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ABSTRACT

Alzheimer’s disease (AD) is a prevalent neurodegenerative disorder with
significant impacts on patients and their families. Therefore, accurate
and early diagnosis of AD is crucial for improving patient outcomes
and developing effective treatments. However, despite advancements in
machine learning for AD diagnosis, current methods lack molecular-level
insights and completely ignore the heterogeneity in complex human
brains, thus potentially masking crucial disease mechanisms. Here,
we present ExAD-GNN, an Explainable Graph Neural Network for
predicting AD status from single-cell sequencing data. Leveraging K
Nearest Neighbours (KNN) graphs derived from the expression profiles
of individual cells, ExAD-GNN achieves two primary goals: predict-
ing AD pathology at a cellular level and identifying cell-type-specific
marker genes for AD diagnosis through a unique learnable gene impor-
tance metric. Extensive benchmarking on large-scale scRNA-seq data
with state-of-the-art methods demonstrates ExAD-GNN’s noticeably im-
proved AD prediction accuracy and robustness across various cell types
and samples. Furthermore, an extensive ablation study and literature
search confirm the majority of top AD risk genes highlighted by our
method, demonstrating the effectiveness of ExAD-GNN’s model inter-
pretation scheme. In summary, we develop ExAD-GNN as a publicly
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available software for the scientific community to gain molecular insights
into AD pathology from scRNA-seq data.

1 Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by
the progressive loss of memory and cognitive function, affecting millions of
individuals worldwide and placing a tremendous burden on patients, their
families, and healthcare systems [6]. Therefore, it is crucial to develop accurate
and timely AD diagnosis methods to allow appropriate patient care, facilitate
targeted interventions, and advance scientific understanding and treatment
options for this debilitating disease [27]. Unfortunately, AD is a complex
disorder at the molecular level [39]. While decades of efforts have narrowed
down a few risk genes, the genetic and molecular mechanisms underlying AD
are still largely unknown [3]. We face significant hurdles in developing effective
early diagnosis and treatment plans for this devastating disease [32].

Recent advances in machine learning algorithms and initiatives for trans-
parent data access open new avenues for AD diagnosis using advanced compu-
tational models [60]. For instance, numerous machine learning models have
been proposed to predict AD status using cognitive tests [34], magnetic reso-
nance imaging (MRI) [7, 25, 33], positron emission tomography (PET) images
[13, 14], cerebrospinal and blood biomarkers [9, 50]. Additionally, several
machine learning models, including support vector machines, artificial neural
networks, and deep learning, have been proposed to classify AD status using
large-scale neural imaging databases [46, 51, 61]. While promising by demon-
strating improved accuracy, it is still difficult to gain molecular-level insights
into disease pathology in AD [23]. Later on, as high-throughput sequencing
technologies continue to advance, population-scale genetic, transcriptomic,
and epigenetic profiling studies further supplement the existing data types to
detect AD at the earliest possible stage (pre-dementia) [41]. Combined with
the aforementioned clinical data, several machine learning strategies, including
univariate associations and multivariate deep learning models, have been used
to successfully predict disease status with high accuracy and identify novel
biomarkers in AD [1, 59]. However, the human brain is a complex tissue
with distinct cell types, each contributing uniquely to AD pathology. Most
of the existing studies rely on bulk tissue-level sequencing data, which are
profiled from thousands to millions of mixed cells. As a result, they completely
overlook the heterogeneity within tissues, potentially masking critical insights
into disease mechanisms in AD [65].

Technological developments in single-cell sequencing revolutionize AD
research by simultaneously profiling gene expression in individual cells. It
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has pushed the investigation of cellular heterogeneity and intricate biological
processes with unprecedented resolution – individual cells [8, 19, 24, 35, 36,
38, 40, 42, 49, 57, 71, 73], paving the way for novel insights into the molecular
underpinnings of AD. As a result, several single-cell genomic research has
been conducted to investigate AD pathology and to provide new molecular
insights. For instance, Mathys et al. [41] performed population-scale single-cell
RNA sequencing (scRNA-seq) in post-mortem human brains from AD patients
and healthy controls and revealed both cell-type-specific and cell-type-shared
transcription perturbation signatures in AD. Besides, Morabito et al. [45]
performed single-cell epigenetic and transcriptomic profiling and identified
cell-type-specific cis-regulatory elements (CREs) and transcription factors (TF)
that may mediate gene-regulatory changes in late-stage AD. However, these
studies mainly focus on differences in AD brains and healthy controls at the
intermediate phenotype level (e.g., gene expression and regulation), resulting
in uncertainties about the direct impact on clinical diagnosis.

To fill this gap, we present an explainable graph neural network, ExAD-
GNN, for characterizing and predicting AD pathological states from scRNA-
seq data. Specifically, our method builds a cell-to-cell similarity graph based
on the uniformly processed cell embeddings from AD patients and healthy
controls, with cells and their gene expression profiles representing nodes and
node features, respectively. We hypothesize that AD could introduce robust
molecular perturbations across different patients in a cell-type-specific manner,
which leads to memory impairment and cognitive decline that can ultimately
affect behavior, speech, visuospatial orientation, and the motor system. With
this straightforward intuition, our model combines cell neighboring information
and gene expression profiles to achieve two goals: – predict AD pathology
at a cell level and prioritize marker genes for AD diagnosis in each cell
type (Figure 1). Importantly, ExAD-GNN’s design incorporates a cell type-
specific gene importance score matrix, a significant feature that enhances the
model’s interpretability by allowing immediate insights into the importance of
different genes and modulating the influence of individual genes on the final
AD prediction for each cell type. This inherent interpretability [43] not only
deepens our understanding of the disease process at a molecular level but also
aids in identifying potential therapeutic targets [44]. Therefore, ExAD-GNN
provides not only accurate predictions at cell levels but also affords valuable
insights, paving the way for mechanistic exploration and possible therapeutic
interventions in AD.

To demonstrate the effectiveness of ExAD-GNN, we applied it to scRNA-
seq from 31 post-mortem human prefrontal cortex (PFC) samples. We showed
that our model can accurately predict AD conditions at the individual cell
level. Moreover, we found that our model could highlight novel and known
genes associated with AD in different cell types. Finally, we have made ExAD-
GNN freely available as a software package for the community to predict AD
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Figure 1: ExAD-GNN’s overview.
Note: The process includes four key steps: (1) Assembly of a cell-by-gene matrix using both
AD and control samples, where cells from both conditions are presented along with their gene
expression profiles. (2) Construction of a KNN graph based on the cell-by-gene matrix, where
connections are made between each cell and its K nearest neighbours according to their gene
expression similarities. (3) The detailed architecture of ExAD-GNN, where the model takes
the KNN graph as input and learns to predict disease status for each cell by capturing the
similarities and differences between AD and control cells in the high-dimensional expression space.
(4) Prediction and interpretation, where the model predicts the disease status for each cell and
highlights the significant genes influencing the predictions, thereby improving interpretability.

conditions and quantify their changes across various cell types and conditions.
With the exponential growth in the availability of single-cell data, we expect
that ExAD-GNN can predict disease conditions and highlight disease risk
genes with higher accuracy, pushing our understanding of disease pathology
to a single-cell resolution.

2 Methodology

As shown in Figure 1, our ExAD-GNN is an explainable graph neural network
model to predict cellular level disease status and prioritize AD risk genes
in a cell type specific manner. To achieve this goal, it first builds a KNN
graph based on the cell-cell similarity and combined cell neighbouring (node)
information with gene expression profiles (feature) to distinguish cells from
AD samples with those from healthy controls. Method details for data process,
modeling parameters, and performance benchmarking will be provided in the
following sections.

2.1 Detailed scRNA-seq Data Pre-processing and Assembly of the Cell-
by-Gene Matrix

We downloaded scRNA-seq data from post-mortem human prefrontal cortex
(PFC), which included 19 AD samples and 12 healthy controls. After strict QC,
35,473 nuclei were preserved for downstream analyses. The detailed scRNA-seq
data pre-processing pipeline was as follows.
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Step 1. Count Matrix Generation and Ambient RNA Clean-up

We first downloaded the raw reads and used CellRanger count v6.0 [74] to
generate the cell-by-count matrix for each sample, which was run independently.
No aggregation (using CellRanger aggr) was carried out at this stage. To more
carefully separate out true cells from empty droplets with ambient RNA, we
used the program remove-background1 from the CellBender package [58]. For
efficiency considerations, we employed the program in command-line form,
which was wrapped in our Python script and utilized GPUs with default
parameters. Specifically, the options included in the program run were: a
target false positive rate (–fpr) of 0.01; the number of training epochs (–epochs)
= 150; the rough expected number of cells (–expected-cells) = the output in
metrics_summary.csv from CellRanger count.

Step 2. Per-fastq Set/Sample QC using Pegasus

Next, we performed per sample QC in Pegasus. After filtering cells based on
the lower bounds, we removed 1,135 genes included in the MitoCarta v3.0
database [53] such as mitochondrial genes and certain genes highly correlated
with RNA sample quality (for example, Hodge et al. [22]). The robust genes
were identified, and the counts matrix was log-normalized using the default
options in Pegasus. Next, doublets were identified using a combination of
Scrublet [69] (default mode) and DoubletDetection [70]. The parameters
for the DoubletDetection BoostClassifier algorithm included n_iters = 25,
use_phenograph = False, and standard_scaling = True. The subsequent
predict function employed the parameters p_thresh = 1e-16 and voter_thresh
= 0.3.

Step 3. Sample Merging, Dimension Reduction, Clustering, and Cell Type Annotation

After filtering out samples with fewer than 500 cells, our dataset comprised
35,473 cells, each with 26,495 genes, from 31 samples, including 12 control
samples and 19 AD samples. We further processed the data by identifying
robust genes and retaining only those genes for subsequent analysis. The
data was then log-normalized for dimensionality reduction using 3,000 highly
variable genes using Principal Component Analysis (PCA). Then, we removed
PCA components with a correlation coefficient greater than 0.05 with gene
intensities, resulting in a final set of 41 dimensions. As shown in Figure 2A,
most samples were homogeneously mixed.

Next, we used Pegasus’ infer_cell_types function to associate the Leiden
clusters with reference cell types based on the hybrid marker gene sets obtained

1https://cellbender.readthedocs.io/en/latest/index.html.

https://cellbender.readthedocs.io/en/latest/index.html
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Figure 2: UMAPs of the scRNA-seq data.
Note: (A) UMAP of the scRNA-seq data coloured by samples. (B) UMAP scatter plot of the
scRNA-seq data coloured by cell types.

from merging neuronal subclass markers from the BRAIN Initiative Cell Census
Network (BICCN) taxonomy and non-neuronal subclasses from Network [48].
In total, we defined 8 cell types with 24 subclasses. As shown in Figure 2B,
there was a clear clustering effect with samples of the same cell type aggregating
together.

2.2 Construction of a KNN Graph

From our pre-processed data, we used the 41-dimensional PCA features to
construct a KNN graph. For each of the 35,473 cells, K nearest neighbours
within this 41-dimensional space were identified, resulting in a graph with
35,473 nodes, each having 26,495 features. The KNN graph encapsulates the
intricate relationships between cells based on their gene expression similarities.
This robust representation of the local structure of the high-dimensional data
is integral to the effective application of our ExAD-GNN model in subsequent
stages of analysis.

2.3 The Detailed Architecture of ExAD-GNN

We start by representing our input graph as G = (V, E), where V is the set
of nodes (cells), and E represents the edges between them. Each node i in
V is associated with a gene feature vector fi ∈ RD, where D is the number
of features (genes). Our objective is to output probabilities of the test cells
belonging to the control or AD groups. This comprehensive approach enables
researchers to predict AD pathology at a cell level and prioritize marker genes
for AD diagnosis in each cell type.

ExAD-GNN predicts AD pathology at a cellular level

For each node i in the graph G, we obtain the node’s embedding by aggregating
its neighbours’ information [67]. Inspired by GraphSAGE [20], we adopt the
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following aggregator function for the information propagation:

hk+1
i = σ

(
Wk

(
AGGREGATE

(
hk
j | ∀ j ∈ N (i)

)
⊕ hk

i

))
, (1)

where hk
i and hk+1

i are the hidden representations of node i in the k-th and
(k+1)-th layer, respectively; N(i) represents the set of neighbours of node i; ⊕
is the concatenate function and AGGREGATE is a function that combines the
hidden representations of neighbours. σ is the activation function (e.g., ReLU)
and W k is the learnable parameter for the k-th layer. We will examine different
AGGREGATE functions in the experiment section. The input feature of the
first GNN layer is given in the next subsection. After several GNN layers, we
compute the output probabilities for the test nodes by applying a softmax
function to the final hidden representations Hi:

Pi = softmax (Hi) . (2)

To train our model, we minimize the cross-entropy loss between the pre-
dicted probabilities Pi and the true labels Yi (0 for control, 1 for AD) for all
test nodes:

Lpredict = −
∑

(Yi ∗ log (Pi) + (1− Yi) ∗ log (1− Pi)) . (3)

ExAD-GNN prioritizes marker genes for AD diagnosis in each cell type

A crucial aspect of our model is the incorporation of the cell type-specific gene
importance score matrix. We denote it as S ∈ R|C|xD, where |C| is the number
of cell types and each element Sij indicating the importance of gene j for cell
type i. To incorporate this information, we multiply the gene feature vectors
with the sigmoid of the cell type-specific gene importance score matrix:

Fi = sigmoid (S) ∗ fi. (4)

For the first GNN layer, we have h0
i = Fi. Additionally, we encourage

sparsity in the cell type-specific gene importance score matrix by adding an
L1 regularization term to the loss function:

Lreg = ||sigmoid (S)||1 . (5)

The total loss function is given by:

Ltotal = Lpredict + α ∗ Lreg, (6)

where α is the penalty weight. This approach allows our model to focus on
the most important genes for each cell type, improving interpretability and
performance.
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2.4 Prediction and Interpretation with ExAD-GNN

Having detailed the structure of the ExAD-GNN model in the previous section,
we now describe how it is used for prediction and interpretation at a cellular
level. For a given test cell, the first step is to aggregate the information from
its neighbors in the KNN graph. This aggregation is performed according
to the (1) detailed earlier, where we incorporate the hidden representations
of the cell’s neighbors to update the cell’s own representation. With this
updated representation of the test cell, we then apply a softmax function
according to (2) to the final hidden representation of the test cell. This yields a
probability distribution over the two possible classes: control and AD. For the
interpretation phase, we utilize the learned cell type-specific gene importance
score matrix S. We retrieve the specific vector Si corresponding to the cell
type of the test cell, where i denotes the cell type of the test cell. This vector
Si ∈ RD (D is the number of genes) contains the importance scores of each
gene for the given cell type. The genes with the highest scores in this vector
are identified by ExAD-GNN as the most influential genes for the prediction
of the test cell.

2.5 Alternative Models and Parameters

We compared ExAD-GNN with three categories of alternative models, including
naïve models (random guess), traditional machine learning methods (e.g.,
Random Forest and KNN), and deep learning-based approaches (including
Multi-Layer Perceptron (MLP), Graph Convolutional Network (GCN) [29],
Graph Attention Network (GAT) [62], and GraphSAGE [20]). For each method,
we carefully selected the parameters to ensure fair comparisons and consistent
evaluation.

For KNN, we explored different values of k in the range (1, 3, 5, 10, 30, 50,
100), selecting the value that yielded the highest validation accuracy for each
dataset. In the case of Random Forest, we used the default parameters, allowing
trees to grow without height restrictions. For MLP, GCN, GAT, GraphSAGE,
and ExAD-GNN, we maintained a uniform two-layer architecture, with a
hidden layer dimension of 128. We employed the Adam optimizer [28] with
a learning rate of 1e-3 for gradient descent. The batch size for training was
set to 256. To prevent overfitting, we terminated the training process if the
validation accuracy did not improve for 30 consecutive epochs. In the context
of GAT, we set the number of attention heads to 8, enabling the model to
capture multiple aspects of node relationships. Both GraphSAGE and ExAD-
GNN sampled 4 neighbours for aggregation and utilized the mean aggregation
strategy. Furthermore, ExAD-GNN incorporated a penalty weight α of 1e-4
to balance AD predict accuracy and gene selection importance.
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2.6 Experimental Settings for Performance Benchmarking

Our benchmark and experimental settings contained two transductive tasks for
cellular level AD prediction: (i) a cell-type-specific manner and (ii) a sample-
specific manner. For the cell-type-specific manner, we randomly assigned
80% of the nodes from each cell type to serve as training data, with the
remaining 20% evenly split between validation and test data. For robustness
considerations, we generated ten different train/validation/test splits and
computed the average accuracy and standard deviation across these splits for
each method. This approach ensured a robust and comprehensive assessment
of each model’s performance.

To account for the sample-specific performance disparities, we also con-
ducted sample- specific task by masking all cells within one sample to create
a test set. Subsequently, we chose one control and one AD sample from the
remaining pool to construct a validation set. The remaining 28 samples consti-
tuted the training set. We reported the performance metrics for each method
using this splitting scheme. Given that there are 31 potential sample-specific
splits, we calculated and reported the average accuracy and standard deviation
across all these splits. This approach ensured the generalizability of our results.

3 Experimental Results

We applied our ExAD-GNN model to the uniformly processed and annotated
scRNA-seq data to predict AD status at the cellular level. For the AD predic-
tion module, we conducted comprehensive extensive performance benchmarks
with seven other models from three categories (details see Method section:
Alternative Models). We showed that our model outperformed existing models
by a large margin. Additionally, we explored the interpretability of our model
by identifying key genes contributing to AD prediction, visualizing latent
embeddings to demonstrate the discriminative power of ExAD-GNN, and
conducting a detailed investigation of hyperparameters tuning. Details of these
results were discussed in the following section.

3.1 ExAD-GNN Outperforms Other Methods for the Cellular Level AD
Prediction Task in a Cell-Type-Specific Manner

We first aimed to predict AD status at a cellular level, in other words, whether
individual cells were from AD patients or healthy controls. While conducting
a transductive task in a cell-type-specific manner (details in the Method
section: Experimental Settings), we reported our model’s performance on
3,547 test cells (10% for the whole dataset) and comprehensively compared this
prediction performance with seven alternative methods (details in the Method
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section: Alternative Models and Parameters). We found that ExAD-GNN
noticeably outperformed all the other models by a large margin (Table 1).
For instance, ExAD-GNN achieved 94% accuracy when merging cells from
different cell types, noticeably higher than other deep learning-based methods
(e.g., 69%∼92% other GNN models, and 90% for MLP), traditional machine
learning algorithms (61%∼79%), and naïve baselines (56%).

Next, we separated cells from eight major cell types (their summary and
relevance to AD are shown in Table 2) and benchmarked cell-type-specific
AD prediction accuracy, as shown in Table 1. In six of eight major cell types,
ExAD-GNN showed consistently improved prediction accuracy over other
methods, demonstrating its robustness across different cell types. It was worth
mentioning that prediction accuracy dropped significantly for all models as
the number of available cells decreased. For instance, Endo and VLMCs
were two relatively rare cell types in the human brain, with only 22 and 74
cells from 31 samples. Some samples even showed very few cells from these
cell types, leading to significantly deteriorated prediction performance for all
models. Among all types, ExN, Oligo, and Astro showed the highest accuracy
(95%, 94%, and 96% respectively), consistent with their important roles in AD
pathology [2, 52, 66].

Furthermore, given the complexity and variety of neuronal functions and
their potential varying contributions to AD, we further broke down the ExN and
InN into several subclasses (bottom sections in Table 1). This step enabled us
to assess our model’s performance across highly specialized neuronal subclasses.
As shown in Table 1, ExAD-GNN outperformed other methods in six out
of nine excitatory neuron subclasses and five out of nine inhibitory neuron
subclasses. Despite the broad range of subclasses and their complexity, ExAD-
GNN consistently achieved higher accuracy. This underscored the model’s
ability to effectively utilize cell type-specific gene importance score matrices,
enhancing its precision in major cell types and subclasses.

3.2 ExAD-GNN Outperforms Other Methods for the Cellular Level AD
prediction Task in a Sample-Specific Manner

Next, we focused on the performance of ExAD-GNN and seven other methods
in a sample-specific manner by predicting the AD status of all cells sample
by sample to test our model’s capability of handling inter-individual varia-
tions (details in the Method section: Experimental Settings for Performance
Benchmarking). As shown in Table 3, ExAD-GNN showed the highest accu-
racy (69%) across all cell types, noticeably outperforming all other methods
(52%∼68% for other deep learning methods, 55%∼59% for traditional machine
learning algorithms, and 50% for naïve baselines). This result suggested the
robustness of ExAD-GNN in handling sample-specific tasks. At the same
time, a decrease in accuracy and an increase in standard deviation were noted
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Table 2: Summary of major cell types and their relevance to AD.

Cell Types Abbreviation Description Relation with AD

Astrocytes Astro Astro cells are star-shaped
glial cells in the central
nervous system.

Astro cells are known for
their roles in neural net-
working, regulation of neu-
rotransmission, and pro-
gression of AD [63].

Endothelial cells Endo Endo cells form the inner
lining of blood vessels and
are crucial for the blood-
brain barrier.

Alterations in Endo cells
are often observed in AD
[55].

Excitatory neurons ExN ExN cells are the most
prevalent type of neurons
in the brain.

ExN cells are responsible
for transmitting excitatory
signals. They are primary
targets of AD pathology
[15].

Inhibitory neurons InN InN cells regulate the ex-
citability of neural circuits
and maintain a balance in
the brain’s signaling.

InN cells’ dysfunction is
implicated in AD [37].

Microglia MG MG cells are the primary
immune cells of the brain
and spinal cord.

MG cells are involved in
the inflammatory response
in AD [68].

Oligodendrocyte
precursor cells

OPC OPCs play a critical role in
developmental and adult
myelinogenesis and can dif-
ferentiate into oligodendro-
cytes.

Myelin breakdown from
impaired repair of OPCs
may be the initiating step
in AD pathology [5].

Oligodendrocytes Oligo Oligo cells are responsible
for producing the myelin
sheath that insulates neu-
ronal axons, thereby fa-
cilitating efficient signal
transmission.

Damage to Oligo cells can
result in impaired neural
communication, a condi-
tion that contributes to
the progression of AD [54].

Vascular and lep-
tomeningeal cells

VLMC VLMC cells are involved
in the vascular system of
the brain and meninges

VLMC cells have been
shown to undergo changes
in AD [26].

compared to the previous cell-type-specific manner. This was mainly due to
the inherent complexity and variability across different samples, which encap-
sulates a broader range of gene expression profiles and introduces additional
challenges in achieving precise classification.

Despite these challenges, ExAD-GNN outperformed six of the eight major
cell types. Meanwhile, accuracy for under-represented cell types like Endo and
VLMC was still low due to their sparse presence. In a sample-specific manner,
we also divided ExN and InN cell types into subclasses, despite the increased
complexity due to inter-sample heterogeneity. As shown in Table 3, ExAD-
GNN still outperformed other methods in six out of nine excitatory neuron
subclasses and five out of nine inhibitory neuron subclasses, demonstrating
ExAD-GNN’s robustness in managing complex disease prediction scenarios.
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Figure 3: Identifying importance genes.
Note: (A) Gene importance score for ExN. (B) Predicted AD possibility for AD and control with
original genes and modified genes.

3.3 The Model Interpretation Module of ExAD-GNN Prioritizes Key
Genes Contributing to AD Prediction

In this section, we demonstrated how the model interpretation module of
ExAD-GNN can identify AD risk genes in a cell-type-specific manner. With
its cellular-level AD prediction, ExAD-GNN enabled an end-to-end training
fashion of the gene importance score matrices specific to cell types. This
inherent interpretability allowed it to prioritize key genes that significantly
contribute to AD prediction (details in the Method section: The Detailed
Architecture of ExAD-GNN). As shown in Figure 3A, we started from the fully
trained ExAD-GNN module and plotted the sorted genes impact scores in the
L2/3 IT cells, a subclass of excitatory neurons. Remarkably, nine of the top
ten prioritized genes were reported as AD risk genes previously (stared genes
in Figure 3A) [4, 17, 18, 21, 30, 31, 47, 56, 72]. For instance, our third highest
ranked gene, ARL17B, has been associated with a decreased risk of AD in the
APOE4 negative population [64]. Another gene, MTRNR2L1, also known as
Humanin like-1, was among the top upregulated mRNAs in AD [16]. These
results demonstrated the effectiveness of ExAD-GNN’s interpretation module.

Next, we performed an ablation study to further validate and visualize the ef-
fect of our priorited risk genes. Specifically, we randomly selected 10% of all cells
in the test data set and calculated the difference in AD risk (∆p) by changing
the observed gene expression levels (details in the Method section: The Detailed
Architecture of ExAD-GNN). As shown in Figure 3B, the top 10 risk genes
introduced significantly larger ∆p values than the rest of expressed genes (an av-
erage of 93.8% and 78.7% for top risk genes and the other genes, p < 5e-73 by
independent samples t-test). This further testified to ExAD-GNN’s ability to ac-
curately reflected the relationship between gene expression and AD prediction.
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3.4 ExAD-GNN Shows Discriminative Power in AD Prediction by Vi-
sualizing Latent Embeddings

Cell representation learning is essential to project cells from the high dimen-
sional, sparse cell by gene matrix to a low dimensional, dense space suitable
for downstream analyses, such as clustering. Several methods have been pro-
posed to learn joint cell representation by forcing cells from different biological
conditions to be perfectly aligned. Here, we tested a different approach from a
by-product of our ExAD-GNN - to learn better latent cells by capturing both
cell type and disease information. We extracted the latent embeddings after
the first GNN layer of a trained ExAD-GNN as the final cell representations
(details in Method section: The Detailed Architecture of ExAD-GNN). For a
fair comparison, we plotted embeddings of 10% of the cells using traditional
PCA and ExAD-GNN. As shown in Figure 4A, the UMAP from PCA showed
significant overlap between AD and control cells, leaving them difficult to dis-
tinguish. In contrast, the UMAP from the ExAD-GNN embeddings effectively
separated AD from control cells while retaining cell-type characteristics (Fig-
ure 4B), proving ExAD-GNN’s capacity to learn meaningful representations
that distinguish disease states while preserving cell-type-specific features.

Figure 4: Visualization of embedding space.
Note: Comparison of the original space (A) and the embedding space learned by ExAD-GNN
(B).

3.5 ExAD-GNN Demonstrates Robustness and Efficiency through De-
tailed Training and Parameter Sensitivity Analysis

Hyperparameter tuning is an important step that affects model performance.
To test the robustness of our result to such hyperparameters, we investigated
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Figure 5: Loss and accuracy during training.
Note: (A) Training loss w.r.t epoch while we mask 10% for each cell types. (B) Train accuracy
and valid accuracy w.r.t epoch while we mask 10% for each cell types. (C) Training loss w.r.t
epoch while we mask one individual. (D) Train accuracy and valid accuracy w.r.t epoch while we
mask one individual.

the effect of different parameters in our training process. First, we evaluated
the efficiency of our model as follows. During the training process for both
cell-type-specific and sample-specific tasks, we found that our model showed
rapid convergence, achieving near-optimal performance within just 50 epochs
as shown in Figure 5. We chose to halt the training process when the accuracy
of the validation set failed to increase for 30 consecutive epochs. These findings
provided strong evidence for ExAD-GNN’s efficiency across diverse tasks.

Next, we analysed the effects of various parameters and model settings
on ExAD-GNN’s performance, including the dimension of latent embeddings,
the penalty weight α, the number of GNN layers, the number of sampled
neighbours, aggregation types and interpretation modules for ExAD-GNN [10–
12]. Our findings were as follows. First, cellular level AD prediction was robust
to the latent embedding dimensionality, with accuracy changing only slightly
from 92% to 94% for embeddings sized 32 to 512 (Figure 6A). Besides, the
penalty weight α, which balances disease prediction and risk gene prioritization,
was vital. Intuitively, a larger α usually allowed ExAD-GNN to shift its focus
towards gene selection by sacrificing the prediction accuracy, while a smaller
α would make ExAD-GNN gradually degenerate into an ordinary GNN, no
longer filtering for important genes. We hoped to identify genes with the most
outstanding contribution to AD prediction while ensuring accuracy. Therefore,
choosing an appropriate α was of utmost importance for ExAD-GNN. In this
experiment, we found the optimal value for α to be 1e-4 through rigorous testing
and validation. Furthermore, we tested the impact of GNN layers on ExAD-
GNN’s predictive accuracy. As shown in Figure 6D, we selected two layers of
GNN to calculate the prediction accuracy. Next, we found that the number
of neighbours selected for each aggregation process didn’t significantly affect
the accuracy (93% to 94% for different numbers of neighbours). Therefore, we
chose four neighbours for aggregation in our model. These analyses underscored
the robustness of ExAD-GNN to various parameter settings.

In addition, we found that different aggregation strategies had minimal
impact on the prediction accuracy (92% ∼ 94%, Figure 6E), so we selected
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Figure 6: Parameter sensitivity analysis (A-D) and ablation study (E, F).
Note: (A) Test accuracy with different embedding sizes. (B) Test accuracy with different penalty
weights. (C) Test accuracy with different number of GNN layers. (D) Test accuracy with different
number of sample neighbours. (E) Test accuracy with different aggregator types. (F) Test accuracy
with different model types.

the highest “mean” strategy in our model. Further, to comprehend the crucial
role of cell-type-specific gene importance sore, we explored two versions in
ExAD-GNN. In the first version (v1), a single gene importance score was shared
among all cell types, which means Sv1 ∈ R1xD (details in the Method section:
The Detailed Architecture of ExAD-GNN). The second version (v2) assigned
unique gene importance scores to each major cell type, but without further
differentiation between subclasses of ExN and InN, meaning Sv2 ∈ R|MC|xD,
where |MC| denotes the number of major cell types (eight in our experiments).
As demonstrated in Figure 6F, providing more specific gene importance scores
for finer cell types incrementally improved AD prediction accuracy (92% for
GraphSAGE, and increasing accuracy for v1 and v2, with ExAD-GNN reaching
the highest at 94%). This emphasized the significance of providing learnable
gene importance scores for each cell type in our model.

4 Discussion and Conclusion

We developed ExAD-GNN, an accurate and interpretable model for AD di-
agnosis and risk gene prioritization. Distinct from existing models, it takes
advantage of the recent technological developments in the single-cell revolution
by predicting AD pathology at the finest possible resolution from the het-
erogenous human brains – individual cells. Both across-cell and across-sample
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analyses demonstrate ExAD-GNN’s accuracy and effectiveness in capturing
sample-specific and cell-type-specific information at the molecular level for
AD status prediction. Besides, ExAD-GNN leverages the recent methodology
advances in explainable GNNs and uses learnable parameters to highlight key
features that strongly impact cellular decision-making processing, enabling
us to prioritize AD risk genes in a cell-type-specific manner. To test its ef-
fectiveness, we applied it to 31 scRNA-seq data from the human prefrontal
cortex of AD patients and healthy controls. As a result, nine of the top ten
prioritized genes in excitatory neurons have been previously reported to play
critical roles in AD, demonstrating its ability to pick up AD-associated genes.
Our detailed investigation of the training process and parameter sensitivity
analysis emphasized ExAD-GNN’s robustness to varying parameter settings.
This adaptability is crucial considering the complex and diverse nature of
cell-specific gene expression profiles.

While the current results are promising, there are certain limitations to our
ExAD-GNN model. Specifically, our model’s predictive accuracy is limited in
highly underrepresented cell types. For instance, ExAD-GNN’s AD prediction
accuracy in rare cell types, such as endothelial and VLMC, significantly
deteriorated (94% on average vs. 30% and 80%) due to very little training data
(22 cells for Endo and 74 cells for VLMC). However, as single-cell sequencing
technology advances, we anticipate the sequencing depth and cell number
per sample will significantly increase, allowing an improved performance of
ExAD-GNN to capture the intricacies of these cell types.

In summary, we developed ExAD-GNN into publicly available software to
tackle the prediction and interpretation of AD status at a single-cell resolution.
As research into AD progresses towards a more personalized understanding of
disease mechanisms, we anticipate that ExAD-GNN will serve as an invaluable
tool in predicting disease outcomes and identifying the key determinants of
AD in a cell-type-specific manner. Ultimately, the model’s ability to enhance
predictive accuracy and offer insights into critical genes has the potential to
contribute to the field of AD research significantly.
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