNs in AAD offers
several advantages over traditional deep learning models. Unlike deep learning
models, SNNs are capable of processing data in real-time and can effectively
handle noisy and unstructured data. Additionally, SNNs consume significantly
less power compared to deep learning models, making them ideal for practical
deployment. The ability of SNNs to simulate the dynamic nature of biological
neurons and model the temporal relationships between spikes is also beneficial
for AAD applications.

In conclusion, SNNs represent a promising computing paradigm that offers
several advantages over traditional deep learning models. The low computa-
tional cost, real-time processing capabilities, and ability to handle noisy and
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unstructured data make SNNs a suitable choice for AAD applications. Further
research in the field of SNN-based AAD is encouraged, as it has the potential
to lead to exciting new developments in this field.

8.4 Connection between Speech Separation and AAD

As the two sub-fields of speech perception in cocktail party environments, the
development speed of speech separation and AAD are imbalanced, especially
in the deep learning era. For speech separation, it is easy to generate the
mixture from the public speech corpus, leading to a low cost of data acquisition.
Therefore, current speech separation models employ deep learning to improve
representative learning and dependency modeling and achieve amazing success.

However, for the AAD, these sophisticated models are not so easy to exploit.
Given the collection of EEG data is labor-intensive, the small size of the AAD
dataset makes the training of the deep learning models easy to overfit. Besides,
although assistive speech perception can be achieved by the pipeline of speech
separation and AAD, it is not clear whether the two local optimal achieve
the global optimal. In other words, the impact of the artifacts introduced by
speech separation on the AAD is not clear. The end-to-end training could be a
potential solution, however, as indicated in [25], the performance is still limited
by the data size. Although the separation data are easy to make, it is almost
impossible to have the equivalent EEG data. Besides, the separation module
usually introduces the permutation problem, which means the sequence of the
output separated speech is usually randomly which may affect the performance
of the AAD training. Although permutation invariant training (PIT) [119]
can be adopted in the training stage, it cannot be employed in the online
separation phase given the latency issue.

Moreover, there is no consensus on how to evaluate these pipeline systems.
As the performance of speech separation is measured by SI-SNR whereas the
AAD is evaluated with accuracy. In some cases, System A might perform
better than System B on separation performance but worse on AAD accuracy,
the comparison becomes confusing. In addition, as the AAD accuracy is
closely related to the length of the decision window, a longer decision window
indicates higher accuracy, but is less sensitive to attention shifting. Thus,
from the perspective of speech perception, using the accuracy of AAD as
a direct evaluation metric may also not be appropriate. Besides, the gain
control of speeches for continuous decoding in a cocktail party environment
generates another problem. As sudden switching of speakers (of which many
by mistake) cause perceptually unpleasant spurious. Although an interpretable
performance metric for AAD algorithms has been developed with adaptive
gain controls in [50] using a Markov chain model, which assumes independence
between consecutive decisions. However, in real-world applications, data is
often segmented with overlapping in order to reduce processing latency. As
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a result, the connection between the deep-learning-based speech separation
model and AAD in the design of neuro-steered hearing devices remains an
open question.

9 Conclusion

This paper provides a comprehensive overview of EEG-based AAD for speech
perception in noisy environments, such as cocktail party scenarios. It covers
the essential concepts and the latest developments in the field up to 2023.
The paper explores the underlying mechanisms of speech perception and the
ways to build a machine that mimics the human brain to solve the cocktail
problem. Additionally, the paper provides an overview of the current deep
learning approaches in the field, discussing their potential and limitations.
Furthermore, it points out the gap between EEG-based speech perception
research and neuro-steered hearing device, and provides a list of resources
available to advance the research. Overall, this article is a valuable resource for
anyone interested in comprehending EEG-based auditory attention detection
and developing novel deep learning techniques.
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