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ABSTRACT

We segregate a region of interest into several zones, and consider the
problem of estimating the zone of target sensor node using received
signal power at the sensor node corresponding to the transmitted signal
from each anchor node. Contrary to typical indirect zone estimation
methods (location estimation followed by zone mapping), we propose
direct zone estimation with maximum likelihood approach for Rayleigh
and Nakagami-Rice fading channels. The advantage of the proposed
approach is confirmed via computer simulations. However, the perfor-
mance evaluation using measurement data has revealed the impact of
non-uniform antenna beam patterns of practical sensor nodes. Thus,
we also propose to incorporate the effect of the directivity of practical
sensors in the evaluation of likelihood function, and demonstrate the
validity of the proposed approach using measurement data.
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1 Introduction

IoT (Internet of Things) sensors play a pivotal role in the realisation of smart
cities, buildings, homes, offices, and factories. They are embedded in the
infrastructure with wireless devices such as Bluetooth, Zigbee, and 802.15.4,
and support monitoring and control of the surrounding environment. Typical
monitoring and control applications include controlling air conditioners with
embedded IoT temperature sensors in the office, controlling the brightness
of lights with embedded IoT brightness sensors in the living room, notifying
workers when they leave designated safety walkways on the factory premises
using IoT sensors and so on. These IoT sensors could enable new applications
by effectively leveraging existing infrastructure.

Most monitoring and control applications require the location information
of people or devices in indoor environments. Depending on the required level of
granularity of the location information, indoor positioning could be categorized
into position estimation (fine-grained) and zone estimation (coarse-grained).
Applications such as monitoring designated safety walkways require fine-grained
location information. On the other hand, applications such as temperature or
brightness control don’t require a fine-grained location information. Instead, a
coarse-grained location should be estimated with high probability. Figure 1
shows an illustration of the use case scenario of zone estimation, where all the
luminaires are Bluetooth enabled and the target sensor (smartphone carried by
a person) could be in any location. Lights are turned on only in the person’s
zone to reduce energy consumption.

Several methods for the fine-grained position estimation have been proposed
that make use of sensor networks as in Shit et al. [16] and Niculescu and Nath

Figure 1: Luminaires enabled only in the zone in which human is present.
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[13]. Position estimation using IoT sensors could be categorized into two types,
namely dedicated device approach and non-dedicated device approach. In the
dedicated device approach, a dedicated distance measuring device embedded
in IoT sensor is used to estimate the distance. And then, the position of target
node is estimated using the distance information between target and anchor
nodes (sensor nodes whose locations are known). For example, active bat [3]
and cricket [14] use ultrasonic waves to measure the distance between nodes to
estimate position. Dedicated device based methods can generally estimate the
position with high accuracy, but have the disadvantage of high cost. In the
non-dedicated device approach, wireless communication signals transmitted
by IoT sensors are typically used for position estimation as in Yonezawa et al.
[19] and Yick et al. [18]. For example, trilateration Manolakis [11], min-max
Langendoen and Reijers [10], and Maximum Likelihood (ML) [8] use received
signal power to estimate the position. Non-dedicated device based methods
incur no additional cost, but the accuracy of estimated location is not as high
as dedicated device based methods.

In coarse-grained zone estimation, a region of interest is divided into multi-
ple zones, and a person or device could be in any one of these zones. The goal
is to estimate the zone to which the person or device belongs. Zone estimation
could be categorized into two types, namely indirect and direct approaches.
Indirect zone estimation first estimates the target sensor position using one of
the position estimation methods. The estimated position is then assigned to
predetermined zones. In principle, any method of position estimation can be
used for the indirect approach to zone estimation. On the other hand, direct
approach estimates the target sensor zone without estimating the position.
From a viewpoint of data-processing inequality [5], the direct zone estimation
approach could be preferable to the indirect approach. To the best of our
knowledge, schemes associated with the direct zone estimation have not been
extensively studied, while the scheme based on naive received signal strength
(RSS) is proposed in Warmerdam and Pandharipande [17]. This naive RSS
scheme directly determines the target sensor zone by identifying the zone
surrounded by anchors with the highest average RSS.

In this paper, we consider the problem of the direct zone estimation for IoT
applications such as temperature or brightness control in indoor environments,
and propose an ML based direct sensor zone estimation scheme using received
signal power from anchor nodes observed at the target sensor node. We
have presented preliminary results of the proposed approach based mainly on
computer simulations in Honda et al. [9]. However, detailed analysis of the
proposed approach using measurement data has revealed the large impact of the
non-uniform antenna beam pattern of practical sensors on the zone estimation
results, which was not considered in our preliminary study. Therefore, we have
modified our algorithm by incorporating the directivity of the sensors into the
likelihood function, where the directivity of practical sensors is obtained by
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pre-measurement. It should be noted here that we have numerically confirmed
that not all, but only some samples of sensors are sufficient to pre-measure the
directivity, which can greatly reduce the load of measurement and is beneficial
from a practical deployment point of view. We have compared the performance
of the proposed direct zone estimation method in terms of the zone detection
rate with that of existing direct and indirect zone estimation methods with
computer simulations and measurement data, and have demonstrated the
validity of the proposed approach for the zone estimation problem.

The specific contributions of this journal version are listed below:

• We have performed measurements in a wide area of around 110 square
meters and evaluated zone detection rates of existing indirect zone
estimation and proposed direct zone estimation with ML.

• We have observed the impact of practical sensor’s non-uniform antenna
beam patterns on zone detection rate, and have compensated this effect
by incorporating directivity of practical sensors into likelihood function.

• Since pre-measuring antenna beam pattern of each sensor is a tedious
task, we have considered the possibility of re-using a sample sensor
device’s beam pattern to other sensor devices of the same type.

• We have compared the zone estimation performance of the proposed
direct ML approach with the naive RSS scheme proposed by Warmerdam
and Pandharipande [17], as well as indirect zone estimation approach
using competitive position estimation schemes including the ML based
method [8], the trilateration method [11] and the min-max method [10].

The rest of the paper is organized as follows. Section 2 explains the direct
zone estimation problem and received signal model. Section 3 explains the
proposed direct zone estimation method with ML. Section 4 explains the
simulation scenario along with evaluation results. Section 5 explains the
measurement scenario along with evaluation results, followed by concluding
remarks in Section 6.

2 Direct Zone Estimation Problem and Received Signal Model

2.1 Problem Definition

The assumptions on the problem setting are as follows:

• Q anchor nodes (c1, c2, · · · , cQ) are placed at pre-determined known
locations.

• A target sensor node u, whose position is unknown, is placed in the area
where the anchor nodes are located.
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Figure 2: Example of node placement for Q = 16.

• Each anchor node cj transmits radio signals N times, where L symbols
are included in each transmission.

Under these assumptions, we consider the problem of estimating the zone
to which the target sensor node u belongs using the received signal power at
the sensor node u corresponding to the transmissions from Q anchor nodes.
Figure 2 shows an example of the arrangement of anchor nodes when they are
placed on regular grids with Q = 16. Here, in the case of Figure 2, each zone
is defined as a minimum region surrounded by four anchor nodes, where the
zone is denoted by w ∈ {1, 2, · · · , R} and R is the number of zones. Let d̃cj
denote the distance between the anchor node cj and the sensor node u, and
dcj ,w denote the distance between the anchor node cj and the center of zone
w. The zone to which the sensor node u belongs is represented as wu. Thus,
the problem of zone estimation results in the estimation of the zone index wu.

In the following sections, we describe received signal model at the sensor
node u for two different channel models, namely, Rayleigh fading channel
model and Nakagami-Rice fading channel model.

2.2 Received Signal Model

2.2.1 Received Signal Model in Rayleigh Fading Channel

In this section, we assume that channels between nodes are modeled as fre-
quency non-selective Rayleigh fading channels with path loss. The received
signal at the sensor node u for the lth transmitted symbol in the nth transmis-
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sion period from the anchor node cj can be written as

yl,nray,cj = hn
ray,cjx

l,n
cj + vl,ncj , (1)

where xl,n
cj ∈ C is the lth transmitted symbol in the nth transmission period

from the anchor node cj with mean 0 and
∣∣∣xl,n

cj

∣∣∣2 = 1, hn
ray,cj ∈ C is the

channel coefficient between anchor node cj and the sensor node u in the nth

transmission period from the anchor node cj including the impact of transmit
power and antenna beam pattern, vl,ncj ∈ C is the complex white Gaussian
measurement noise with mean 0 and variance σ2

v, and C is the set of all
complex numbers. The channel coefficient hn

ray,cj follows a complex Gaussian
distribution with mean 0 and variance bray,cj which is given by

bray,cj = PGcj ,uGu,cj rrefray

(
dref

d̃cj

)α

, (2)

where α is the path loss exponent, P is the transmit power from each anchor
node, Gcj ,u is the antenna directivity gain of anchor node cj in the direction
of sensor node u, and Gu,cj is the directivity gain of sensor node u in the
direction of cj . We assume block fading channels, where the channel coeffi-
cients are constant during one transmission period of L symbols, but vary
independently in different transmission periods. In order to take the path loss
into consideration, we have measured the average received power rrefray when
a signal is sent with transmit power of P as 1 and with inter-node distance
of dref , and use this value as a reference. Note that the impact of antenna
directivity gains is considered while measuring the reference average received
power.

Defining the received signal vector at the sensor node u composed by L
received symbols in the nth transmission period from the anchor node cj as

yn
ray,cj =

[
y0,nray,cj , y

1,n
ray,cj , · · · , yL−1,n

ray,cj

]T
, (3)

the instantaneous total received power at the sensor node u in the nth trans-
mission period from the anchor node cj is given by

rnray,cj =
(
yn
ray,cj

)H
yn
ray,cj

= L
∣∣∣hn

ray,cj

∣∣∣2 + L−1∑
l=0

∣∣∣vl,ncj

∣∣∣2 + (hn
ray,cj

)∗ L−1∑
l=0

(
xl,n
cj

)∗
vl,ncj

+ hn
ray,cj

L−1∑
l=0

xl,n
cj

(
vl,ncj

)∗
. (4)
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Here, since xl,n
cj and vl,ncj are assumed to be uncorrelated, we approximate as

L−1∑
l=0

(
xl,n
cj

)∗
vl,ncj = 0 (5)

and
L−1∑
l=0

xl,n
cj

(
vl,ncj

)∗
= 0. (6)

Then, rnray,cj can be approximated as

rnray,cj ≈ L
∣∣∣hn

ray,cj

∣∣∣2 + L−1∑
l=0

∣∣∣vl,ncj

∣∣∣2 . (7)

2.2.2 Received Signal Model in Nakagami-Rice Fading Channel

Next, we consider the case where channels between nodes are modeled as
frequency non-selective Nakagami-Rice fading channels with path loss. The
received signal at the sensor node u for the lth transmitted symbol in the nth

transmission period from the anchor node cj is given by

yl,nric,cj
= hn

ric,cjx
l,n
cj + vl,ncj , (8)

where hn
ric,cj

∈ C is the channel coefficient between anchor node cj and the
sensor node u in the nth transmission period from the anchor node cj including
the impact of transmit power and antenna gains, and it follows a complex
Gaussian distribution with mean acj ,u and variance

bric,cj = PGcj ,uGu,cj rrefric

(
dref

d̃cj

)α

. (9)

Here, acj ,u ∈ C is the amplitude corresponding to the line-of-sight (LoS) path
between the sensor node u and the anchor node cj . rrefric represents the
measured average received power of the scattered wave component when a
signal is sent with transmit power of P = 1 and with inter-node distance dref
and pre-measured antenna directivity gains. The Rician factor K is the ratio
of the power of the LoS component to that of the scattered component and is
expressed as

K =

∣∣acj ,u∣∣2
bric,cj

. (10)
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The instantaneous total received power at the sensor node u in the nth

transmission period from the anchor node cj is given by

rnric,cj ≈ L
∣∣∣hn

ric,cj

∣∣∣2 + L−1∑
l=0

∣∣∣vl,ncj

∣∣∣2 , (11)

when we employ the approximations in (5) and (6) as in the case of Rayleigh
fading channel model.

3 Proposed Direct Zone Estimation with Maximum Likelihood

ML estimation is an approach to estimate parameters in the probability
distribution from the observed samples using likelihood function. In the zone
estimation problem considered in this paper, the instantaneous total received
power is used as the sample, and the unknown parameter to be estimated is
the index wu of the zone to which the sensor node u belongs.

3.1 Maximum Likelihood Direct Zone Estimation in Rayleigh Fading
Channel Model

In order to simplify the problem, we first approximate the position of target
sensor node u to be at the center of the zone wu for sensor zone estima-
tion. Then, the channel coefficient hn

ray,cj in (7) follows a complex Gaussian
distribution with mean 0 and variance

bray,cj ,wu
= PGcj ,wu

Gwu,cj rrefray

(
dref

dcj ,wu

)α

. (12)

Note that wu is the zone index. Thus, Gcj ,wu
indicates the gain of the anchor

node cj in the direction of the center of zone wu, and Gwu,cj indicates the
gain of the sensor node assuming it is located at the center of zone wu to the
anchor node cj . In order to derive the conditional probability density function
(PDF) of rnray,cj in (7) given the zone index wu to which the sensor node u
belongs, we define

snray,cj = L
∣∣∣hn

ray,cj

∣∣∣2 , (13)

tncj =

L−1∑
l=0

∣∣∣vl,ncj

∣∣∣2 , (14)

and rewrite rnray,cj as
rnray,cj = snray,cj + tncj . (15)
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Since the sum of squares of two independent Gaussian random variables follows
an exponential distribution [15], the conditional PDF of snray,cj given wu is
written as

p(snray,cj |wu) =
1

L P rrefray

(
dref

dcj,wu

)α
× exp

−
snray,cj

L PGcj ,wu
Gwu,cj rrefray

(
dref

dcj,wu

)α
 .

(16)

On the other hand, since the sum of independent exponential random variables
follows the Erlang distribution [6], the PDF of tncj is given by

p(tncj ) =

(
tncj

)L−1

(L− 1)!σ2L
v

exp

(
−
tncj
σ2
v

)
. (17)

Moreover, since the PDF of the sum of independent random variables is a
convolution of each PDF [7], the conditional PDF of rnray,cj given wu is written
as

p(rnray,cj |wu)

=

(
L PGcj ,wuGwu,cj rrefray

(
dref

dcj,wu

)α)L−1

(L− 1)!
(
L PGcj ,wuGwu,cj rrefray

(
dref

dcj,wu

)α
− σ2

v

)L
× exp

−
rnray,cj

L PGcj ,wu
Gwu,cj rrefray

(
dref

dcj,wu

)α


×

Γ(L)− Γ

L,

 1

σ2
v

− 1

L PGcj ,wu
Gwu,cj rrefray

(
dref

dcj,wu

)α
 rnray,cj


 ,

(18)

where Γ(x) and Γ(a, x) represent the gamma function and the incomplete
gamma function, respectively, which are defined as

Γ(x) =

∫ ∞

0

tx−1e−tdt, (19)

Γ(a, x) =

∫ ∞

x

ta−1e−tdt. (20)
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From (18), assuming that the instantaneous total received powers at the sensor
node u from different anchor nodes are independent, the likelihood function
when the instantaneous total received power from all anchor nodes is observed
at the sensor node u is given by

P (rnray,c1 , r
n
ray,c2 , · · · , r

n
ray,cQ |wu)

=

Q∏
j=1


(
L PGcj ,wu

Gwu,cj rrefray

(
dref

dcj,wu

)α)L−1

(L− 1)!
(
L PGcj ,wu

Gwu,cj rrefray

(
dref

dcj
,wu

)α
− σ2

v

)L
Γ(L)− Γ

L,

 1

σ2
v

− 1

L PGcj ,wu
Gwu,cj rrefray

(
dref

dcj,wu

)α
 rnray,cj





× exp

−
Q∑

j=1

rnray,cj

L PGcj ,wuGwu,cj rrefray

(
dref

dcj,wu

)α
 .

(21)

Moreover, assuming that the instantaneous received power at each transmission
period is independent, the ML estimate of the zone index to which the sensor
node u belongs is obtained by solving the optimization problem of

ŵu = argmax
wu

N∑
n=1


Q∑

j=1

log

∣∣∣∣∣∣∣∣∣
(
L PGcj ,wuGwu,cj rrefray

(
dref

dcj,wu

)α)L−1

(L− 1)!

(
L PGcj ,wuGwu,cj rrefray

(
dref

dcj ,wu

)α

− σ2
v

)L

∣∣∣∣∣∣∣∣∣
+ log

∣∣∣∣∣∣∣∣Γ(L)− Γ

L,

 1

σ2
v

−
1

L PGcj ,wuGwu,cj rrefray

(
dref

dcj,wu

)α

 rnray,cj


∣∣∣∣∣∣∣∣

−
rnray,cj

L PGcj ,wuGwu,cj rrefray

(
dref

dcj,wu

)α


 (22)

with exhausitive search.

3.2 Maximum Likelihood Direct Zone Estimation in Nakagami-Rice
Fading Channel Model

Approximating the position of sensor node u to be center of the zone wu, the
channel coefficient hn

ric,cj
in (11) follows a complex Gaussian distribution with
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mean acj ,wu
and variance

bric,cj ,wu
= PGcj ,wu

Gwu,cj rrefric

(
dref

dcj ,wu

)α

, (23)

where acj ,wu
denotes the amplitude corresponding to the LoS path between

the center of the zone wu and the anchor node cj , and the Rician factor K
can be written as

K =

∣∣acj ,wu

∣∣2
bric,cj ,wu

. (24)

Defining

snric,cj = L
∣∣∣hn

ric,cj

∣∣∣2 , (25)

tncj =

L−1∑
l=0

∣∣∣vl,ncj

∣∣∣2 , (26)

in (11), rnric,cj can be written as

rnric,cj = snric,cj + tncj . (27)

The conditional PDF of snric,cj given wu is written as (for detailed derivation,
see Appendix)

p(snric,cj |wu) =
1

L PGcj ,wu
Gwu,cj rrefric

(
dref

dcj,wu

)α
× exp

−
∣∣acj ,wu

∣∣2 + snric,cj
L

PGcj ,wuGwu,cj rrefric

(
dref

dcj,wu

)α


× I0

 2
∣∣acj ,wu

∣∣√ snric,cj
L

PGcj ,wu
Gwu,cj rrefric

(
dref

dcj,wu

)α
 , (28)

where I0(z) denotes the zero-order modified Bessel function of the first kind
defined as

I0(z) =
1

2π

∫ 2π

0

exp (z cos θ) dθ. (29)

Since the PDF of tncj is given by (17), the conditional PDF of rnric,cj given wu

can be obtained by the convolution of p(snric,cj |wu) and p(tncj ), but it is difficult
to obtain it in a closed form because p(snric,cj |wu) contains the zero-order
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modified Bessel function of the first kind. The zero-order modified Bessel
function of the first kind can be approximated by the exponential function
when the Rician factor K is large, but it is still difficult to calculate the
convolution even with this approximation. Therefore, we use the property
that the Nakagami-Rice distribution can be approximated by the Nakagami-m
distribution NAKAGAMI [12]. The PDF of the Nakagami-m distribution is
expressed as

p(z) =
2mm

ΩmΓ(m)
z2m−1 exp

(
−m

Ω
z2
)
. (30)

Using the Nakagami-m distribution, the conditional PDF of snric,cj given wu is
written as

p(snric,cj |wu) =
1

L Γ(mcj ,wu
)

(
mcj ,wu

Ωcj ,wu

)mcj,wu

×
(
snric,cj
L

)mcj,wu−1

exp

(
−
mcj ,wu

snric,cj
Ωcj ,wu

L

)
, (31)

where mcj ,wu
and Ωcj ,wu

are given by

mcj ,wu
=

(∣∣acj ,wu

∣∣2 + PGcj ,wuGwu,cj rrefric

(
dref

dcj,wu

)α)2
PGcj ,wu

Gwu,cj rrefric

(
dref

dcj,wu

)α
×
(
2
∣∣acj ,wu

∣∣2 + PGcj ,wu
Gwu,cj rrefric

(
dref

dcj,wu

)α)
,

(32)

Ωcj ,wu
=
∣∣acj ,wu

∣∣2 + PGcj ,wu
Gwu,cj rrefric

(
dref

dcj ,wu

)α

, (33)

respectively. Thus, the conditional PDF of rnric,cj given wu is obtained as

p(rnric,cj |wu) =
Γ(L)

Γ(L+mcj ,wu
)

(
mcj ,wu

Ωcj ,wu

)mcj,wu
(
1

L

)mcj,wu−1

× 1

L!σ2L
v

(rnric,cj )
L+mcj,wu−1 exp

(
−
rnric,cj
σ2
v

)
× 1F1

(
mcj ,wu ;L+mcj ,wu ;

(
1

σ2
v

−
mcj ,wu

LΩcj ,wu

)
rnric,cj

)
(34)

by the convolution of (17) and (31), where 1F1(a; b; z) denotes the general
hypergeometric function defined as

1F1(a; b; z) =
Γ(b)

Γ(a)

∞∑
n=1

Γ(a+ n)zn

Γ(b+ n)n!
. (35)
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From (34), assuming that the instantaneous total received powers at the sensor
node u from different anchor nodes are independent, the likelihood function
when the instantaneous total received power from all anchor nodes is observed
at the sensor node u is given by

P (rnric,c1 , r
n
ric,c2 , · · · , r

n
ric,cQ |wu)

=

Q∏
j=1

{
Γ(L)

Γ(L+mcj ,wu
)

(
mcj ,wu

Ωcj ,wu

)mcj,wu
(
1

L

)mcj,wu−1

× 1

L!σ2L
v

(rnric,cj )
L+mcj,wu−1 exp

(
−
rnric,cj
σ2
v

)
×1F1

(
mcj ,z;L+mcj ,wu ;

(
1

σ2
v

−
mcj ,wu

LΩcj ,wu

)
rnric,cj

)}
. (36)

Thus, the ML estimate of the zone index to which the sensor node u belongs
is obtained by solving the optimization problem of

ŵu = argmax
wu

N∑
n=1

 Q∑
j=1

{
log

(
Γ(L)

Γ(L+mcj ,wu)

)

+mcj ,wu
log

(
mcj ,wu

Ωcj ,wu

)
+
(
mcj ,wu

− 1
)
log

(
1

L

)
+ log

(
1

L!σ2L
v

)
+
(
L+mcj ,wu − 1

)
log(rnric,cj )−

rnric,cj
σ2
v

+ log

(
1F1

(
mcj ,wu

;L+mcj ,wu
;

(
1

σ2
v

−
mcj ,wu

LΩcj ,wu

)
rnric,cj

))}]
(37)

with exhaustive search assuming that the instantaneous received power at each
transmission period is independent.

4 Simulation Results

In this section, we compare the estimation success probabilities of the proposed
ML-based direct zone estimation with naive RSS scheme-based direct zone
estimation [17], as well as indirect zone estimation methods using existing
position estimation methods, such as the existing ML [8], the trilateration [11],
and the min-max [10], by computer simulations to demonstrate the validity of
the proposed approach. Note that, in all simulations in this section, we assume
ideal omni-directional antenna both for the transmission from anchor nodes
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and for the reception at the sensor node for simplicity, and also because it is not
straightforward to take non-uniform antenna beam pattern into consideration
in the indirect zone estimation approach.

4.1 Simulation Specifications

Figure 3 shows the arrangement of the nodes used in the simulations. The
anchor nodes are placed on 3 × 6 regular grid points on the ceiling of the
three-dimensional space. The grid spacing is set to 3 [m], and the height from
the ground to the ceiling is set to 3 [m]. Ten sensor nodes (I to X) are placed
at a height of 0.42 [m] from the ground. Figure 4 shows a view of the node
arrangements shown in Figure 3 from above, where each zone is defined as a
minimum region surrounded by four anchor nodes. We consider three possible
scenarios for each sensor node: center of the zone (p1, blue), 0.75 [m] upward
from the center (p2, purple), and 0.75 [m] to the left (p3, green), as shown in
Figure 4. We evaluate the performance in two different channel models, namely,
Rayleigh fading channel model and Nakagami-Rice fading channel model. The
zone to which the sensor node belongs is estimated from the received signal
power at the sensor node for transmission from all anchor nodes. This trial
is repeated 100 times and the performance is evaluated using the average
estimation success rate of the 10 locations. The path loss exponent is set to
α = 2.35. The transmit power is set so that the average signal-to-noise power
ratio (SNR) when the signal is received by a node at a distance of dref = 3.34
m from the transmission node is 10 [dB]. For Nakagami-Rice fading channel
model, the Rician factor is set to K = 10. We perform the zone estimation
using K and α as parameters, and take the value when the success rate of the
zone estimation is the highest as the estimated value of these parameters.

4.2 Simulation Results in Rayleigh Fading Channel Model

Figures 5–10 show the simulation results of the estimation success rates of
the proposed direct zone estimation with ML approach, naive RSS approach,
indirect zone estimation using position estimation methods namely the min-
max method, the trilateration, and the existing ML, assuming that the received
SNR = 10 [dB], the number of transmitted symbols L = 1, 3, and the channel
between nodes is assumed to be Rayleigh fading channel, when sensor nodes are
placed at p1, p2, and p3, respectively. From Figures 5–10, we can see that the
direct zone estimation methods outperform indirect zone estimation methods.
Specifically, the proposed direct ML approach has the highest estimation
success rates than the other methods for all cases. In the proposed direct ML
approach, the estimation success rate increases with the increase in the number
of symbols L transmitted at a time for the same number of transmissions. This
is because the effect of measurement noise can be suppressed by increasing
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Figure 3: Arrangement of the nodes used in the simulations.

Figure 4: Arrangement of Figure 3 as seen from above.

the number of transmitted symbols in each transmission. In addition, the
estimation success rate increases as the number of transmissions increases, and
for the case with L = 3 and the sensor location p1, the estimation success
rate reaches 100% when the number of transmissions is 8 or more. This is
because both the effects of fading and the measurement noise can be suppressed
by multiple transmissions. We can also see that the estimation success rate
decreases when the sensor nodes are placed at off center positions (i.e., p2 or p3).
This is because the node locations are approximated to the center of the zone
in the likelihood function of the proposed method. Nevertheless, for the case
where L = 3 and the sensor nodes are placed at p2 or p3, the estimation success
rate reaches 98% or more when the number of transmissions are 10.
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Figure 5: Estimation success rate versus number of transmissions (Rayleigh fading, sensor
node placed at p1, number of transmitted symbols L = 1).

Figure 6: Estimation success rate versus number of transmissions (Rayleigh fading, sensor
node placed at p1, number of transmitted symbols L = 3).

4.3 Simulation Results in Nakagami-Rice Fading Channel Model

Figures 11–12 show the simulation results of the estimation success rates of
the proposed direct ML approach, naive RSS approach, and indirect zone
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Figure 7: Estimation success rate versus number of transmissions (Rayleigh fading, sensor
node placed at p2, number of transmitted symbols L = 1).

Figure 8: Estimation success rate versus number of transmissions (Rayleigh fading, sensor
node placed at p2, number of transmitted symbols L = 3).

estimation methods using the min-max method, the trilateration, and the
existing ML approaches in the Nakagami-Rice fading channel model with the
sensor location of p1 assuming that the received SNR = 10 [dB]. From Figures
11–12, we can see that the estimation success rate of the proposed method is
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Figure 9: Estimation success rate versus number of transmissions (Rayleigh fading, sensor
node placed at p3, number of transmitted symbols L = 1).

Figure 10: Estimation success rate versus number of transmissions (Rayleigh fading, sensor
node placed at p3, number of transmitted symbols L = 3).

the highest among all methods and the estimation success rate of the proposed
method improves when the number of symbols L transmitted increases for the
same number of transmissions. In addition, compared to the case of Rayleigh
fading channel model (Figure 5), the estimation success rate is higher in the
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Figure 11: Estimation success rate versus number of transmissions (Nakagami-Rice fading
SNR = 10 [dB], number of transmitted symbols L = 1).

Figure 12: Estimation success rate versus number of transmissions (Nakagami-Rice fading
SNR = 10 [dB], number of transmitted symbols L = 3).

case of Nakagami-Rice fading. This is because in the Nakagami-Rice fading
channel model, the received power variation is small due to the existence of
the LoS path.
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Figure 13: Experimental setup.

5 Measurement Results

In the previous section, we have assumed ideal omni-directional antennas at
all nodes in order to clarify the basic performance of the proposed approach.
In actual environments, however, common devices have non-uniform beam
patterns, which would have some impact on the zone estimation. In this
section, taking non-uniform beam patterns of devices into consideration, we
compare the estimation success rates of the proposed direct ML method with
naive RSS scheme by using measurement data. Note that, in this section, we
evaluate the performance of direct zone estimation schemes only, because it is
not straightforward to incorporate non-uniform beam patterns into indirect
zone estimation approach.

5.1 Experiment Specifications

The performance of the proposed ML approach is evaluated with an experi-
mental setup as shown in Figure 13. The experiment is performed in anechoic
chamber with radio wave absorbers on five sides except the ground. The
arrangement of nodes is shown in Figure 14. The anchor locations are on 4× 7
regular grid points with 2.5 [m] spacing (shown in Figure 14 as c1 to c28),
resulting in 18 zones in the area of interest. The sensor to be located is placed
at the center of each zone (shown in Figure 14 as u1 to u18).

Nordic’s nRF52840 modules [1] are used as the nodes placed at the anchor
locations and the sensor locations. As the standard BLE (Bluetooth Low
Energy) [2] uses 40 channels spaced 2 [MHz] apart, the received signal power is
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Figure 14: Arrangement of nodes in the measurement.

measured between the node at each anchor location and the sensor location in
40 BLE channels. To achieve this in a time efficient way, a multi-channel TDMA
protocol named “multi-spin” (as detailed in Bocca et al. [4]) is used. Multi-spin
defines the order of transmission of sensors and synchronizes their switching
on different frequency channels [4]. Multi-spin protocol is implemented on
Nordic’s module with 40 BLE channels and accumulated received signal power
among sensors. The received power measured at different BLE channels can
be regarded as the received power at different transmission periods in the
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Figure 15: Pre-Measurement environment for measuring module’s beam pattern.

received signal model of Section 2. Therefore, we can reasonably assume that
the number of BLE channels corresponds to the number of transmissions.
We measure the instantaneous received power at the sensor location, and
zone estimation is performed using the instantaneous received power of 40
BLE channels, where the received power for every combination of the anchor
location and the sensor location is available.

5.2 Pre-Measurement of Antenna Beam Pattern

As the beam pattern is not omnidirectional in practical sensors or modules,
beam pattern of three sample modules are measured in an anechoic chamber
with radio wave absorbers on five sides except the ground as shown in Figure
15. Target module is kept on a rotating device with a resolution of 1 degree.
Signal strength of transmitted beacon from the module is measured by the horn
antenna whose radiation pattern is known in advance. Measured beam patterns
of three sample modules are shown in Figure 16. Average antenna gains of
three sample modules are -6 dB, -5 dB, and -5 dB, respectively. Although the
beam patterns are similar, there are slight deviations in the average gains.
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Figure 16: Measured antenna patterns of nRF52840 module.

5.3 Measurement-Based Evaluation of the Estimation Success Rates

Figure 17 shows the estimation success rate performance of the proposed
direct ML approach and the naive RSS scheme with the sensor location at
the center of each zone using beam pattern of Sample 1 in Figure 16 for all
nodes in common. In the proposed method, we have assumed Rayleigh or
Nakagami-Rice fading channel models. From the figure, we can see that the
proposed direct ML approach can achieve better performance than the naive
RSS scheme for the case with actual measurement data as well.

Table 1 shows the estimation success rates of the proposed direct ML
approach assuming Rayleigh or Nakagami-Rice fading channel models with the
sensor location at the center of each zone and the number of transmissions as
40. We have evaluated the performance of the proposed methods for 4 different
cases regarding the antenna beam pattern, namely, without considering beam
pattern, using beam pattern of Sample 1 in Figure 16 in common for all nodes in
the evaluation of the likelihood function, using beam pattern of Sample 2, and
using beam pattern of Sample 3. From the table, we can see that higher success
rate is achieved by considering antenna beam pattern, which demonstrates
the large impact of antenna beam pattern on the estimation performance.
Moreover, we can also see that the estimation success rate is almost the same
regardless of the choice of sample beam pattern. This may imply that we can
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Figure 17: Estimation success rate versus number of transmissions.

Table 1: Success Rate in Experimental Results.

Beam Pattern

Considered

Scheme Not Considered Sample 1 Sample 2 Sample 3

Proposed Direct
ML (Rayleigh)

0.78 0.97 0.96 0.97

Proposed Direct
ML (Nakagami-
Rice K = 0.4)

0.76 0.98 0.99 0.98

use a measurement beam pattern of a certain sensor device to calibrate all
sensor nodes, which greatly reduces the effort required for measuring beam
patterns. In addition, the proposed scheme with Nakagami-Rice model with
the K factor of 0.4 achieves better performance than the proposed method with
Rayleigh model, while the difference is rather marginal. Despite the presence
of a LoS path between the transmitter and receiver in the measurements in
the anechoic chamber, it seems that reflections and scattering from the ground
and other devices (such as sensor modules, battery packs, and cables) have
created the multipath fading environment.



Maximum Likelihood Direct Zone Estimation 25

6 Conclusion

In this paper, we have proposed a direct method to estimate a zone of the
target sensor node from the information of the received signal power at target
sensor node corresponding to transmitted signals from multiple anchor nodes
using the ML approach.

From the computer simulation results of the zone estimation success rate,
it is evident that the proposed direct zone estimation method outperforms
existing direct zone estimation scheme and indirect zone estimation schemes
using existing position estimation methods in the case of both Rayleigh and
Nakagami-Rice fading channel models. The outcome remains unchanged even
if the zone position is slightly shifted away from the center of zone.

From the zone estimation performance evaluation using measurement
data, it is observed that the non-uniform beam patterns of practical sensor
devices have large impact on the zone estimation performance. Therefore, we
compensated this effect by incorporating the antenna directivity of sensor device
into likelihood function. From the numerical results of the zone estimation
rate using the measurement data, it is clear that the proposed direct zone
estimated method with ML could be used in practical scenarios.

Future works include the performance evaluation of the proposed method
in a real-time scenario and the assessment of the impact of the way of holding
wireless devices by mobile users on the beam pattern.

Appendix

Probability Density Function (PDF) of Magnitude Square of
Complex Gaussian Random Variable with Non-zero Mean

Consider a complex Gaussian random variable U = X + iY with mean a(∈
C) = are + iaim and variance σ2, where X and Y are the real part and the
imaginary part of U. Target is to deduce the PDF of Z = |U |2.

As X and Y are real Gaussian random variables following N(are, σ
2/2)

and N(aim, σ
2/2) respectively, PDFs of X and Y are represented as

pX(x) =
1√
πσ2

exp

(
− (x− are)

2

σ2

)
, (38)

and

pY (y) =
1√
πσ2

exp

(
− (y − aim)

2

σ2

)
. (39)
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The joint PDF of X and Y is given by

pX,Y (x, y) = pX(x)pY (y)

=
1

πσ2
exp

(
− (x− are)

2 + (y − aim)
2

σ2

)
=

1

πσ2
exp

(
−x2 + y2 + |a|2 − 2(arex+ aimy)

σ2

)
. (40)

With the variable transformation to the polar coordinates by setting x = r cos θ
and y = r sin θ in the above equation, the joint PDF pR,Θ(r, θ) is given by

pR,Θ(r, θ) = r · pX,Y (x, y)

=
r

πσ2
exp

(
−r2 + |a|2 − 2|a|r cos(θ − β)

σ2

)
, (41)

where β satisfies

sinβ =
aim
|a|

, (42)

cosβ =
are
|a|

. (43)

Next, the PDF of R is deduced from (41) by the marginalization with respect
to

pR(r) =

∫ 2π

0

pR,Θ(r, θ)dθ

=

∫ 2π

0

r

πσ2
exp

(
−r2 + |a|2 − 2|a|r cos(θ − β)

σ2

)
dθ

=


2r

σ2
exp

(
−r2 + |a|2

σ2

)
I0

(
2|a|r
σ2

)
r ≥ 0

0 r < 0

. (44)

Thus, the pdf of Z = |U |2 is finally given by

pZ(z) =


1

σ2
exp

(
−z + |a|2

σ2

)
I0

(
2|a|

√
z

σ2

)
z ≥ 0

0 z < 0

. (45)
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