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ABSTRACT

In the cancer diagnosis pipeline, digital pathology plays an instrumental
role in the identification, staging, and grading of malignant areas on
biopsy tissue specimens. High resolution histology images are subject to
high variance in appearance, sourcing either from the acquisition devices
or the H&E staining process. Nuclei segmentation is an important
task, as it detects the nuclei cells over background tissue and gives
rise to the topology, size, and count of nuclei which are determinant
factors for cancer detection. Yet, it is a fairly time consuming task
for pathologists, with reportedly high subjectivity. Computer Aided
Diagnosis (CAD) tools empowered by modern Artificial Intelligence (AI)
models enable the automation of nuclei segmentation. This can reduce
the subjectivity in analysis and reading time. This paper provides an
extensive review, beginning from earlier works using traditional image
processing techniques and reaching up to modern approaches following
the Deep Learning (DL) paradigm. Our review also focuses on the
weak supervision aspect of the problem, motivated by the fact that
annotated data is scarce. At the end, the advantages of different models
and types of supervision are thoroughly discussed. Furthermore, we try
to extrapolate and envision how future research lines will potentially
be, so as to minimize the need for labeled data while maintaining high
performance. Future methods should emphasize efficient and explainable
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models with a transparent underlying process so that physicians can
trust their output.

Keywords: Molecular Biology, Nuclei Segmentation, Weak Supervision,
Systematic Survey.

1 Introduction

According to the Centers for Disease Control and Prevention (CDC), cancer is
the second leading cause of mortality in the U.S. after cardiovascular diseases
[64]. The toll accounts for more than 140 deaths per 100,000 population
in the U.S. An instrumental step for cancer diagnosis, tumor grading, and
staging evaluation is a biopsy. It is still the standard way for confirming
cancer in patients. Tissue specimens are extracted from the suspicious areas,
usually identified by radiologists, to reflect whether cancerous cells are present.
Biopsy cores are processed onto slides and further stained using the popular
Hematoxylin & Eosin (H&E) method to give rise to nuclei and cytoplasm.
Before digital evolution, pathologists used to read the slides manually under
microscopes, which was a time-consuming and laborious task, increasing the
diagnostic expenditures while delaying the results turn in time [26]. Nuclei
segmentation is a pivotal task towards cancer reading on histology images.
The relative topology, size, and shape of nuclei can characterize cancer’s
development in a certain area, depending on the tissue type (see Figure 1).
With the advent of whole slide image (WSI) scanners, it is possible to digitize
the slides in a high resolution under a certain magnification level, thus enabling
the pathologists to inspect the slides on the monitor using dedicated software
[25]. Yet, the very large size of each digitized image still requires much time
from expert pathologists to be read. Furthermore, there is a reportedly high
inter-reader variability because of different expertise levels [19].

In the last decade, a lot of research has been conducted in developing
accurate Computer-Aided Diagnosis (CAD) tools that can perform at the same
level as pathologists and provide more objective decisions with no variability.
These tools are meant to help pathologists in routinely performed tasks by
taking on trivial cases. Several million biopsies are performed in the U.S.
alone, across several types of tissues. Given the high false positive rate of
people sent to biopsy [34, 94], pathologists tend to spend most of their time
reviewing benign tissues. CAD tools can help to more efficiently screen trivial
cases, which enables pathologists to focus on more ambiguous cases that need
human’s expertise. After recent AI advancements, it is possible now to develop
CAD tools able to fully automate tasks in the diagnostic pipeline, hence easing
the tissue reading process. Nuclei segmentation highlights the topology of
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Figure 1: Nuclei topology in forming glands is important for tumor grading. Nuclei
segmentation task aims at detecting and highlighting nuclei over other areas, thus giving rise
to visual patterns that are important for pathologists, such as assessing the cancer gleason
grade in prostate tissue (GG) (a) or the cellularity percent (b) (figures from [69, 86]).

nuclei, as well as their shape, so its output can help pathologists to review the
slides much faster. Also, nuclei segmentation module can feed the input of
another AI-based module that predicts a slide to be cancerous based on the
nuclei segmentation output.

Following the last decade’s research of AI and Deep Learning (DL), last
year, the first ever FDA approval was given to the PAIGE tool [41] meant for
AI-assisted pathology reading. This brings modern pathology into a new era
and paves the way for more approvals in the future for AI-powered tools in
digital pathology. Yet, there are still commonly identified challenges [49] for
the nuclei segmentation task that need to be addressed. Noise and artifacts
during the staining process increase the intra-nuclei variance of appearance,
which also varies across tissue from different organs. Another factor is the small
amount of annotated data. Nuclei segmented images are hard and expensive
to obtain since they require a considerable amount of time and expertise.
Hence, publicly available nuclei segmentation datasets for research are scarce.
Modern AI and DL-based solutions require large data for training, and thereby
they face the challenge of generalizing into new images, especially in unseen
organs [110].

A couple of surveys have been conducted about nuclei segmentation and
histological image reading. Table 1 shows a summary of surveys related to
nuclei segmentation. Nasir et al. [65] have conducted an extensive review
of several methods, comparing the nuclei- and gland-based segmentation
methods. They provide various statistics and charts about methods and
datasets accepted in journals, paper acceptance per year in the area, and
analyze publicly available datasets. Various quantitative and qualitative
analysis facts are derived, as well as comparisons between nuclei and gland
segmentation problems. Hayakawa et al. [29] provide a brief survey on existing
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Table 1: A summary of survey papers on nuclei segmentation.

Ref. Tissue Type Scope

Nasir et al. [65] Multi organ Publication stats and results of nuclei
and gland segmentation

Hayakawa et al. [29] Multi organ High Level Overview of Nuclei
Segmentation

Irshad et al. [39] Multi organ Detection, Segmentation, Mitosis
Classification

Lagree et al. [49] Breast Only Supervised Deep Neural Networks
Zhou et al. [109] Breast Classic and Deep Neural Networks Only,

Whole Slide Classification
Ours Multi organ Inclusive Comprehensive Technical

Overview, Weak Supervision, Extensive
Quantitative and Qualitative
Comparisons

nuclei segmentation solutions, beginning from earlier approaches that used
traditional methods and reaching up to recent state-of-the-art (SOTA) methods.
That survey gives a quick overview of the whole field, focusing only on the
nuclei segmentation problem, and is a nice guide to quickly navigate through
the different categories of existing methods in the field. Irshad et al. [39] carried
out a broader survey for nuclei segmentation and detection, as well as general
classification in digital pathology images. They provide a thorough technical
review on earlier works before the advent of DL. In their work, different
standard pre-processing methods are referred. Moreover, there are extensive
explanations and formulas for earlier techniques used for nuclei segmentation,
such as Gaussian Mixture Models (GMMs), clustering, active contours models
and level sets, graph cuts and morphological operations. Other surveys [49]
focus their review on DL-based methods for nuclei segmentation but target
only breast tissue cancer which is a popular area for nuclei segmentation.
Yet, breast nuclei segmentation methods are intertwined to some extent with
the generic nuclei segmentation ones and thereby this paper provides a good
overview of nuclei segmentation methods with Deep Learning and relevant
datasets that comprise breast tissue. As nuclei segmentation may touch upon
the general histology image classification problem, there are other surveys
pertaining to the classification task that show how nuclei segmentation could
couple with the WSI classification task [109].

Our survey focuses on the nuclei segmentation problem, regardless of the
type of tissue. It pertains to datasets with multiple organs, and we are looking
into the generalization ability of methods in unseen organs as well. Despite
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recent surveys, this overview paper aims at providing a comprehensive technical
review of existing literature in Section 3, starting from the methods using
traditional pipelines up to today’s DL-based models with supervision, as well as
self-supervised methods. After the extended review of proposed methods, our
discussion focuses on how supervision may help improve nuclei segmentation to
the degree that is needed. Motivated by the scarcity of annotated datasets, we
try to delve deeper into weak supervision or self-supervision in order to answer
two questions: (1) how much supervision do we need to solve the problem and
(2) what are the areas of the problem that supervision helps to reach a higher
performance. After comparing and identifying current issues and challenges in
existing works in Section 4 – using both quantitative and qualitative results –
we provide our thoughts about future directions (Section 5), abstract ideas on
how supervision can help and how to identify the minimum amount of areas
that need supervision.

2 Staining in Digital Pathology

For over a century, the dominant technique for staining histopathological images
is using Hematoxylin & Eosin (H&E). Biopsy tissue specimens extracted from
organ regions that are suspected to have developed tumor are stained to reveal
the nuclei over other structures. In particular, Hematoxylin (H) gives rise to
nuclei, reflecting on them by a dark-purple color, while Eosin (E) stains other
structures in a light pink color, – not diagnostically relevant to cancer reading
– such as stroma and cytoplasm [9, 22].

After staining the biopsy cores from glass slides, pathologists analyze the
revealed nuclei cell structure microscopically to study the cellular morphology
for cancer diagnosis. However, staining is a chemical procedure subject to
high variations among different laboratories and organ tissues [96]. Moreover,
different microscope scanners are tuned under different parameters that cause
more variation in the process. Hence, with regard to the automated nuclei
segmentation process, noise can be induced at different stages before image
acquisition. This is a challenge from existing systems that need to cope with
the noise and defects that occur during the acquisition process.

2.1 Staining Procedures And Color Variations

The procedure for staining a histological specimen requires multiple steps, until
the slide is ready for examination under the microscope. The concrete steps
where color artifacts can occur are: (1) collection, (2) fixation, (3) dehydration
and clearing, (4) paraffin embedding, (5) microtomy, (6) staining, and (7)
mounting [33].
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Concretely, fixation time can vary the colorization results. Also, imperfect
dehydration can leave behind water drops that obscure certain slide regions
under the microscope. The thickness of slices after microtomy also affects a
lot the nuclei appearance, as thinner slices may provide more detail to nuclei
[62]. Finally, the staining process entails chemical solutions and thus, different
factors (i.e. staining time, solution pH etc.) can affect the tissue appearance
[40]. Image artifacts can be also caused during mounting the stained core onto
the coverslip (e.g. bubbles or dust). Figure 2 visualizes some common color
artifacts during staining.

Figure 2: Top row: different slice thickness results in very different nuclei color and
appearance. Bottom row: Under-staining (left) and over staining (right) can change nuclei
and background color [40, 62].

2.2 WSI Scanners & Image Digitization

The next critical step after staining is the image acquisition at the microscopical
level. The type of lens and magnification level parameter, camera chip type,
as well as the illumination system within scanner, can largely affect the image
output for the same stained tissue. There are a couple of scanners in the market
for digitizing WSI. Hamamatsu, Aperio XT, Olympus, Philips, Huron, Leica,
and others are some vendors selling digital scanners for pathological slides. In
Figure 3, one can realize the color shift across different scanners. Moreover,
the device parameterization is not standardized, and thus the digitized image
may vary significantly across different laboratories using different scanner
parameter adjustments.
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Figure 3: Same tissue sample digitized under two different scanners. On the left, whole-slide
image is acquired using Aperio XT, while the right one using Hamamatsu scanner. The large
color and texture variation across different devices is a challenge for nuclei segmentation
[96].

2.3 WSI Variability Implications And Challenges

Nuclei color and texture can be affected due to a number of imperfections.
Artifacts and noise that may occur during the staining process, as well as the
image digitization process (e.g., scanner’s device systematic and random noise)
can alter the color and nuclei texture. Unclear nuclei boundaries, overlapped
nuclei, and variations in their color and texture are quite challenging for a
generic nuclei segmentation pipeline. Mitosis also can look quite different on
the digitized image due to staining and scanner variations [2, 4].

Different pre-processing methods have been proposed in the past to nor-
malize the color components [82, 99] and mitigate the large color and nuclei
appearance variations. Yet, today it still remains a challenge and the main
reason modern AI nuclei segmentation models lack good generalization ability.
The previously mentioned challenges due to the large variations during WSI
acquisition are a subject for future research and the area of where differ-
ent proposed methods contribute in handling certain aspects of the nuclei
segmentation problem.

3 Methods for Nuclei Segmentation

This section outlines the spectrum of nuclei segmentation methods as shown in
Figure 4 and presents a comprehensive review of significant approaches. They
are broadly classified into unsupervised and supervised learning methods.

3.1 Unsupervised

Unsupervised methods perform segmentation without the help of any human
annotations. These methods are divided into two categories: traditional
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Figure 4: Outline of the existing nuclei segmentation methods.

methods, which do not use any learning, and self-supervised learning-based
approaches. Traditional methods leverage a lot from clinical priors about the
nuclei appearance over the background and their expected shape.

3.1.1 Traditional Methods

Traditional nuclei segmentation methods were predominantly adopted before
the deep learning era. They focused on applying different image processing
techniques to obtain reasonable segmentation maps. Originally, the problem
of nuclei segmentation was approached by relying much on the clinical prior
knowledge about for the nuclei shape and texture. These strong priors can
be leveraged to devise a model that can carry out the binary segmentation
of nuclei without the usage of labels. Therefore, traditional methods are very
relevant to this task, achieving a very good performance despite the lack of
human annotations, given the specific domain and assumptions behind the
nuclei segmentation. A summary of the unsupervised traditional methods is
listed in Table 2.

Thresholding Thresholding is one of the fundamental traditional segmen-
tation algorithms. Different thresholding methods vary in how the threshold
value for segmentation is computed. One widely adopted and automatic
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Table 2: A summary of traditional methods for nuclei segmentation.

Ref. Dataset Methods Pre-Processing Post-Processing

[27] 20 slides of
neuroblasts

Hysteresis
Thresholding

Color space
decomposition

Hole filling,
smoothing, removal
of false positives,
watershed

[59] 30 cutaneous
H&E stained
images

Local Region
Adaptive
Thresholding

Hybrid
Morphological
Reconstructions

Opening

[6] Real and
synthetic
microscopic
images

Tricalss
Thresholding

- -

[70] Gold Standard
Dataset

Hierarchical
multilevel
thresholding

Color
deconvolution,
opening

Dilation

[23] 20 leuokocyte
images

Otsu’s
threhsolding

Contrast stretching,
histogram
equalization

Closing

[102] 30 cytology
pleural fluid
images

Otsu’s
threhsolding

Median filtering,
conversion into
LAB color space

Opening

[60] MoNuSeg Adaptive
Thresholding

Data Driven Color
Transform

Convex hull
algorithm, nuclei
area priors based
thresholding, hole
filling

[61] MoNuSeg Local Modified
Adaptive
Thresholding, Self
supervised
classification
for uncertain
pixels

H component
extraction, Data
Driven Color
Transform

Convex hull
algorithm,
morphological
operations

[98] 19 H&E stained
breast cancer
images

Radial Symmetry
Transform,
Marker
Controlled
Watershed

Color
deconvolution,
morphological
filtering

Size and solidity
based refinement,
ellipse
approximation

[97] 119 H&E breast,
gastrointestinal,
and Feulgen
prostate images

Seeded watershed
based on image
driven markers

Gaussian
Smoothing,
Morphological
Operations

Morphological
Operations
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Table 2: Continued.

Ref. Dataset Methods Pre-Processing Post-Processing

[91] 52 DAB stained
colorectal cancer
images

Region growing
based seeded
watershed

Global and
local thresholding
for foreground
extraction

Intensity based
auto thresholding,
ellipse fitting

[17] Custom breast
cancer H&E
dataset

Skeleton model
based marker
controlled
watershed

Color
deconvolution,
Otsu’s threshold-
ing,
morphological
operations

Size based false
positive removal,
morphological
operations

[46] 34 fluorescence
microscopy
hepatocellular
carcinoma
images

Iterative marker
controlled
watershed

Gradient map and
distance transform
of binary map

-

[76] 120 H&E breast
cancer images

Circular Hough
Transform based
modified marker
controlled
watershed

Denoising, CLAHE,
Morphological
operations

-

[36] H&E esophageal
images

Improved active
contour with
growing energy

Iterative dual
thresholding,
ultimate erosion

-

[21] 100 H&E breast
cancer images

Geodesic Active
Contour

Expectation-
Minimization
algorithm

Overlap resolution

[20] 20 H&E breast
cancer images

DoG filtering and
thresholding
followed by
level set

Bilateral filtering,
Gamma correction,
morphological
operations

-

[3] MITOS dataset Localized, Region
Based Level Set

Stain normalization,
color deconvolution,
filtering

-

[78] KMC, BreakHis
datasets (breast
cancer images)

Modified
Chan-Vese Model
using multi chan-
nel
color data

Color
normalization,
color channel
selection

Morphological
operations, area
based false
positive removal

[45] 25 in-vivo and in
vitro breast
images

Multiscale LoG
filter

Graph Cuts Graph cuts with
region adjacency
coloring and
alpha expansions
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Table 2: Continued.

Ref. Dataset Methods Pre-Processing Post-Processing

[18] 40 promyelo-
cytic leukemia
and 10 lung
epithelial cell
images

Distance
Transform,
Graph cuts

Maximum
Likelihood
Estimation

-

[107] 51 H&E cervical
cell images

Adaptive and
localized graph
cuts

Conversion to HSV,
V channel
extraction, linear
stretching, median
filtering

Morphological and
gradient features,
concave points,
and constrained
ellipse fitting to
split touching cells

[87] Blood smear
microscopic
images

K-means
clustering

Median filtering,
LAB color space
conversion

Erosion based
region growing
mechanism for
nucleus splitting

[101] 35 pleural
effusion
cytology images

K-means
clustering

Median filtering,
CLAHE, LAB color
space conversion

Distance transform
based watershed,
Ellipse fitting

[12] Custom H&E
tumor samples

K-means
clustering

Feature extraction
with Gabor filters

Elimination of false
positives using
cytological profile

[84] 45 synthetic
cervical cytology
images

Fuzzy C means
clustering with
spatial shape
constraint

Complement-ing,
histogram based
binarization

False positive
removal using
area and shape
priors, Closing

thresholding algorithm for bimodal images is Otsu’s thresholding [6, 23, 68,
70, 102]. Here, the image histogram is separated into two clusters based on a
threshold, decided either by minimizing the intra-class variance or maximizing
the inter-class variance. Other approaches use global [27] or local thresholding
[59–61] in addition to morphological operations to refine the segmentation
maps as in Figure 5.

Figure 5: An example thresholding pipeline from [60].
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Gurcan et al. [27] proposed hysteresis thresholding based on morphological
operations. They utilize the R component (from RGB) due to its high con-
trast and apply Top Hat transform to detect the high-intensity regions from
the morphologically reconstructed complementary R component. Hysteresis
thresholding is then used to remove tiny high-intensity regions near actual
nuclei. It was observed that a few weakly stained nuclei were not detected
through this method, thus reducing the true positive rate. Such global thresh-
olding methods fail to account for the variations in staining intensities across
the image and within the nuclei. To address this issue, local or regional
thresholding was proposed. Lu et al. [59] incorporated a two-module approach,
with the first module performing Hybrid Morphological Reconstructions on
the complementary image to reduce noise and intensity variations. The second
module applied a local, regional adaptive threshold, classifying all pixels with
intensity lower than the mean intensity of each block as nuclei. A refinement
phase is followed, leveraging nuclei’s elliptical shape and size distribution
to correct under-segmentation issues due to local intensity variations. The
opening operation was performed as the final step to remove ghost nuclei and
smoothen the segmentation map. However, few nuclei with significant intensity
variations are missed in this process.

Cai et al. [6] propose an iterative thresholding method using Otsu’s thresh-
old and classify the pixels into three classes. The first iteration applies Otsu’s
algorithm to determine the threshold and the means of the two classes the
threshold divides them into. These two means help classify the pixels into
three different categories, with the nuclei being pixels with intensities greater
than the largest mean and the background with pixel intensities lower than
the smallest mean. The pixels with intensities between these two means are
considered a separate class and subject to the same procedure, classifying the
pixels into three classes again. This procedure is repeated on the third class
of pixels between the two class means until a preset condition is reached when
Otsu’s threshold divides them into the nuclei and background. The nuclei pix-
els identified from each iteration are combined in a logical union, and a similar
operation is performed on the background pixels to obtain the segmentation
map. This approach is based on thresholding and helps recall some fine and
weakly stained nuclei, which the original Otsu’s algorithm may miss.

Using the Beer-Lambert Law, Phoulady et al. [70] first extract the Hema-
toxylin component from the H&E stained image. They propose an iterative
multilevel thresholding scheme, with each threshold determined using Otsu’s
method, separating the pixel intensities into several classes. The regions cre-
ated in the initial stage are either shrunk or split into two or more smaller
areas in the further steps. Morphological operations were then performed
to remove any artifacts and improve the accuracy of the nuclei boundaries.
Gautam et al. [23] propose a similar scheme, where the H&E stained image
is first converted into grayscale, and a copy is made. One copy is histogram
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equalized, and the other copy is contrast stretched. Addition and subtraction
are performed on these two copies resulting in minimum distortion in the
nuclei. Otsu’s thresholding is then applied to the entire preprocessed image,
followed by the closing operation (combination of dilation and erosion) to fill
in holes and remove false nuclei. Win and Choomchuay [102] apply the median
filter to each component R, G, and B to remove noise in the image. They then
convert the images into the LAB color space due to the dependency of the R,
G, and B components on each other. Otsu’s thresholding is performed on the
grayscale adjusted and equalized image to binarize the image. The binarized
image is then subject to the morphological opening operation to remove false
nuclei. However, this method fails to segment overlapping or clustered nuclei.

In the past year, Magoulianitis et al. [60] proposed a pipeline consisting of
three modules: (1) Color transform, (2) Binarization, and (3) Morphological
Processing called the CBM pipeline. They first split the image into 50×50-sized
blocks comparable to the size of nuclei in the H&E strained images. The strong
correlation between the R, G, and B channels of an RGB image is exploited
to reduce data dimensions. PCA is performed on the RGB image to minimize
the three attributes to a single high energy attribute for further processing.
A histogram of the normalized energy values from this attribute is plotted to
visualize the distribution of values within each block. This histogram displays
a bimodal distribution, the first peak representing the nuclei and the second
peak representing the background. The valley between the two modalities
may be used to determine the threshold to classify the pixels as nuclei or
background. If this bimodal assumption does not hold, and there are more
than two peaks in the histogram, or one peak is more prominent, the block
is reduced to four smaller blocks or four blocks are merged to form one large
block, respectively. Thresholding is applied individually to these new reduced
or combined blocks. In the final stage, large connected nuclei are split using the
convex hull algorithm, nuclei size priors are used to eliminate small erroneous
nuclei, and false negatives in the image are removed using the hole filling filters.

A follow-up work of CBM, namely HUNIS [61], proposes a two stage
approach, where stage-1 creates an initial segmentation output, and then stage-
2 uses the output to train a pixel-wise classifier in a self-supervised manner
(see Figure 6). In stage-1, PCA is performed on the Hematoxylin component
extracted from the H&E stained image to obtain monochrome attribute to work
with. The adaptive thresholding algorithm is slightly modified by considering
two cases. When one peak in the histogram of the block is more prominent
than the other, or there are more than two peaks in the image, the threshold
for the block is adjusted adaptively based on the magnitude and direction of
the slope of the line connecting the two peaks in the peaks in the histogram
for more precise segmentation. Unusually small nuclei are identified from a
nuclei size distribution and eliminated. This is followed by using shape priors
and morphological processing to split large nuclei. A false positive reduction
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module works on a larger tile to capture more nuclei instances. A global nuclei
size threshold is used to group the instances of reasonable size as ground truth
and the remaining as another set. Each element in the latter set is compared
with the former set, and elements with a very low similarity are considered
false positives and eliminated. The procedure is extended to a second stage,
training a pixel-wise classifier on the pseudo labels obtained in the first stage.
Utilizing the confidence scores from the classifier, pixels with high uncertainties
which lie close to the boundary are reclassified into their correct classes. Final
morphological processing steps are included to refine the segmentation maps
further.

Figure 6: High Performance Unsupervised Nuclei Instance Segmentation (HUNIS) pipeline
from [61].

Some slight modifications in applying the thresholding help alleviate the
errors due to staining variations. However, thresholding on its own needs help
with segmenting overlapping or clustered nuclei. Several approaches combined
thresholding with other methods to account for the clustered and overlapping
nuclei, as in Figure 7.

Watershed The watershed algorithm [79] employs topological information
to segment an image into different regions of what are called catchment basins.
The original version of the algorithm starts with finding the local minima in the
image as the centers(seeds) of the catchment basins. Different colors are then
flooded, beginning from the minima markers until they reach the boundaries
of each catchment basin to form the watershed lines. The boundaries of each
region distinguish one part from the other, resulting in a segmented image.

When applied to nuclei segmentation, this process sometimes resulted
in over-segmentation, meaning single objects were segmented into several
regions, or under-segmentation, where multiple regions were combined into
a single region. Marker-controlled approaches with novel marker selection
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Figure 7: An example marker controlled watershed method from [97] in conjunction with
thresholding.

methods were developed to overcome this difficulty. An example method using
a marker-controlled watershed is illustrated in Figure 7.

Veta et al. [98] proposed a marker-controlled watershed segmentation using
the Fast Radial Symmetry Transform (FRST). To remove irrelevant structures,
color deconvolution (to extract the Hematoxylin component) and morpho-
logical operations are performed. FRST is used to detect the foreground
and background markers based on the radial shape assumption for nuclei.
Watershed segmentation is then applied using these regional markers. Regions
of low solidity and size are removed to refine the segmentation further. Finally,
they use the ellipse approximation to generate regular contours. This study
observed that the FRST-based markers reduce the oversegmentation observed
with regional minima markers. However, one drawback of this approach is the
selection of background markers as everything around the nucleus of a specific
area. This may not be true for all nuclei resulting in few errors. To overcome
this drawback, Vahadane and Sethi [97] suggested a background marker gener-
ation method. The image is first preprocessed using Gaussian smoothening
and morphological processing to remove noise and enhance the foreground and
background while preserving the edges. To obtain the background markers,
the enhanced image is thresholded using Otsu’s method, generating a tentative
foreground, followed by inversion, dilation, and skeletonization. The nuclei
markers are generated using FRST and refined using the tentative foreground.
The nuclei and background markers thus obtained are employed in the water-
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shed segmentation. Post processing through morphological processes reduces
some false positives and splits connected nuclei.

Shu et al. [91] proposed a method combining thresholding and marker
controlled watershed segmentation with a two step approach to seed detec-
tion. Since thresholding often misclassifies nuclei boundaries, they generate
two masks, one with global thresholding and another with global and local
thresholding. For the first step of seed detection, the latter is converted into
a Euclidean Distance Map (EDM), and seeds for watershed are determined
through Ultimate Eroded Points (UEP). In the second step, to account for the
weakly stained nuclei, the remaining particles from this mask are considered
seeds for a region growing process based on the global thresholded mask. This
generates “necks,” which helps watershed merge oversegmented regions and
separate clustered nuclei. Seeds for watershed are obtained from the EDM,
and segmentation is performed. Post processing consists of another round of
local auto thresholding and ellipse fitting to refine the maps. The requirement
of some empirically determined parameters restricts it to good performance
on a single tissue type. To eliminate the requirement of empirical parameter
determination, Cui and Hu [17] apply an ellipse detection algorithm to estimate
nuclei size. Otsu’s thresholding and morphological operations are performed
on the Hematoxylin component before ellipse detection. From this binary
image, connected components are identified. Based on the estimated nuclei
sizes, these components are classified as noise, single nuclei, or multi nuclei
regions. Skeletonization is performed on the multi-nuclei region to identify
seeds for watershed segmentation. Once individual nuclei are identified, they
are then post processed along with the components classified as single nuclei
regions. However, this approach tends to mark some large nuclei as a multi
nuclei region, causing oversegmentation.

Seeds determined from regional minima approaches often include spurious
markers in the form of noise which may degrade the performance of the seg-
mentation algorithm. The H-minima transform is applied to suppress minima
below a value ‘h.’ Selecting this value is critical, as low values may lead to
oversegmentation, and higher values may cause under segmentation. Koyuncu
et al. [46] proposed an iterative H-minima based method for efficient selection
of h. They first generate a gradient map and distance map from the image.
The h value is varied with each iteration to generate markers from the gradient
map, and regions with an area less than a specified threshold are eliminated.
The markers obtained from each iteration are then combined, and the marker
controlled watershed is used to grow regions identified from these markers on
the distance map. To prevent oversegmentation, the region growing process is
constrained to pixels that have not been previously classified as background or
another nucleus. This process improves the segmentation of non-circular nuclei.

Rajyalakshmi et al. [76] propose a modified marker-controlled watershed.
The H&E stained image is preprocessed by applying Contrast Limited Adap-
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tive Histogram Equalization (CLAHE) and morphological processes to remove
noise. Local maximum points are identified with the help of Corner De-
tection Techniques, which are then used to detect nuclei circles using the
Circular Hough Transform. Otsu’s thresholding is applied to remove false
positives. To eliminate certain dark and bright regions, a map of variable
size structured elements is constructed and applied to the thresholded image.
Marker-controlled watershed is applied to the resulting image to extract the
boundaries of overlapped nuclei.

Active Contours & Level Sets Active contours, also known as snakes,
start with an initial contour of points and evolve to fit the points on the
object by energy minimization. The initial contour is often generated from a
representation of parameters or a formulation. The contours evolve iteratively
until a potential minimum energy boundary is obtained.

However, this method is highly sensitive to initial contour placement. One
of the early implementations of the snakes algorithm by Hu et al. [36] detects
the nuclei centers using a dual threshold algorithm followed by ultimate erosion.
To overcome the issue of initial contour placement, they propose an improved
snake energy minimization function by adding a region similarity based growing
energy function. This algorithm also restricts the movement of the contour
along radial directions, which reduces the computational time and broadens
the boundary attraction range.

Active contours are also limited in their ability to segment overlapping
objects. Fatakdawala et al. [21] employ an expectation-minimization (EM)
algorithm with four classes to initialize a geodesic active contour as depicted
in Figure 8. The EM step generates an initial segmentation map, which helps
reduce the impact of dataset variability. A swatch color template selects the
target initial segmentation map representing the nuclei. A Magnetostatic
Active Contour model is applied to the chosen map using a bidirectional force
to evolve the nuclei boundaries. A final step to resolve overlap between nuclei
contours is implemented by identifying points of high concavity in multi nuclei
regions, followed by an edge path algorithm to split the contours using the
edge information and a size heuristic. Nonetheless, good performance from
this approach is subject to well-stained and low noise samples, as the EM
algorithm depends on the R, G, and B values.

Level sets are an alternative mathematical implementation of Active con-
tours, in which the boundary is viewed as the level set function ϕ = 0 or
the zero-level-set function. Starting from an initial contour represented by
a level set function, this contour is evolved to fit the object’s boundary by
constructing a zero level set function.

Faridi et al. [20] proposed a level set based technique to detect and segment
cancerous nuclei. A bilateral filter is applied to the image to smoothen the
image while preserving the edges. The green channel indicates a higher
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probability of cancerous nuclei, hence chosen for further processing. Gamma
correction is applied to this channel and thresholded to obtain a binary image.
The difference of Gaussian (DoG) filter is applied to the morphologically
processed image from the previous step and thresholded to obtain nuclei
regions. Initial contours for the level set algorithm are generated by dilating
the detected nuclei centers (regions). Nuclei with smooth contours are obtained
as an output of the level set algorithm. False positives may still occur due to
staining variations, and not all critical cancerous nuclei may be detected.

Beevi et al. [3] implemented an approach combining the Krill Herd Algo-
rithm (KHA) based multilevel thresholding and localized Level Set. Upon stain
normalization, the R component of the image is chosen for further processing
due to the high contrast between nuclei and background. A Weiner filter is
applied to the image to enhance the weakly stained nuclei and edges. Initial
contours are obtained by employing the KHA optimized multilevel threshold-
ing, where out of the three thresholds obtained, the lower threshold values
are detected as nuclei. Localized level set algorithm works on the principle of
maximizing the mean intensity difference between the foreground and back-
ground along the contour. In addition, energy minimization is done by region
based techniques and local information accounting for the intensity variations.
KHA exhibited fast convergence, eliminated the risk of oversegmentation, and
improved the segmentation of overlapping and touching nuclei.

Figure 8: An example active contour based pipeline from [21].
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The Chan-Vese model [10] for image segmentation based on the Level
Set implementation has been a widely adopted method. Instead of the reg-
ular image gradient based stopping criterion in regular active contours, this
model applies a stopping criterion based on the Mumford-Shah segmentation
algorithm [63], thus detecting even irregular boundaries.

Rashmi et al. [78], apply a multichannel Chan-Vase model to perform nuclei
segmentation. The Green Channel (from RGB color space) and inverted S
Channel (from the HSI color space) are obtained from the color normalized
H&E stained images due to their ability to distinguish weakly stained nuclei.
The energy function in this Chan-Vese implementation utilizes both channels
to get the zero level set contour. The output of this step is postprocessed
by filling the holes using the closing operation and thresholded to remove
false positives. The complementary information supplied by the Green and
Saturation Channels contributes to improving the segmentation performance.

Graph Cuts In graph-based approaches, each pixel is considered a node in
a graph, and each edge is weighted based on the degree of similarity between
its connecting nodes. A cut in the graph partitions the graph into two disjoint
sets of nodes. The best cut will have minimum cost or energy.

Al-Kofahi et al. [45] proposed graph based methods for initial binarization
and further refinement. The normalized image histogram is computed and a
minimum error thresholding based on Poisson distribution is performed before
applying the fast maxflow Graph cuts algorithm to obtain initial segmenta-
tion. To detect seeds, the scale normalized Laplacian of Gaussian (LoG) filter
response at multiple scales is computed. To overcome undersegmentation,
maximum scale values are constrained using the Euclidean Distance map.
They use these seeds as nuclei centers in a local maximum clustering algorithm,
and foreground pixels are assigned to these centers forming clusters. A region
adjacency graph coloring method to divide large clusters in the initial segmen-
tation into smaller groups of nuclei precedes the α-expansion (algorithm to
obtain multi-way cuts in a graph) to delineate nuclei boundaries in clusters.
This pipeline is illustrated in Figure 9.

Daněk et al. [18] proposed a two-stage graph cuts model where the first
stage distinguishes the foreground and background, and the second stage
segments touching nuclei. Bilevel histogram analysis is employed to generate
initial weights to the edges of the graph. The centers of the two peaks depicting
the nuclei and the background are considered as thresholds. Weights of links
of background voxels less than the threshold and foreground greater than
the threshold are given the value ∞. The rest of the voxels are not given
any weight. The background segmentation is obtained by performing the two
terminal graph cuts algorithm. In the second stage, centers are identified from
the nuclei clusters by calculating a distance transform inside the cluster and
using the maxima transform to find the peaks. The graph weights in this
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Figure 9: An example graph cuts based pipeline from [45].

stage are determined by the Euclidean distance from the nuclei centers to the
current voxel. Since the standard maxflow algorithms may not be used with
multiple nuclei, an iterative algorithm to find the best cut for label pairs is
implemented. Strong gradients in the nuclei centers are ignored by including
nuclei shape a priori information while performing graph cuts.

Zhang et al. [107] use an adaptive and local graph cuts approach. Prepro-
cessing involves converting the image from RGB to HSV space and extracting
the V component, enhancing it via linear stretching and removing noise using
a median filter. They employ an adaptive thresholding algorithm suggested
by Sauvola and Pietikäinen [88] using textural and intensity information to
detect approximate nucleus regions. Each of these regions is refined using a
Poisson distribution based localized Graph Cuts with the help of boundary
and regional information. This approach improves the performance in case
of non uniform chromatin distribution and low contrast difference between
nuclei and background. The segments with maximum overlap with the region
obtained in the adaptive thresholding are retained, and an empirically deter-
mined condition on roundness reduces computational time by determining the
need for further refinement.
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K-Means Clustering For K-Means Clustering Based approaches, a value K
is selected as the number of clusters, and cluster centers are chosen randomly
or heuristically. Each pixel is assigned a cluster label based on the minimum
distance between the pixel and the cluster centers. New cluster centers are
computed using the new labels. This process is repeated until it converges or
no changes occur.

Sarrafzadeh and Dehnavi [87] proposed a K-means clustering algorithm
integrated with a region growing mechanism to segment nuclei. They apply a
median filter to each of the image’s R, G, and B components to remove noise
and preserve the edges. The filtered image is converted to the LAB color space
to decouple the intensity and color bands. K-means clustering is applied to the
a and b color spaces, creating three clusters based on Euclidean distance. The
cluster with the minimum mean of RGB bands is detected as the nuclei. The
opening and hole filling operations follow to smoothen boundaries, eliminate
false segments, and complete segmented regions. To separate touching nuclei,
connected components are identified as those regions with an area greater than
the area of cells. With the green component being the most suitable for edge
detection, the Sobel filter is applied to this component, and the detected edges
are superimposed on the binary map obtained from the previous step. Seed
points for region growing are determined by computing the center of mass after
applying erosion on the edge included map. From these seeds, the regions are
expanded or grown until there are two or more edge points in an 8-connected
neighborhood of the central pixel. This results in splitting connected nuclei,
giving distinct nuclei in the final map.

Win et al. [101] proposed an approach on the same lines as [87]. To
preprocess the images, in addition to median filtering, CLAHE is applied
to enhance the contrast. They use the same K-means procedure with k as
three, followed by morphological processing to improve the nuclei boundaries.
Figure 10 illustrates the flow chart of the adopted method. These two methods
differ in the procedure adopted to split overlapping nuclei. Distance transform
is applied, where the value of each pixel is replaced by its distance from the
closest background pixel. The seeds are assumed to be the darkest parts of
each object, and the watershed is performed using these seeds. Finally, ellipse
fitting is done to generate smooth contours.

Chang et al. [12] proposed K-means clustering using morphological features.
They extracted features from H&E stained images using the Gabor filters
of different orientations and frequencies. The impulse responses from Gabor
filters and other features, like intensities, are stacked to form an n-dimensional
feature space. Each pixel in the image is mapped to a point in this feature space.
The pixels are then enhanced using chosen features, and pixels with similar
features are clustered using the K-means clustering algorithm. Cytological
profile, including features like nuclei shape, size, intensities, etc., may be used
to eliminate false positives and improve segmentation.
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Figure 10: An example K-Means Clustering based pipeline from [101].

Fuzzy C-means (FCM) clustering is an extended, robust clustering-based
segmentation algorithm among all the fuzzy clustering methods. It offers
the flexibility of allowing partial memberships in clusters. The standard
algorithm utilizes only intensity information and hence is susceptible to artifacts.
Including spatial information, however, tends to result in poor segmentation.
Saha et al. [84] have proposed a spatial shape constrained FCM to segment
nuclei. The input image is first complemented and binarized by subtracting
the background using the second peak from the image histogram as the
threshold. A fuzzy partition matrix is initialized before applying the spatial
shape constraints. The circular shape function (CSF) is defined from seeds
identified using an adjacency graph. In each connected component, nodes with
maximum intensity are considered seed points. CSF is calculated for each pixel
in the image as a function of its spatial coordinates with respect to other seed
points. This value is then used to modify the pixel’s intensity, thus moderating
which target cluster the pixel belongs to. This CSF based FCM procedure is
repeated until convergence. CSF thus helps in differentiating pixels in spatially
different locations with similar intensities. Features like area, eccentricity, and
circularity were used to remove irrelevant areas from the output, followed by
morphological processing to smooth the nuclei boundaries.

3.1.2 Self-Supervised

For deep learning supervised methods, the requirement of large amounts of
data and their annotation efforts are a matter of concern. Annotated data are
usually scarce for nuclei segmentation, given that it is a very time consuming
and laborious task, requiring expert knowledge. Large images from several
types of tissue take several hours to be annotated, being also subject to
large inter-annotator variance. Hence, this has motivated the advent of self-
supervised methods using DL models. These models are trained using different
strategies to learn how to segment nuclei with no labels. Unlike traditional
approaches, self-supervised methods leveraging less the clinical priors and rely
more on learning representations through the very data or other domains.
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All approaches in this section have a two-stage pipeline consisting of
a pretext task(pre-training) and a downstream task(fine-tuning). They are
further classified into Domain Adaptation, Predictive Learning, and Contrastive
Learning. Table 3 summarizes the self-supervised methods.

Domain Adaptation Publicly available fully annotated biomedical datasets
are only a few, but there a plenty of completely labeled general datasets. As
illustrated in Figure 11, domain adaptation takes advantage of these large
volumes of labeled data, called the source, in the pre-training stage to learn
features. The relevant biomedical datasets, called the target, are then used in
the second stage to fine tune the performance of the model.

Figure 11: An example image from [35] illustrating the idea of domain adaptation. The
source data can vary from a common image set to labelled biomedical images.

Hsu et al. [35] proposed a Domain Adaptive Region-based CNN (DARCNN)
that learns object definition from a large annotated vision dataset COCO and
adapts it to biomedical datasets. The pipeline consists of two stages of feature
level adaptation and pseudo labelling at the image level. DARCNN utilizes
source dataset weights for pretraining, and trains on combined batches of the
source and target datasets. The two step framework of the Mask RCNN along
with a domain separation module form the main structure of the DARCNN. The
large domain shift between the general vision dataset to the biomedical dataset
is handled by the domain separation module, which learns domain specific and
domain invariant features that are input to the mask segmentation and regional
proposal networks respectively. The domain specific features contain uncon-
strained embedding space in addition to information about the discriminability
of the source and target domains. On the other hand, the domain invariant
features contain information on objectness in the inputs from both domains.
The loss function used in DARCNN consists of four losses: Lsim representing
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Table 3: A summary of Self-Supervised nuclei segmentation methods.

Ref. Dataset Methods Pre-Processing Post-Processing

[35] COCO, BBBC,
Kumar, TNBC

Mask RCNN based
domain adaptation
using pseudo
labeling

DARCNN
pretrained with
source dataset

-

[108] 400 single WBC
images split into
two datasets of
300 and 100
images

Unsupervised
initial segmentation
with K-means
followed by
supervised
refinement using
SVM classifier

Conversion to HSI
color space

-

[85] MoNuSeg Attention network
for scale
identification with
segmentation maps
as auxiliary outputs

Tile extraction,
stain normalization

Opening, closing,
distance transform

[1] MoNuSeg,
TNBC

Multi scale
representation
based Self
supervised Learning
using U-Net

Cropping, resizing,
ResNet-18
pretrained with
zoomed in and
zoomed out tiles

-

[71] Kaggle DSB18,
BUSIS, ISIC18,
BraTS18

Redundancy
reduction based
Barlow Twins
U-Net

U-Net encoder
pretrained with
Barlow Twins
approach (Siamese
Net)

-

[55] BBBC039V1,
Kumar, TNBC

Cycle Consistency
Panoptic Domain
Adaptive Mask
RCNN

Normalization,
random sample
cropping, removal
of samples with
less than 3 objects,
complementing

-

[103] MoNuSeg Contrastive
Learning using
Scalewise Triplet
Loss and Count
Ranking to pretrain
U-Net encoder

Anchor, positive
and negative tile
sampling

-

[5] MoNuSeg,
CoNSeP

Positive and
Negative Patch
based Contrastive
Learning using
FCN

- -



A Comprehensive Overview of Computational Nuclei Segmentation Methods 25

domain invariant features, Ldiff representing domain specific features, Lsource

representing the Mask RCNN losses to train the source dataset, and Ltarget

representing the self supervised consistency loss. This approach gives space
for background variation within the dataset by assuming an independent back-
ground consistency in each image. This is done with the help of the region
proposal network, which minimizes the variations in the representation of the
background. Ltarget, also known as the self supervised representation consis-
tency loss, is responsible for this minimization. The output of the first stage
gives a coarse segmentation map, which needs to be further refined to obtain
image level supervised results. Image level supervision is achieved in the second
stage of the DARCNN, which trains only the target branch on the pseudo
labels with high confidence generated from the first stage. These pseudolabels
are strengthened with the help of augmentations, accounting for variations
in illumination and image quality. They also show the generalizability of
DARCNN by adapting the model to three diverse biomedical image datasets.

In [55], Liu et al. proposed a Cycle Consistent Panoptic Domain Adaptive
Mask RCNN (CyC-PDAM). They choose fluorescence microscopy images as
their source domain and synthesize H&E stained images using CycleGAN. The
fluorescence microscopy images are preprocessed to generate square patches
of size 256x256. With CycleGAN on its own, the synthesized images appear
to have some undesirable nuclei, that, in further tasks, tend to be marked as
background. An auxiliary task of nuclei inpainting is presented to remove these
unlabeled nuclei. From the synthesized image and its mask, an auxiliary mask
with all the unlabelled nuclei is generated. Using this, a fast marching based
nuclei inpainting is applied to replace these nuclei with unlabelled background
pixels, thus eliminating all the undesirable nuclei. Mask RCNN, used as the
baseline model, is built using ResNet-101 and a feature pyramid network(FPN).
This Mask RCNN has domain bias in the semantic features, as it focuses mainly
on local features and lacks a global view. To introduce this panoptic view, a
semantic branch including a domain discriminator, is appended to the FPN.
This branch in addition to the instance level segmentation branch help in
reducing cross domain discrepancies and produces domain invariant features.
Finally, to decrease the bias towards the source domain, a reweighted task spe-
cific loss is introduced. This network performs better than its fully supervised
equivalent on unseen datasets, proving the efficacy of the domain invariant
features that prevent the network from being influenced by dataset bias.

Predictive Learning This method uses a framework to generate pseudo
labels for the training set that are further refined in the next stage. Such an
example is shown in Figure 12. If a deep learning based model is used, the
weights obtained from the pretraining stage are transferred to the second stage
to finetune the segmentation model.
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Figure 12: An example image from [108] showing the use of pseudolabels generated from
the first stage to train a classifier in the second stage.

Zheng et al. [108] proposed a self supervised method with an unsupervised
initial segmentation to generate pseudo labels, which are later used in a super-
vised refinement phase. The first module in the pipeline performs background
separation in the HSI color space with the help of K-means clustering. Several
oversegmented regions in the border of the image are removed. Regions with
colors similar to the removed regions are also eliminated. The remaining image
is merged into the foreground leading to touching or overlapping clumps. In
order to split these connected nuclei components, concave points are identified
on the contour of the clumps. The clumps are then iteratively split by connect-
ing pairs of concave points on the contour. The second module is responsible
for fine tuning the results from the first module, by a supervised classification
approach. Features like RGB colors, topological structure, and HSV based
weak edge enhancement operator values are extracted for each pixel. To speed
up the classifier training, a cluster sampling technique, selecting representative
pixels from the oversegmented regions in the background separation step,
is applied. The final step is to train an SVM classifier using the selected
representative points. This trained classifier can then be used to classify the
pixels of an image as the required region of interest or the background.

Sahasrabudhe et al. [85] proposed a method based on the assumption
that the magnification level of an image can be determined by the texture
and size of nuclei. This approach shows that identifying the magnification
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or scale of the image acts as a self supervised signal for nuclei location.
The required segmentation maps are obtained as an auxiliary output in this
scale classification network. They use the concept that if a tile of nuclei
can determine the magnification level, its element wise multiplication with
an attention map representing the corresponding nuclei will also be able to
determine the magnification level. A confidence map is generated using a fully
convolutional feature extractor, which is then activated by a sigmoid function
to generate the attention map. A sparsity regularizer is applied to this map
to focus attention on the input patch. Now, the elementwise multiplication of
this attention map and the original image tile is input to a scale classification
network built out of ResNet-34, that gives the scale classification probability.
The entire network is trained end to end, with the auxiliary output generating
the nuclei segmentation map. A smoothness regularizer is applied to the
attention maps to remove high frequency noise. In addition, to impose semantic
consistency on the feature extractor, transformation equivariance is described
by applying transformations like rotation, transpose, and flips. To obtain the
final segmentation output, the attention maps are subject to opening and
closing operations. Distance transform is computed from this image, and local
maxima are identified to locate seeds for the marker controlled watershed that
followed. From their observations, this model generalizes well on unseen organs.

Based on a similar scale based approach, Ali et al. [1] proposed a multi-scale
self-supervised model. Small patches from the whole slide images are extracted,
and each patch is again cropped and resized. These patches have images that
are zoomed in or zoomed out. The initial self supervised stage uses a ResNet-18
model, trained to classify these pairs of patches as zoomed in or zoomed out.
The second stage employs a U-Net architecture with a ResNet-18 encoder and
a Feature Pyramid Network decoder. The U-Net model is trained with the
weights transferred from the first stage to perform the actual segmentation
task. This model was fine tuned using the Adam optimization algorithm
with the cross entropy as loss function. The results of this approach support
the effectiveness of transferred weights from the same domain, as opposed to
domain adaptation from general datasets like ImageNet.

Punn and Agarwal [71] proposed a self-supervised framework, known as the
BT-UNet, employing the redundancy reduction based Barlow Twins approach
to pretrain the encoder in the U-Net. Two distorted images are generated
from an image by introducing distortions like cropping or rotation. The first
stage comprises pretraining the U-Net encoder with the help of the Barlow
Twins strategy, followed by a projection network to obtain encoded feature
representations. The Barlow Twins approach uses a twin encoder and projector
based Siamese net sharing similar weights and parameters. The feature maps
generated by the encoder network lead to feature representations by passing
through blocks of global average pooling, fully connected (FC) layers, ReLU
activation, batch normalization, and a final FC layer. A cross correlation
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matrix is computed from these representations. The model is then refined to
make the cross correlation matrix similar to an identity matrix with a Barlow
Twins Loss function. In the second stage, the weights learned by the twin
encoders are transferred to the U-Net model initializing the encoder, while the
decoder is initialized with default weights. A limited number of annotated
samples are utilized to train this U-Net segmentation model, which uses the
average of the binary cross entropy loss and dice coefficient loss as the loss
function.

Contrastive Learning Contrastive learning creates positive patches and
negative patches from an image, and a model learns attributes by contrasting
the patches against each other. This helps the model find the similarities and
dissimilarities among the image patches.

Xie et al. [103] proposed an instance-aware self supervised method involving
scalewise triplet learning and count ranking. This implicitly helps the network
learn the nuclei size and quantity information from the raw data. In triplet
learning, three samples are generated from the original input image. A random
sample of a specific dimension is cropped from the input image, called the
anchor. Another sample of the same size is cropped from the same image,
called the positive image. These two samples will have identical nuclei sizes as
they are same-sized samples. To include nuclei size information, a negative
patch, a sub-patch from the positive patch, is sampled and resized to the size of
the anchor and positive images. This sub patch is randomly sampled from a set
of three sizes to introduce diversity. The anchor, positive and negative samples
form a triplet, used in this self supervised proxy task shown in Figure 13. While
these patches implicitly account for the nuclei size, they also account for nuclei

Figure 13: A contrastive learning example from [103] using three different patches generated
from an image.
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quantity, as negative patches will always have a smaller number of nuclei than
the positive and anchor patches. This introduces another metric, the pairwise
count ranking for self supervised learning. The proxy task comprises three
encoders with shared weights trained on the count ranking loss and scalewise
triplet loss. These encoders aim to embed the features into a 128 dimensional
feature space. Triplet learning focuses on narrowing the distance between
samples with similarly sized nuclei and enhances the dissimilarity between
the samples with differently sized nuclei. Count ranking enables the network
to identify large crowds of nuclei. Fine tuning for the segmentation task is
done using a U-Net with a three way classification, including the nuclei, nuclei
boundary, and background. ResNet-101 is the backbone of the encoder and is
pretrained with the proxy task. These weights are transferred to the U-Net
encoder, while the decoder weights are randomly initialized. Joint training
on the two proxy tasks appears to substantially improve the segmentation
performance, compared to employing just one of the two.

Boserup and Selvan [5] proposed a patch based contrastive learning based
network. A confidence network is used to predict a set of confidence maps
for each image, representing the confidence level that each pixel belongs to a
particular class ‘k’. The high confidence level of an image representing class ‘k’
implies that the image contains objects of a particular class. Such a confidence
map, implemented using a fully convolutional neural network, is trained to
distinguish between objects of different classes by contrastive learning. The
selection of positive and negative patches is highly critical as they determine the
performance of the confidence network. Positive patches are those which are
believed to have objects of a specific class, and negative patches are those which
do not have the object of that class. To obtain positive and negative patches,
an entropy based patch sampler is put to use. The average patch entropy
is defined as a function of the Bernoulli Random Variable of the confidence
value of a pixel belonging to a particular class. Ideal choices of these patches
would correspond to higher certainty from the confidence network. From a
set of patches sampled from an unnormalized Bernoulli distribution for each
class, positive and negative samples are partitioned based on their confidence
scores. The similarity between patches is calculated from the pixelwise product
of an image and its confidence map. Mean squared error and mean cross
entropy are the pixel based similarity measures employed for this purpose.
This scaling with the confidence map connects the gradients between the
confidence network and the sampling process, which aids in backpropagation
for end-to-end training of the model. This approach uses a combined loss,
including the inter-class and intra-class contrastive losses, to ensure distinct
features are identified for each class, in addition to maximizing and minimizing
the similarity among positive and negative patches, respectively. The required
segmentation maps are obtained from the confidence maps of the network after
convergence.
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3.2 Supervised

Although nuclei segmentation can achieve a good performance with no super-
vision, it is challenged from the variations of color and texture of nuclei across
several types of tissue. By integrating human annotations the model can take
into account the different nuclei/background appearance patterns through
examples. In other words, in many cases, unsupervised methods capture the
big picture of the problem, but to achieve superior performance the usage of
labels is needed – to some extend – for addressing the large variability of the
content and achieve performance close to human level. Strong priors can help
in this problem, but learning from examples helps identify the nuances of the
problem that are critical for a high performance. Depending on the level of
supervision required, the approaches are classified into Full Supervision and
Weak Supervision.

3.2.1 Full Supervision

Full Supervision refers to deep learning models that require 100% of the
training set to achieve a good performance.

A summary of the fully supervised methods is shown in Table 4.

CNN Based Methods This section discusses some landmark CNN based
works. In addition to the conventional CNN, the advent of Region based CNNs
lead to the Mask RCNN, designed to predict object masks in addition to
bounding boxes. Such a Mask RCNN based framework is shown in Figure 14.

One of the initial CNN based nuclei segmentation methods was proposed
by Xing et al. [104]. They propose a supervised deep CNN to generate a
probability map that assigns each pixel a probability of how close it is to the
nucleus center. The CNN is trained with images in the YUV space. Each
image is manually annotated for nuclei centers, and patches with the centers at
a radius of 4 pixels from these centers are considered to be positive, and others
as negative. Rotation invariance is achieved by rotating the positive patches
before training, thereby augmenting the training data. The CNN uses softmax
with two neurons as its final layer to generate the probability of each patch
being positive or negative. Patches with a positive probability of less than 0.5
are eliminated from further processing. Additionally, a region size threshold
is employed to eliminate patches with small areas that could indicate noise.
From the probability maps, the distance transform and H-minima transform
are applied to generate minima as markers for an iterative region growing
algorithm. A smoothing operation is performed to preserve the shapes of
nuclei for the next step. These initial shapes are used in a selection based
dictionary learning to generate a shape repository representing a subset of
the nuclei. This method works by minimizing the ISE (integrated square
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Table 4: A summary of fully supervised nuclei segmentation methods.

Ref. Dataset Methods Pre-Processing Post-Processing

[52] DSB2018,
MoNuSeg

Region based
Mask RCNN with
Guided Anchor
RPN

Resizing Soft Non Maximum
Suppression

[81] DSB2018 Mask RCNN with
ResNet-101
backbone

Pretrained with
weights of COCO
dataset

Clump
identification
followed by marker
controlled
watershed

[24] CoNSeP,
Kumar, TNBC,
CPM-15, CPM-
17, CRCHisto

HoVerNet: Three
branch U-Net
with horizontal
and vertical
distance maps to
separate nuclei
clusters

Patch extraction Gradient based
marker controlled
watershed from
distance map

[11] Kidney dataset,
TNBC,
MoNuSeg

High
resolution wide
and deep
transferred
ASPPU-Net

Patch extraction,
Data augmentation

-

[43] MoNuSeg,
TNBC,
CryoNuSeg,
BBBC039V1

Dense ResU-Net
with residual
connections of
atrous blocks

Color
Normalization,
patch extraction,
Data Augmentation

-

[83] Post-NAT-
BRCA,
MoNuSeg

Cascaded U-Net
framework (U-Net
with weighted
pixel loss followed
by Vanilla U-Net
with a soft Dice
loss

Zero padding,
patch extraction,
weighted mask
generation

Erosion, Dilation,
Reconstruction

[28] MoNuSeg Enhanced
lightweight U-Net
with generalized
Dice loss

Stain normaliza-
tion,
resizing, patch
extraction, data
augmentation

Opening

[16] DSB2018,
BBBC006v1,
BBBC039,
PanNuke

CPP-Net with
Context
Enhancement,
Confidence
Based Weighting
and Shape Aware
Perceptual Loss

- Semantic
segmentation
decoder, NMS,
Reassignment of
pixels to correct
categories
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Table 4: Continued.

Ref. Dataset Methods Pre-Processing Post-Processing

[48] Kumar dataset Ternary CNN
with boundary
class

Color
normalization,
(boundary annota-
tion, pixel mapping
in training stage),
patch extraction

Seed detection
by thresholding
followed by region
growing using
boundary class

[67] 224 H&E
stained images
of ganglion cells
from pediatric
intestine

Boundary
Enhanced U-Net
with two decoders

Downsampling,
random cropping,
data augmentation

-

[110] MoNuSeg Contour Aware
Information
Aggregation
Network with
information
aggregation
modules between
two decoders

Stain normalization,
data augmentation

Nuclei and contour
outputs subtracted,
connected
component
identification

[15] Kumar,
CPM-17

Boundary assisted
Region Proposal
Network

Stain normalization,
normalization, data
augmentation

-

[72] HUSTS,
MoNuSeg,
CoNSeP,
CPM-17

Region Enhanced
multitask U-Net
with auxiliary
tasks of rough
segmentation
and contour
extraction

Patch extraction,
data augmentation

Marker controlled
watershed

[90] 150 3D
abdominal CT
scans, 82 3D
pancreatic
CT scans

Attention Gated
U-Net

Dowsampling, data
augmentation

-

[50] KMC Liver
dataset, Kumar
dataset

NeucliSegNet
(U-Net based)
with
robust residual
blocks in encoder,
bottleneck block,
attention decoder
block

Resizing, patch
extraction. No
pretraining

-
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Table 4: Continued.

Ref. Dataset Methods Pre-Processing Post-Processing

[105] ClusteredCell,
MoNuSeg,
CoNSeP,
CPM-17

Gating Context
Aware Pooling
integrated
modified U-Net

Resizing, patch
extraction, data
augmentation,
ImageNet
pretrained
ResNet-34

-

[51] DSB2018,
MoNuSeg

U-Net based
Convolutional
Blur Attention
Network

Patch extraction,
training data
generation,
Biorthogonal
wavelet denoising

-

error) based on a sparse constraint. To account for the wide variability in
shapes, the different shapes are clustered into groups using K-means, and a
shape-prior model is learned for each of these groups. They then perform an
alternative shape deformation and shape inferencing algorithms to perform the
segmentation. The shape deformation is implemented using a Chan-Vese model
[10] incorporated with an edge detector and a repulsive term to introduce
robustness and split touching nuclei. The shape prior model is used to perform
shape inferencing, thus allowing the contours to iteratively evolve towards
the nuclei boundaries. This approach ensures that the contours don’t split or
merge due to any heterogeneities in intensities as opposed to the level sets in
Section 3.1.1.

Liang et al. [52] proposed a region based CNN, employing a guided anchored
region proposal network (RPN). This network uses a Mask RCNN and FPN as
its baseline. Rather than applying the conventional, dense, predefined anchors,
guided anchoring is used in the dynamic prediction of anchors with different
shapes and sizes. The GA-RPN module consists of two branches responsible
for location and shape prediction, respectively. This module generates multi
level anchors, collecting anchors from multiple feature maps generated at
different levels by the FPN. An Intersection of Union (IoU) branch is designed
to regress the IoU between the ground truth and the predicted bounding box.
Generally, Mask RCNN uses non maximum supression (NMS) to order the
boxes by classification score. However, this approach may eliminate certain
boxes of low classification scores with high quality while preserving some false
positives. The IoU module overcomes this by introducing the IoU regression
score. A new metric called the Fusioned Box Score (FBS), the geometric mean
of the classification score and the IoU score, is used to classify the boxes into
their correct classes. NMS with a low threshold may cause an increase in
the miss-detection rate as it can classify clustered nuclei as one object. To
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Figure 14: An example Mask RCNN based nuclei segmentation framework from [81] called
NucleiNet.

overcome this limitation, they propose a soft NMS that decays the FBS of
boxes that have a significant overlap with the box with the highest FBS. This
would penalize boxes close to one with the largest FBS more than the boxes
farther away. The results from this method show fewer undetected nuclei
compared to other SOTA nuclei segmentation methods.

Roy et al. [81] proposed the Nuclei-Net, a Mask RCNN based multistage
network. The first stage employs a Mask RCNN with a ResNet-101 backbone,
transfer learned from the COCO dataset. An RPN follows the backbone
network, using the sliding window method to scan the feature maps from the
previous step to generate anchor boxes of reasonable size and aspect ratios.
On extracting the proposals after the application of ROI Align, an FCN is
applied to calculate the offsets in each box. These offsets are used to refine the
originally obtained proposals, which are then classified as nuclei or background
using a classification head. Four consecutive convolution layers are applied to
each feature map from a bounding box to generate the binary feature maps.
The model is trained using two losses: a classification loss based on the cross
entropy loss and a mask loss based on binary cross entropy loss. Most of the
regions in this coarsely refined segmentation map have well defined boundaries
except few complex clumps. Such regions are identified using an area based
threshold to perform further refinement. In the second stage, marker controlled
watershed is performed to retrieve individual nuclei from the clumps. They
propose to generate markers from these clumps by first identifying boundary
points in each clump and initializing them as potential markers. An iterative
algorithm is used to reach the markers from the boundary points by removing
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points with a distance less than a heuristically determined threshold from a
specific boundary point. This stage splits any connected nuclei clumps from
the previous stage to obtain individual nuclei.

U-Net like Methods U-Nets were initially designed for biomedical image
segmentation [80]. They are similar to encoder-decoder architectures, except
that there are skip connections between the encoder and decoder, allowing cou-
pling between the two. This allows the transfer of some low level features from
the encoder to the high level stages of the decoder, enriching the segmentation
result.

Graham et al. [24] proposed a novel encoder-decoder framework called
HoVerNet, with two decoder branches for nuclei segmentation leveraging
features encoded by the horizontal and vertical distances from the centers of
mass. This network employs the preactivated ResNet-50 to extract a powerful
feature set. To ensure minimum loss of information in the initial stages, the
downsampling factor is reduced to 8 from 32. Following the feature extraction
are the two nearest neighbor upsampling branches, the nuclear pixel and HoVer
branches. The nuclear pixel branch determines whether a pixel represents the
nuclei or the background. The HoVer branch is responsible for determining the
horizontal and vertical distances from the centers of mass of nuclei, and hence
splits touching nuclei. These branches consist of upsampling units followed by
multiple stacked dense units. Convolution layers in between the upsampling
stages help in improving predictions at the boundaries. The loss function
concerned with each branch is a combination of two individual losses. For
the nuclear pixel branch, the cross entropy loss and dice loss are added. The
HoVer branch loss comprises of the mean squared error between ground truth
and the horizontal and vertical distances. In addition, it includes the mean
squared error of the gradients from the horizontal and vertical maps and their
respective ground truths. From the horizontal and vertical distance maps, a
significant difference was observed between the pixels of different instances.
Computing gradients can shed light on where the nuclei boundaries exist.
Finally, a marker controlled watershed, with the help of the calculated gradient
information, can help split the touching or overlapping nuclei. Though trained
on images from a single tissue, this network exhibits generalizability when
tested on diverse tissue samples.

Chanchal et al. [11] proposed a high resolution deep and wide transferred
ASPPU-Net, consisting of an atrous spatial pyramid pooling (ASPP) bottleneck
module amidst an encoder-decoder architecture (see Figure 15). The high
resolution encoder has four levels of convolution layers followed by max pooling
layers. A residual connection from each layer to its corresponding layer in the
main network minimizes losses occurring during pooling. The powerful decoder
concatenates features at a similar level to extract residual information. The
performance of the network is improved by introducing the ASPP bottleneck
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Figure 15: An example U-Net architecture from [11] with an atrous spatial pyramid pooling
bottleneck block.

with a multiple dilation rate CNN. Dilation rate helps visualize larger areas,
and applying multiple dilation rates in one layer extracts multilevel features.
The addition of the ASPP bottleneck aids in extracting more relevant features.
This model achieves excellent performance by not producing any false positives
and extracting maximum information. Nevertheless, overlapping nuclei and
blurry boundaries still pose a challenge.

In [43], Kiran et al. proposed the DenseResU-Net that employs dense
units in the higher layers of the encoder focusing on relevant features from the
previous layers. The input H&E stained images are preprocessed using color
deconvolution. This helps reduce the detection of false positives and gives a
better picture of nuclei and boundaries for further segmentation. Cropping,
flipping, rotation, and other basic augmentation operations are performed
to enhance the generalizability of the model on unseen organs. Distance
mapping is applied to detect nuclei and binary thresholding at the value of 0.4
is used to obtain contour information. DenseResU-Net comprises a five stage
architecture, with five dense blocks in the final layer of the contracting path,
which helps in preventing the model from learning redundant features. These
dense blocks give rise to high computational efficiency. Since skip connections
between the encoder and decoder cause semantic gaps, residual connections
using the atrous block and non-linear operations are implemented similar to
[11], extracting spatial features. The decoder retrieves the segmented output
by reconstructing the feature maps through upsampling. This model shows
excellent performance on images from different organs, proving its robust
nature and generalizing ability.
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Saednia et al. [83] proposed a cascaded U-Net framework, with a weighted
U-Net followed by a vanilla U-Net with the VGG-16 baseline trained using the
soft Dice loss. The model was pretrained using the public Post-NAT-BRCA
dataset, prior to training on the MoNuSeg dataset (elaborated in Section 4.1).
Weighted masks are generated from each image using the binary mask such
that pixels between adjacent nuclei are given larger weights. These weights
ensure the model learns the separations between nuclei in such regions on
application of the weighted loss function. The weight maps are employed while
calculating the loss function to penalize the loss function at boundary regions
between touching or overlapping nuclei. A weighted cross entropy loss is used
to train the weighted U-Net model. This model was trained with the input
images, their binary and weighted masks to generate an output probability
map. These probability masks and binary masks are input to the vanilla
U-Net. The second stage is implemented with a VGG-16 backbone to reduce
the number of parameters, thus promoting generalizability. The soft Dice loss
function is selected to penalize the network for predicting nuclei with a low
confidence level. The final segmentation maps from the cascaded network were
post processed using morphological operations to remove small noisy structures.
The second stage accounts for some parts of nuclei that were missed in the
first stage, especially small nuclei and centers of large nuclei. This cascaded
model performs on par with most deep learning based segmentation models.
Accurate boundary detection still remains a challenge.

Hancer et al. [28] proposed an imbalance aware method for nuclei segmen-
tation using a lightweight enhanced U-Net model. They apply Macenko’s stain
normalization technique by obtaining optical density vectors from the RGB
image and performing single value decomposition to get accurate stain vectors.
To resize the high resolution images without losing any pixels, nearest neighbor
interpolation technique is implemented. The next step is data augmentation,
where techniques like rotation, reflection, and translation are used to increase
the number of training samples. Class imbalance may impact the model
training, leading to a biased model. Loss functions have been the common
solution to such challenges and in this work, they incorporate the generalized
Dice loss to account for the class imbalance. This loss involves per-class weight
as the inverse square of the class volume. The generalized Dice loss is used to
train a lightweight U-Net model, with a depth of three layers as opposed to
the original four layer U-Net. In addition, the final layer of the network uses
a Dice pixel classification layer that assigns a categorical label to each pixel.
Finally, morphological operations are performed to refine the segmentation
maps.

Chen et al. [16] proposed the Context-Aware Polygon Proposal Network
(CPP-Net) with a U-Net backbone. They make use of polygons to represent
nuclei, which can help the task of differentiating between nuclei that touch
or overlap. Following the U-Net are three unit sized convolutional layers
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to predict the distance maps, confidence maps, and the centroid probability
map. The next step is the Context Enhancement Module that samples a set
of points from an initial point toward its predicted boundary. The multiple
predicted distances are then merged to update the distance between the pixel
and its boundary. To perform this merging adaptively, they use a Confidence
Based Weighting Scheme with the help of confidence maps. In addition to
the BCE loss for centroid probability and weighted L1 loss for the distance
regression, CPP-Net includes a Shape Aware Perceptual loss that penalizes the
difference in shape between predicted and ground truth instances. As a part
of the fine grained post processing, a semantic segmentation decoder attached
to CPP-Net’s encoder identifies the foreground pixels. NMS converts each
polygon to a mask and certain pixels are reassigned to their correct categories.
This step helps refine boundaries, thus improving the quality of segmentation.
One limitation of this approach is that irregularly shaped nuclei may not be
efficiently represented by a polygon, and CPP-Net may fail in such cases.

Contour Aware From error analysis, it was observed that a majority of the
misclassifications were from regions around the boundary of nuclei. This was
due to the presence of overlapping, touching nuclei in dense clusters. With the
idea of giving importance to contours, several approaches introduced a way to
focus especially on the nuclei boundaries as shown in Figure 16.

Figure 16: An example of the contour aware CIA-Net from [110] that uses a U-Net architec-
ture with two decoding paths dedicated to nuclei and contour decoding respectively.

Kumar et al. [48] proposed a CNN that produced a ternary map, as opposed
to the binary map distinguishing between nuclei and background. This method
classifies each pixel into three categories, namely, nuclei, nuclei boundary,
and background. The three-way classification is visualized to identify nuclear
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boundaries even among dense clusters and chromatin sparse nuclei. The optical
density vector is first obtained from the H&E stained image by applying Beer
Lambert Transform. Sparse non-negative matrix factorization or SNMF is
applied to this vector to generate two sets of matrices, one contains stain density
maps, and the other contains optical density components of each prototype i.e.,
H & E prototypes. To obtain the color normalized image, the stain density
map is multiplied by the basis matrix for its corresponding color prototype and
inverse Beer Lambert Transform is performed. The normalization procedure
helps in reducing the contrast among nuclei in different images while preserving
the nuclei to background contrast. The constructed CNN architecture consisted
of three convolution layers, with max pooling layers between them and activated
by ReLU activation. These layers were followed by two FC layers and an
output layer with three nodes and softmax activation. To obtain the final
segmentation map, the nuclei body probability map was thresholded at 0.5.
This operation provided seeds for a region growing mechanism. As the seeds
are grown, the average boundary class probability increases, and the average
nuclei probability decreases. The regions are grown to obtain the segmentation
map until the boundary class probability reaches a local maxima as long as
it doesn’t interfere with other nuclei or boundaries. This gives rise to an
anisotropic region growing method, with the regions growing at different rates
and directions, leading to non-circular shapes. Including boundary supervision
is shown to improve accurate detections and has a slight edge with segmenting
chromatin sparse nuclei.

Oda et al. [67] proposed a U-net based network with two decoding paths, and
special emphasis on the boundaries called Boundary Enhanced Segmentation
Net or BESNet. The first decoding path focuses on boundary prediction
and is trained on boundary labels. The second path (main decoding path -
MDP) utilizes the responses from the boundary decoding path to weigh the
training loss for segmentation adaptively. Specifically, information on the
difficulty of determining boundaries is combined with the MDP. The input
image is fed into the encoder path to generate feature maps. Feature maps
from the boundary and main decoding paths are concatenated. The boundary
decoding path is trained using the cross entropy loss. The output in this path
will be high at boundary regions but deteriorate at unclear regions, meaning
that such regions have a higher training difficulty. These regions are given
more importance in the MDP by the adaptively weighted Boundary Enhanced
Cross Entropy (BECE) Loss. The additional decoding path, however, adds
computational burden on the system compared to other U-Net based networks.
Though this network uses boundary information to gain insight into the entire
nuclei body, it doesn’t leverage the nuclei information to learn about the
boundary. Since contours have a greater intra-variability, networks may benefit
from mutual information from the nuclei and contours, thus improving the
prediction performance.
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To leverage the advantages of mutual dependencies between nuclei and
their boundaries, Zhou et al. [110] proposed the fully convolution Contour
Aware Information Aggregation Net (CIA Net). The U-Net based design has a
densely connected encoder using the FPN for feature extraction. The encoder
is built using four dense modules stacked hierarchically, with transition modules
following each dense module. To take advantage of multi scale features as
in an FPN, CIANet proposes lateral connections at each level between the
encoder and decoders. Local and textural information from the initial layers
is summed with the more robust semantic features from the upsampled layers
in the decoder. This network uses two decoders, one for nuclei and the other
for contours, with multilevel information aggregation modules(IAMs) between
them. The IAM helps in bidirectional task specific feature aggregation, taking
important features from both decoders as cues to refine segmentation details
in the nuclei and contours. In the decoders, bilinear interpolation is used
to upsample the feature maps and add to the feature maps from the lateral
connections of the encoder. The IAM smoothens these maps and eliminates
the grid effect. These features are then passed on to the classifier to determine
score maps. The complementary task specific features are concatenated for
refinement in the subsequent iteration. Noisy and inaccurate labels can lead to
an overfitted model and prevent the learning of essential features. Generally,
such outliers tend to have a low prediction probability and result in large errors.
A Smooth Truncated Loss is proposed, which reduces the effect of outliers
with greater impact for a lower prediction probability. This helps alleviate
oversegmentation, helping the network focus on areas with high confidence
scores, thus learning more informative features. A Soft Dice Loss is also
included in the total loss function along with the Smooth Truncated Loss and
a weight decay term to incorporate shape similarity among the nuclei regions.
Exploiting the high relevance between the nuclei and contours improves the
generalizing ability of the model to unseen data. However, CIA-Net suffers
from false negatives in cases of low contrast between the nuclei and background.

Chen et al. [15] proposed a two-stage boundary-assisted region proposal
network (BRP-Net), with the first stage proposing possible instances based on
boundary detection and the second stage performing proposal-wise segmen-
tation. The first stage consists of the Task Aware Feature Encoder (TAFE),
which extracts high-quality features for semantic segmentation and instance
contour detection. In this stage, a backbone encoder extracts feature maps of
four different sizes from the original input image. These maps are split into
segmentation features and boundary features and input to two task-specific
encoders that are deeply supervised, similar to CIA-Net [110]. Feature Fusion
Models (FFM) based on the IAMs from CIA-Net are devised to aggregate the
features from both the task specific encoders. The outputs of the FFM are
fed into decoders to perform semantic segmentation and instance boundary
detection, respectively. Since TAFE requires postprocessing based on hand-
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crafted hyperparameters, a second stage was introduced to make BRP-Net
more robust. A square patch containing the region proposals of different sizes
is cropped and classified into two groups using a length threshold. The images
in these two groups are resized to a specific size and trained separately using
similar networks with dense blocks, which take the image patch and the two
probability maps from the previous stage as input. IoU scores are used to train
the networks by comparing the image patch with its corresponding ground
truth. Patches with an IoU score lower than a threshold are considered to be
false positives and inferred as background.

In a similar approach leveraging boundary and nuclei features, Qin et al.
[72] proposed a region enhanced segmentation network by combining three
U-Nets in serial and parallel to form a multi-task architecture (REU-Net). The
model uses the attention U-Net as the baseline, with three U-Net like branches
to perform the auxiliary tasks of contour extraction and rough segmentation
and the main task of fine nuclei segmentation. The predicted results of the
auxiliary branches are integrated and multiplied by elements enhancing the
saliency of nuclei along with their contours. This region enhances the image,
and the original image is fed into the encoder of the fine segmentation branch.
The encoded features from all three branches are concatenated and input to
the fine segmentation decoder through attention gates to aggregate the spatial
and textural features of nuclei and contours. The attention gates diminish the
semantic gap between the three branches, removing background elements and
providing essential target features to the network. An atrous spatial pooling
pyramid (ASPP) structure is used to retrieve a rich set of spatial features by
capturing multiscale information to prevent the loss of vital spatial information
while encoding. The loss for each branch is computed as a combination of
the dice and cross entropy losses. The loss function for the entire network is
calculated to be the weighted sum of the losses from each branch, with the
fine segmentation branch having double the weight of the auxiliary branches.
The results of this approach serve as evidence for the mutual contribution of
contour and nuclei information toward segmentation performance.

Attention Gated Attention gates are used in segmentation architectures
to focus on the important features and suppress irrelevant features like the
background being included in the training.

Schlemper et al. [90] proposed an attention gated U-Net model (see Fig-
ure 17). False positive removal has always required a post processing or
multi-stage segmentation approach in many methods. Attention gating at-
tempts to avoid the need for separate removal methods by eliminating the
sources of such errors while training. Since additive attention has been found
to perform well on high dimensional inputs, the gating coefficient is obtained
using this approach. Each global feature vector and activation map are con-
sidered at each level to identify the most relevant features for the specific
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Figure 17: An example of architecture using gated attention for U-Net from [90].

task. Though the attention mechanism doesn’t require a separate loss function
for optimization, deep supervision appears to allow the feature maps to be
discriminative at different scales. In a U-Net model, gating is implemented
before concatenating the features between the encoder and decoder paths as a
part of the skip connections to combine only the important activations. The
attention gates filter activations in forward and backward passes and suppress
the irrelevant background information in the backward pass. They use the
sigmoid activation function to normalize the attention gated features, resulting
in improved training convergence. To account for class imbalance, this method
uses the Sorensen Dice loss. They also use a loss term for each scale to ensure
the model attends at each scale.

A three block NucleiSegNet was proposed by Lal et al. [50], containing a
robust residual encoder, an attention based decoder, and a bottleneck block.
High level semantic feature extraction is performed by the robust residual block
with depth wise and point wise convolution in separable blocks. Four such
blocks constitute the encoder. The bottleneck block, with three convolution
layers, followed the encoder and contributed toward achieving the best training
loss. This block ensured the compressed encoding of the global information
from all relevant regions, simplifying the job of the decoder. Features from the
encoder and the compressed features from the bottleneck block were merged
and input into attention gates in the decoder. In the attention gate, the gating
signal was upsampled, as opposed to downsampling the skip connections. They
applied a multiplicative attention gate, owing to its memory efficiency and
faster computations. The decoder has four upsampling stages with transpose
convolutions within each attention block to decrease the model parameters
without affecting accuracy. Such an attention mechanism helps in reorganizing
fine features, and removing background information. A combined loss function
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of dice loss and Jaccard loss was implemented to train the model. Overall, this
method performs on par with SOTA methods, with a fewer network parameters.

Yang et al. [105] proposed a U-Net based gating context aware pooling
network (GCP-Net). GCP-Net uses an ImageNet pretrained ResNet-34 en-
coder blocker. This is followed by the GCP module that functions as a context
extractor, generating high-level semantic features. The GCP module consists
of Multi scale Context Gating Residual (MCGR) block, Global Context At-
tention (GCA) block, and the Multikernel Maxpooling Residual (MMR) block.
Context gating (CG) transforms the input feature representation into a new
representation with a powerful discriminant capability. To improve on the
limited receptive field of CG, they propose the MCGR block with parallelly
connected three branches of depth wise convolution, producing weighted fea-
ture maps of different resolutions. The input feature map and the weighted
feature maps are merged to retrieve multiscale information. Contextual infor-
mation is proven to improve segmentation results by increasing the size of the
receptive field and using attention blocks. The GCA block reweights features
to enhance the network’s sensitivity to essential information, thus improving
performance. In contrast to a single pooling kernel in maxpooling, the MMR
block incorporates pooling kernels with four different sizes to capture features
with a range of receptive fields, as it can influence the amount of context
information used. The decoder module includes four decoder blocks to retrieve
the features extracted in the previous stages. Each decoder block consists of
two GCA residual blocks, after which the features are concatenated with the
information from the skip connection. To overcome the vanishing gradient
problem in deep networks, the GCA residual block uses a shortcut connection
between layers, forcing the network to learn essential features in each feature
map and suppress the irrelevant ones. The performance of this network is
comparable to SOTA deep learning frameworks.

Le et al. [51] proposed the Convolutional Blur Attention (CBA) network, a
SOTA approach, and the best performing so far. CBA net is pretrained first,
followed by finetuning on the training set. The network consists of the blur
attention module and blur pooling operation to retain important features and
prevent the addition of noise in the encoding or downsampling process. Initially,
the RGB images are converted to grayscale and scaled down. Traditional
downsampling algorithms use max pooling, which can cause a loss of features
in the early stages. Max pooling is replaced by the blur attention module
and blur pooling to improve the segmentation output. This network uses blur
convolutional layers with stride 1. The blur pooling operation was an attempt
to enforce shift invariance, where any shifts in the input have minimum impact
on the output. The blur attention module consists of channel and spatial blur
attention. Channel blur attention accumulates spatial information by average
and blur pooling to learn spatial statistics and object features. In contrast,
spatial blur attention gets channel information from average and blur pooling
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on the channel axis. Spatially vital regions are identified with the help of a
convolution layer that filters the pooling results. Due to the loss of information
in the upsampling stage, they propose auxiliary connections between the
downsampling and upsampling stages to obtain input features by performing
convolutions of different strides while upsampling. The original size features
are concatenated with these convolved features to provide generous features
to the decoder. In addition, they employ a pyramid blur pooling module
to extract multiscale information and identify highly correlated neighboring
features. This model is computationally efficient, with parameters multiple
times fewer than several SOTA models.

Transformer Based Models Transformer neural networks usually used
in learning representations from long sequential data like text. Over the
past few years, Transformers networks have been applied on medical image
segmentation problems as well. One of the first studies using Transformers for
this application introduced the TransUNet [14]. Since a naive implementation
of a Transformer to medical images appeared to lack localized details, Chen
et al. [14] proposed a hybrid model integrating the CNN and the Transformer,
leveraging both the global context from Transformers and the high resolution
features from the CNN. The main idea of a TransUNet is to introduce self-
attention mechanisms into the U-Net via a Transformer architecture. In
general, to apply a Transformer to images, the image is first tokenized into
a sequence of patches, and the positional information from each patch is
retained by performing patch embedding. The encoder of the TransUNet is a
hybrid CNN-Transformer structure that uses a CNN to extract features and
applies patch embedding to 1x1 patches from the feature map, instead of the
images themselves. This encoder structure is followed by a cascaded upsampler
by cascading several upsampling blocks consisting of successive upsampling
operators, convolutional layers, and ReLU layers. This U-shaped design allows
the aggregation of features at different levels through skip connections. For
general medical image segmentation, the TransUNet performed better than the
pure Transformer or U-Net based models. The TransUNet applied to nuclei
segmentation datasets in [77] are reported to outperform the U-Net model.

Vision transformers adapted to the Computer Vision problems need to
account for the variations in scale and resolution of images as compared to that
of text. Such a vision transformer is the hierarchical Swin Transformer [57]
that uses shifted windows to compute the representations. This scheme
improves efficiency by computing self attention for non-overlapping windows
while enabling cross-window connections. However, vision transformers are
limited in their ability to capture structural features within image patches.
Leveraging the long range information extraction capabilities of the Swin
Transformer and the high resolution information capturing capabilities of the
U-Net, Lin et al. proposed the Dual Swin Transformer U-Net (DS-TransUNet)



A Comprehensive Overview of Computational Nuclei Segmentation Methods 45

[53], that incorporates dual scale encoder structures to extract representations
at multiple scales. A TIF module(Transformer Interactive Fusion) employs the
self attention mechanism to establish global relations between the multiscale
features, thus fusing these features. The addition of Swin Transformer blocks
in the decoder help construct global connections and long range dependencies.
This inclusion in the decoder improves the learning and generalization abilities
of the network. The DS-TransUNet achieves better results than certain state
of the art methods for different medical image segmentation tasks.

A completely transformer based nuclei segmentation network was proposed
by He et al. [32] called the TransNuSeg. This multitask transformer network
with three individual decoders for regular nuclei segmentation, normal edge
segmentation and an additional clustered edge segmentation. Both the encoder
and decoders use a shared Swin Transformer structure to extract long range
feature correlations. It features a novel shared multi-headed self attention
module, that shares a part of the globally shared self attention heads parallely
among the Swin Transformers in the decoders, while others are unshared. The
bottleneck layer of the Swin Transformer is replaced by a lightweight alterna-
tive called the token MLP bottleneck, which helps in attending specific areas,
similar to the original shifted window attention. These two features of this tech-
nique contribute to an improved efficiency, while reducing the training cost. A
consistency self distillation loss accounts for the inconsistencies in the contours
predicted by the edge segmentation and that from the nuclei segmentation in
addition to the losses from the three individual decoders. The transformer net-
work is trained using a multi-task learning, with the nuclei segmentation as the
primary task, and the edge predictions as auxiliary tasks. This method outper-
forms the SwinUNet formulated as a combination of the Swin Transformer and
the U-Net, thus showing the effectiveness of a complete Transformer based archi-
tecture in nuclei segmentation. Though it requires a significantly lower number
of parameters than other deep learning based models, the FLOPs required are
quite high and larger than a SwinUNet. In general, Transformer based models
are computationally heavy and require considerably large datasets.

3.2.2 Weak Supervision

Deep learning methods require the availability of large annotated datasets for
rich performance. However, as already emphasized, it is highly painstaking
to manually label such large amounts of data, in addition to inter-observer
variability, leading to inaccuracies in certain areas. To mitigate such a tedious
task, certain weakly supervised methods have been proposed that require only
a subset of the training data to train the model. This subset can refer to only
point annotations, i.e., one label per nuclei or a minimum percent of the training
set. A brief summary of the weakly supervised methods is presented in Table 5.
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Table 5: A summary of weakly supervised nuclei segmentation methods.

Ref. Dataset Methods Pre-Processing Post-Processing

[106] MoNuSeg,
TNBC

ResNet-50
backbone
segmentation net
supervised by
auxiliary
PseudoEdgeNet

Label assignment -
Voronoi and
distance transform

Threshold-ing

[74] Lung Cancer
Dataset, Kumar
Dataset

Semi-supervised
nuclei detection
followed by
weakly
supervised
segmentation
(using ResNet
backbone U-Net)

Color
normalization,
patch extraction,
data augmentation,
ResNet-34 encoder
pretrained, Voronoi
and K-means
cluster labeling

-

[75] Lung Cancer
Dataset, Kumar
Dataset

Uncertainty
prediction from
Bayesian CNN
followed by
normal CNN
trained with
partial points
and mask labels

Color
normalization,
patch extraction,
data augmentation

-

[95] MoNuSeg,
TNBC

Coarse
segmentation
using self
supervision
followed by fine
segmentation
with contour
sensitive
constraint

Point distance map
and Voronoi edge
distance map
generation

-

[54] MoNuSeg,
CPM-17

Co-trained
U-Net based
Segmentation-
Colorization
Network

Patch extraction,
data augmentation,
H-component
extraction, Voronoi
and K-means
cluster labeling

-

[36] MoNuSeg GAN based nuclei
centroid detection
followed by peak
region
backpropagation

Stain normalization,
patch extraction

Graph cuts
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Table 5: Continued.

Ref. Dataset Methods Pre-Processing Post-Processing

[58] Kumar, TNBC,
MoNuSeg

Conditional
SinGAN based
training data
augmentation
from selected
patches
followed by
Mask RCNN for
semi-supervised
segementation

Patch extraction,
data augmentation

-

Point-wise Label Propagation This category of weakly supervised meth-
ods begins with point annotations. These annotations are extended to generate
coarse pixel wise labels that are used to train a nuclei segmentation network.

Yoo et al. [106] proposed one of the initial weakly supervised segmentation
networks for fine nuclei segmentation, with an auxiliary network for edge
detection. To train the segmentation network with point labels, a label
assignment scheme assigns positive values to the point annotations and negative
values to pixels on the Voronoi boundaries. The binary cross entropy loss is
utilized to train the network. Though this network generates nuclei blobs,
it lacks information about the boundaries. This led to the design of the
auxiliary network for edge detection called the PseudoEdgeNet, a shallow
CNN extracting edge information. PseudoEdgeNet is trained with the original
image and the point annotations generated by the segmentation network and
acts as its supervisory signal. In addition, a large attention module in the
PseudoEdgeNet guides it on where to extract edges, thus improving the quality
of edge maps generated. The Sobel-filtered result of the segmentation net is
used as a reference in calculating the edge loss. Both the networks are trained
jointly with a cross entropy based segmentation loss and the edge loss. Though
bounded by the performance of fully supervised networks, this approach was a
good start to the weakly supervised approach with a promising future.

Qu et al. [74] proposed a two-stage weakly supervised technique from
partial point annotations as shown in Figure 18. The first stage performs semi
supervised nuclei detection. An extended Gaussian mask is generated from
the available labeled points based on the distance of a pixel from its nearest
labeled point. The background is defined at regions greater than a certain
distance, nuclei are identified with an exponential function of the distance, and
the remaining pixels are unlabeled and ignored while training. A regression
based detection model is trained using the obtained extended Gaussian masks,
using the mean square error. The U-Net like model uses ResNet-34 as its
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Figure 18: An example of a two stage point wise label propagation from [73].

encoder. A background map is generated from the first step by thresholding.
The second part of the first stage uses an iterative self training method to
improve the detection performance by combining information from the initial
points and the generated background maps. The background map is updated
in each iteration based on an intensity and area threshold. At the end of
this stage, the background regions grow, and potential nuclei locations are
identified. The second stage requires coarse pixel-level labels to train a CNN.
Using the results from the previous stage, Voronoi labeling is used to obtain
regions called Voronoi cells that give essential information about the central
parts of the nuclei. To understand more about the shapes and boundaries
of the nuclei, K-means clustering based on color and spatial information is
implemented, obtaining coarse pixel wise labels. A network similar to the one
used in the first stage is trained using the generated labels and a weighted loss
function based on the cluster labels and Voronoi labels. A dense CRF loss is
used to further improve the nuclei boundaries. However, this approach faces
difficulties with non-uniform staining.

In their follow-up paper [75], Qu et al. proposed using a combination
of points and masks to enhance the performance of the weakly supervised
approach. The first stage comprises an uncertainty prediction task that
finds representative complex nuclei to be supervised by annotation masks.
Uncertainty maps are generated by a Bayesian CNN built by adding a Gaussian
distribution prior to the softmax layer. A probability map is generated on the
application of the softmax function to the output of the network. To supervise
the training of this model, in addition to the point annotations, proxy labels
are generated pixel-wise similar to [74] from cluster and Voronoi labels. This
network is trained using the cross entropy loss derived from the two proxy
labels. From the generated uncertainty maps, area wise average uncertainty is
computed to identify the top 5% of highly uncertain nuclei predictions that
will require mask annotations. In the second stage, the masks for the selected
representative nuclei are integrated with the cluster and Voronoi labels, and
add some background pixels to aid training with the combined masks. These
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updated labels train a normal CNN model with the same loss function as in the
first stage. This modified approach achieves a slightly improved performance
compared to their previous method.

Tian et al. [95] proposed a coarse to fine weakly supervised learning strategy
using point annotations. The first stage generates coarse segmentation maps
through distance mapping and self supervised learning. To train an FCN, the
point annotation map must be transformed into a supervision map. They
propose two maps for supervision, the point distance map focusing on highly
reliable positive points obtained by dilating the point annotations, and the
Voronoi edge distance map focusing on highly reliable negative points indicating
non-nuclei pixels. With these generated supervision maps and the original
image, an FCN is trained end to end using polarization loss. In addition,
sparsely calculated loss concerning the point labels and Voronoi labels are also
included as to focus only on the partial labels with high confidence. This coarse
segmentation network is trained for about three iterations to obtain reliable
masks. For each iteration, while the Voronoi edge map remains the same, the
point distance map is updated to result from the previous segmentation round.
The second stage focuses on contour refinement. Edge maps are generated
from the original image and the coarse masks by applying Sobel filtering. A
sparse contour map is obtained by pixel-wise and operation between the edge
maps. This auxiliary boundary supervision is implemented using the sparse
contour map for supervision and a contour sensitive loss to refine the contours.
The second stage, fine tuning, significantly improves the model’s performance.

Lin et al. [54] proposed an alternate approach to learning contour informa-
tion in weakly supervised methods by means of a sequential Segmentation and
Colorization Net called the SC-Net. The initial step generates coarse pixel
labels from the point annotations using Voronoi labeling and K-means clus-
tering. Voronoi labeling generates convex polygons with point annotations as
the center. To perform K-means clustering, the original image and a distance
transformed image are used to cluster the pixels into three categories, nuclei,
background, and ignored pixels. They extract the H component from the H&E
stained images, enhancing the contrast between nuclei and non-nuclei regions.
A ResU-Net based Segmentation Network is trained with the generated coarse
labels and cross entropy losses from the cluster and Voronoi labels. The
Voronoi labels help split overlapping nuclei, while the cluster labels provide
contour and shape information. To minimize the effect of incorrect cluster
labels, they propose a co-training framework with a pair of segmentation
networks trained by two non-overlapping sets of data. The training of one
network will be supervised by pseudolabels generated by the other network
along with the coarse labels. Accurate cross supervision is achieved by using
EMA to average the pseudolabels periodically. They also proposed an auxiliary
colorization task to obtain precise nuclei contours. The combined SC Net
consists of a sequence of two U-Nets, with the first generating probability maps
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from the H-component and the second reconstructing the H&E image from the
probability map. With the help of the colorization network, the segmentation
network gathers more low level features and captures the nuclei-cytoplasm
relationship as well. As the training progresses, the segmentation task is given
more importance than the colorization task. However, this framework fails if
not all nuclei are completely labeled, as it may generate erroneous coarse labels.

Generative Adversarial Networks (GANs) With a limited number of
annotated training samples, researchers use these masks to generate more
samples to be used for training, or to predict the certainty of the annotations.
The way GAN models are trained – by trying to reconstruct the image –
enables the learning of deep features in the latent space that relate to nuclei
representations. Another benefit is that the generative nature of GANs can
create synthetic data samples that can be used in supervised training using
pseudo labels and potentially compensate to some extent the lack of human
annotated data. This section describes the use of GANs in a weakly supervised
nuclei segmentation framework.

Hu et al. [37] proposed a GAN based weakly supervised nuclei segmentation
approach depicted in Figure 19. They first perform stain normalization on the
images by decomposing them into stain density maps and obtaining the compo-
nent distribution. Since not all the point annotations are the exact centroid of
the nuclei, they propose using the nuclei centroid likelihood map as the training
set. For this purpose, they use the conditional GAN based pix2pix network for
centroid detection. Here, a detection network detects nuclei centroids and gen-
erates the likelihood map as the output. A discriminator network distinguished
between true and generated centroids from the paired input training data
consisting of the original image and the likelihood map. The GAN is trained
with a combined loss function of the confrontation loss and an L1 loss. An area

Figure 19: An example framework using GAN to generate a nuclei centroid likelihood map
from [37].
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threshold is used to detect the central areas in the nuclei from the generated
likelihood maps. In addition to these areas, regions surrounding these central
areas also contribute to nuclei detection. They use a region guided backpropa-
gation from the central regions to visualize pixels contributing to the centroid
detection to obtain a contribution graph for each nucleus. Finally, the graph
cuts algorithm is implemented to get the segmented nucleus by considering the
contribution graph of each nucleus as the foreground and the remaining as the
background. All such fragments are merged to obtain a complete segmentation
map. This approach helps in identifying rough nuclei boundaries.

Lou et al. [58] proposed a selection based approach to weakly supervised
nuclei segmentation. The annotated image patches to be used for training are
determined by two features called representativeness(inter-patch attribute) and
consistency (intra-patch attribute). When a patch has the smallest distance
from other patches in a cluster, it is considered representative of that cluster.
Patches with high similarity within themselves are considered consistent. Such
patches with high representativeness and consistency are chosen as the training
set. Several similar-sized patches are sampled from each training image. The
inter and intra-patch attributes are computed by performing a dual level
clustering, which first groups the image patches into several clusters, and each
image is split into four equal sub regions. Based on the coarse and fine level rep-
resentativeness and intra-patch consistency, one image patch from each cluster
is chosen to be annotated. Augmentation is performed on each of these masks
by random cropping, flipping, and rotation. For each of these image-mask pairs,
a mask synthesis algorithm is employed to generate masks. With the original
image-mask pairs and these synthetic masks, a conditional SinGAN is trained
to generate the nuclei images corresponding to the masks. This network com-
prises a multi scale conditional generator and a component wise discriminator.
For each scale, the training loss combines an adversarial loss and reconstruc-
tion loss. To perform segmentation, a Mask RCNN is trained on the real and
synthetic image pairs. The trained model then predicts masks for the original
training set and these masks act as pseudo labels. The model is finetuned
for another 2-3 iterations, including the original training set and the pseudo
labels. The model after the final iteration is considered to be the final model.

4 Evaluation and Performance Benchmarking

In this section, we start by briefly reviewing the available datasets for training
the nuclei segmentation models in 4.1. The currently proposed metrics are
presented in 4.2, since the nuclei segmentation task has different ways that
can be evaluated. In 4.3, we conduct an extensive performance analysis and
comparisons of recent methods, both quantitatively and qualitatively. Finally,
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in 4.4 we summarize findings drawn from previous comparisons, stressing more
the weakly supervised results.

4.1 Datasets

Several fully annotated nuclei segmentation datasets have been made publicly
available. A summary of a few of the widely used datasets is presented in
Table 6. These datasets contain exhaustive annotations of all nuclei in the
images.

Table 6: A summary of publicly available nuclei segmentation datasets.

Number of Number of
Training Testing Nuclei Organs Magnification

Dataset Images Images Count Included Level

MoNuSeg [47] 30 14 21,623 7 (Breast, Liver, Kid-
ney, Prostate, Blad-
der, Colon, Stomach)

40×

Kumar [48] 16 14 21,623 7 (Breast, Liver, Kid-
ney, Prostate, Blad-
der, Colon, Stomach)

40×

CPM-15 15 2,905 2 40×, 20×

CPM-17 [100] 32 32 7,570 4 40×, 20×

CoNSeP [24] 27 14 24,319 1 (Colorectal Adeno-
carcinoma)

40×

TNBC [66] 50 4,056 1 (Breast) 40×

CRCHisto [93] 50 50 29,756 1 (Colon) 20×

Data Science
Bowl 2018 [7]

536 134 37,333 Combination of tis-
sue from humans,
mice and flies

Mixed

Lung Cancer
Dataset [74]

24 16 24,401 Lung Adenocarci-
noma

20×

The Multi-Organ Nuclei Segmentation (MoNuSeg) Dataset was originally
released for MICCAI 2018 challenge. This dataset comprises 30 training
images of size 1000× 1000 and magnification 40× and 14 testing images with
similar specifications. These images cover samples from Breast, Liver, Kidney,
Prostate, Bladder, Colon, and Stomach cells collected from The Cancer Genome
Atlas(TCGA). The Kumar dataset is a subset of the MoNuSeg dataset, with its
30 training images split into 16 training and 14 testing samples. With diverse
H&E stained histology images from 7 different organs, good performance on
this dataset indicates a high generalization ability.

The Triple Negative Breast Cancer (TNBC) dataset has 50 H&E stained
images from 11 TNBC patients, annotated by an expert pathologist and
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research fellows. It has 512× 512-sized images of breast cancer tissues at a
magnification of 40×. These images include a variety of nuclei annotations,
including normal epithelial cells, inflammatory cells, fibroblasts, macrophages,
adipocytes, invasive carcinomic cells, and myoepithelial cells.

Graham et al. [24] introduced the Colorectal Nuclei Segmentation and
Phenotype (CoNSeP) dataset with 41 H&E stained images obtained from 16
colorectal adenocarcinoma patients. These images are of size 1000× 1000 at a
40× magnification and contain a diverse set of tissue components and nuclei
types. Two expert pathologists exhaustively annotated each nucleus within
every tile with consensus. This dataset displays wide variations within the
colorectal adenocarcinoma images, improving performance on unseen images.

Another colon cancer dataset, called CRCHisto, contains 100 H&E stained
images of size 500× 500 at a 20× magnification. The nuclei, however, are not
exhaustively annotated with class labels. These images were cropped from 10
whole slide images of 9 patients and annotated by an expert pathologist and a
graduate student.

The Data Science Bowl 2018 (DSB 2018) dataset consists of 670 images
with different tissue types, staining modalities, magnification, etc. The nuclei
masks have been annotated by a team of experts. This diversity helps in nuclei
detection from a wide variety of images and helps in generalization.

CPM-17 dataset was made publicly available during the MICCAI 2017
Digital Pathology Challenge. The 64 images were extracted from TCGA and
contained 16 tiles from four different cancer types each, at magnifications
of 20× and 40×. The nuclei were annotated by students and reviewed by
pathologists. CPM-15, on the other hand, contains 15 images from two different
cancer types. Both these datasets contain images of different sizes.

The Lung Cancer dataset was generated by Qu et al. in [74]. It contains
40 H&E stained lung adenocarcinoma and lung squamous cell cancer images.
These images are extracted at a magnification of 20× at a size 900×900. Each
image was annotated by an expert pathologist with bounding boxes, points,
and full masks for the experiment.

4.2 Evaluation Metrics

For the task of nuclei segmentation, various evaluation metrics have been used
over time. Earlier methods calculated the accuracy of the algorithm based on
the number of pixels detected as the nucleus within a region of interest (ROI).
However, in medical images, there exists a large class imbalance, often with
more background information compared to the relevant object of interest in a
single image tile. This imbalance can create a bias in metrics like accuracy,
leading to an illusion of excellent performance.

Segmentation models require measures that can assess localization correct-
ness in addition to classification accuracy. Modified metrics measuring the
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similarity between the ground truth and the predicted values appear to be a
better approach to evaluating performance. The most commonly used eval-
uation metrics are the F1-score, Dice Similarity Coefficient(DSC), the Jaccard
Index(JI), Aggregated Jaccard Index (AJI) and Panoptic Quality (PQ). The
first two metrics are pixel-level metrics, while the AJI is an object level metric.
These metrics are often defined by four values: True positives -(TP - predicted
true, actual true), True negatives (TN - predicted false, actual false), False
positives (FP-predicted true, actual false), and False negatives (FN- predicted
false, actual true). The equations in this section denote X as the set of ground
truths and Y as the set of predicted instances corresponding to the ground
truth. Table 7 presents a comparison of the available evaluation metrics.

Table 7: A summary of the currently proposed evaluation metrics.

Metric Advantage Disadvantage

F1-score Focuses on
evaluating the
presence of a
predicted object
corresponding to
the ground truth
object

Does not account
for pixel-level errors

IoU (Jaccard
Index)

Measures the
conformance of
shape between
ground truth
and prediction

Does not account
for object level
errors

Dice Similarity
Coefficient (DSC)

Measure of pixel wise
agreement between
ground truth and
prediction

Does not penalize
detection errors

Aggregated Jaccard
Index (AJI)

Penalizes both object
level and pixel level
errors

Over penalization
owing to failed
detections

Panoptic Quality
(PQ)

Unified scoring of
detection and
segmentation

Dependent on IoU
with a strict
threshold and
hence may result in
a lower score
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4.2.1 F1-score

The F1-score is defined as the harmonic mean of the precision and recall,
calculated from the values of TP, TN, FP, and FN. Precision is defined as
the percentage of correct positive predictions of all the positive predictions,
while recall is defined as the percentage of actual positives that were correctly
predicted. This metric is very commonly used in the field of medical image
segmentation and considers each instance as an object, giving a per-object
evaluation metric.

Precison =
TP

TP + FP

Recall =
TP

TP + FN

F1-score =
2× Precision × Recall

Precision + Recall
=

2TP

2TP + FP + FN

4.2.2 Jaccard Index

The IoU score or Jaccard Index (JI) is also defined in terms of TP, FP, FN,
and TN. One important difference between this index and the DSC is that, JI
penalizes undersegmentation and oversegmentation more than DSC. Higher
rates of oversegmentation and undersegmentation lead to a lower JI. This
measure also accounts for the level of shape concordance between the ground
truth and the predicted map. In general, the IoU score or JI is the ratio of the
common elements between the ground truth and predicted map to the union
of elements in the ground truth and the predicted map.

IoU score =
TP

TP + FP + FN

IoU score =
|X ∩ Y |
|X ∪ Y |

Both the Jaccard Index and the Dice Similarity Coefficient account only
for the pixel level errors, and don’t account for any object level errors. A
suitable metric for a segmentation algorithm must penalize the model for
any missed objects and false detections in addition to oversegmentation and
undersegmentation errors. The Aggregated Jaccard Index (see Section 4.2.4)
was proposed in [48] to account for pixel level and object level errors.

4.2.3 Dice Similarity Coefficient

The Dice Similarity Coefficient (DSC) is computed as twice the set of common
elements between the ground truth and predictions divided by the total number
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of elements in each set. This measure provides an overall score for the quality
of instance level segmentation. It gives the level of similarity between the
ground truth and the predictions.

DSC =
2(X ∩ Y )

|X|+ |Y |

4.2.4 Aggregated Jaccard Index

The Aggregated Jaccard Index (AJI) is an extension of the Jaccard Index
that computes an aggregated intersection cardinality in its numerator and an
aggregated union cardinality in the denominator for the predicted nuclei and
its ground truth. For each nucleus in a ground truth, the AJI is calculated
by adding the pixel count of the intersection between the ground truth and
predicted segments to the numerator and adding the pixel count of their
union to the denominator. This process aggregates the false positives and false
negatives in the denominator. Hence, the AJI ensures that all missed detections,
false detections, oversegmentation and undersegmentation are accounted for. In
the equation below, N refers to the set of false positives from the prediction set.

AJI =
Σn

i=1X ∩ Y

Σn
i=1X ∪ Y +Σk∈NYk

4.2.5 Panoptic Quality

The Panoptic Quality proposed by [44], is a metric that assesses the combined
detection and segmentation quality. The F1 score measures the detection
quality (DQ), and the segmentation quality (SQ) is a measure of similarity
between the predicted instance and its ground truth. This metric provides
a good evaluation of the detection of individual nuclei instances and their
segmentation, and overcomes some limitations of the AJI and DSC. In the
equation below, x is the ground truth segment, and y is the predicted segment.
Each pair (x,y) is unique if its IoU is greater than 0.5, and this matching splits
the segments into TP, FP, and FN.

PQ = DQ× SQ

PQ =
|TP |

|TP |+ 1
2 |FP |+ 1

2 |FN |
×

Σ(x,y)∈TP IoU(x, y)

|TP |

4.3 Performance Comparison

4.3.1 Quantitative Comparison

In this subsection we carry out a performance comparison among different
models to deduce how different methods and techniques can enhance the
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Table 8: Performance Comparison on the MoNuSeg dataset with the AJI metric.

Method Test 1 Test 2 Test 1 & 2 (comb.) MoNuSeg Test Set

Unsupervised

Cell Profiler [8,
110]

0.1549 0.0809 - -

Fiji [89, 110] 0.2508 0.3030 - -

DDMRL [42] - - - 0.4860

Scale-
Supervised
Attention Net
[85]

- - - 0.5354

CyC-PDAM [55] 0.5432 0.5848 0.5610 -

CBM [60] - 0.5808 - 0.6142

HUNIS [61] - 0.6548 - 0.6387

Supervised

CNN2
[48, 104] 0.3558 0.3354 - -

U-Net (ResNet-
50)
[31, 49] - - - 0.4882

U-Net (VGG-16)
[49, 92]

- - - 0.4925

U-Net
(DenseNet-201)
[38, 49] - - - 0.5083

CNN3 [48] 0.5154 0.4989 0.5083 [15] -

Mask
R-CNN [30] 0.5978 0.5531 0.5786 [15] 0.5282 [49]

DCAN [13] 0.6082 0.5449[110] - 0.557

PA-Net
[56, 110] 0.6011 0.5608 - -

BES-Net
[67, 110] 0.5906 0.5823 - -

HoVerNet [24] - - 0.618 -

CIA-Net [110] 0.6129 0.6306 0.6205 [15] -

REU-Net [72] - - 0.636 -
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Table 8: Continued.

Method Test 1 Test 2 Test 1 & 2 (comb.) MoNuSeg Test Set

BRP-Net [15] 0.6196 0.6384 0.6422 -

GCP-Net [105] - - 0.651 -

Enhanced
lightweight
U-Net [28]

- - - 0.6895

SSL [103] - - - 0.7063

Region Based
CNN [52]

- - - 0.73

DenseResU-Net
[43]

0.7998 0.7684 0.7861 -

CBA-Net [51] - - - 0.7985

segmentation quality. Table 8 shows a quantitative performance comparison of
a few state-of-the-art segmentation approaches on the MoNuSeg dataset with
AJI, which is the commonly used metric for comparisons and more suitable
for instance segmentation problem. In the table, Test 1 and Test 2 refer to
the data splitting proposed in [48], with Test 1 consisting of 16 images only
from breast, liver, kidney and prostate, and Test 2 consisting of 14 images
from all the seven organs (see Table 6). Combined Test Sets refer to the 30
images, including Test Set 1 and 2, while the MoNuSeg Test set refers to the
14 images used for the challenge.

Cell Profiler and Fiji are conventional approaches developed for biomedical
image analysis. Cell Profiler applies an intensity threshold, while Fiji performs
a watershed based nuclear segmentation. We see their results on the MoNuSeg
dataset to be very poor. Domain Diversification and Multi-Domain Invariant
Representation Learning (DDMRL) is one of the initial deep learning based
unsupervised approaches that set the performance standard for domain adap-
tive methods. It is seen to perform much better on the MoNuSeg dataset,
with an increase of almost 0.18 AJI compared to the conventional methods.
The CyC-PDAM, with its nuclei inpainting mechanism and panoptic level
adaptation, achieves an AJI of 0.5610 overall on the MoNuSeg dataset. On
the same lines as self supervision, the attention-based scale prediction network
with segmentation as an auxiliary task [85] performs even better than the
supervised CNN based algorithms, with an AJI of 0.5354. This class of self
supervision works on the relevant histology dataset, and doesn’t require any
labeled data, unlike domain adaptive methods. With the trend of deep learning
based unsupervised and self supervised methods producing comparable results
to supervised methods, the CBM [60] achieves a high performance with a
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well-designed unsupervised method and a very small computational complexity
using simple image processing techniques. The large performance gap between
the deep learning based methods and this method can be owed to the significant
domain gap in biomedical images and inherent intensity variations, challenged
more by the relatively small amount of training data. The HUNIS paper [61]
further improves upon the performance of CBM by introducing a second stage
self supervised refinement on the adaptively thresholded result and obtains a
substantial improvement in performance, especially in Test 1. The selective
self supervision in the second stage based on the confidence scores of the
predicted pixels proposes a condition based supervision that can be further
explored as an alternative approach to fully supervised segmentation which
suffers from a large memory requirement. Among the unsupervised methods,
the HUNIS approach achieves the highest AJI of 0.6548 on Test 2 and 0.6387
on the MoNuSeg Test Set. It outperforms all unsupervised and self supervised
deep learning methods and requires only a negligible number of parameters
compared to the millions of parameters of deep learning networks. In addition,
this method performs on par with U-Net based REU-Net, attention gated
GCP-Net, and the enhanced lightweight U-Net.

CNNs and FCNs (Fully Connected Networks) formed the beginning of
deep learning for nuclei segmentation. CNN2, [104] classifying pixels as
nuclei or background, performed better than the conventional methods, but is
particularly challenged in segmenting dense nuclei clusters. As seen in Table 8,
CNN 2 obtains an AJI of 0.3558 on Test Set 1 and 0.3354 on Test 2. CNN3 [48]
included a boundary class that showed an improvement in the segmentation
of nuclei with diffused chromatin and forming dense clusters. This helped
increase the AJI by about 0.16, reaching an AJI of 0.5083. The multi-tasking
FCN used in DCAN provided encouraging results for deep learning based
methods, with an AJI close to 0.60 in some test sets.

The concept of upsampling to obtain a pixel-wise segmentation prediction
gave rise to the U-Net, an encoder-decoder architecture that performs down-
sampling to obtain features and builds on these features through upsampling
to obtain a segmentation map with similar dimensions as the input. Different
configurations in the encoder architecture were developed to extract efficient
and representative features. Among the U-Net implementations, the deep
DenseNet-201 outperforms networks with other backbones like VGG-16 or
the ResNet, by achieving an AJI of 0.5083. This promising approach led to
advanced U-Net based architectures like BES-Net [67], CIA-Net [110], REU-
Net [72], and BRP-Net [15] that incorporated boundary information to refine
the segmentation masks in an end-to-end manner. From the table, we find
that boundary supervision contributes to a notable improvement of around
0.09 - 0.14 in AJI, and most of these methods yield an AJI of about 0.60-0.64.
HoverNet [24] displays similar performance with an AJI of 0.618 with the help
of horizontal-vertical distance map to separate clustered nuclei. GCP-Net is an
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attention gated network that achieves an AJI of about 0.65. The inclusion of
the attention gates suppresses irrelevant pixels from further processing, thereby
focusing more on the nuclei regions. Also, adding more context from coarser
layers is proven to help the segmentation quality. This approach contributes
to improved performance even without contour awareness.

Histology images often have a class imbalance issue between the nuclei and
background pixels. Such an imbalance may introduce a bias in the network.
The instance aware self supervised network [103] based on contrastive learning
achieves an AJI of 0.70. Though SSL uses nuclei size and quantity priors as
the self-supervised pretraining, the best performance is achieved by finetuning
the network with 100% labeled data. An imbalance aware network proposed
by Hancer et al. [28] uses an enhanced lightweight U-Net supervised by the
generalized Dice Loss, with an AJI of 0.6895. The DenseResU-Net shows a
leap in performance among the U-net methods with AJIs greater than 0.76
on different test sets. Its wise use of atrous blocks in a dense network with
residual connections between the encoder and decoder helps reduce the semantic
gap. The CBA network [51] obtains the highest AJI of 0.7985 among all the
supervised deep learning methods. The integration of the attention mechanism
and the blur pooling operations overcomes the challenges of variations in
staining, while the low pass filtering allows the extraction of enhanced features,
thus contributing to SOTA performance.

In addition to the U-Net, region based CNNs like the Mask RCNN have
also shown favorable results. PA-Net and the region based CNN [52] employ
improved Mask RCNN architectures. While PA-Net achieves an AJI of 0.60,
the region based CNN with a guided anchor RPN and Fusioned Box Score
hikes the performance by another 0.10 giving a 0.73 AJI. However, it should be
noted that Mask RCNN suffers from slow speed, especially with large images,
and requires an enormous number of parameters for training.

After comparing results from different SOTA methods, we compile some
findings with more emphasis on the weakly supervised aspect of the problem.
Zhou et al. [110] observed that noise in the staining and digitization process
gives rise to ambiguous instances, thus leading to more noise in labels from
pathologists’ subjective annotations. In Figure 20, we can see that only the
top 10% of samples have an influence on the 80 % of the overall cross-entropy
loss value, and the really informative regions are more scarce.

From the weak supervision and point-wise annotations standpoint, it is
interesting to analyze how performance is affected by using different fractions
of annotated points. Looking into the study of Qu et al. [74], we can realize
the more supervision is added the better the results are. As an observation,
pixel level metrics, such as the reported accuracy and F1 score (at pixel
level) improve marginally by adding more supervision (see Table 9). Yet, the
performance improvement is more accentuated when using the Dice and AJI
metrics object-wise. Another observation from weak supervision, on the Lung
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Figure 20: Cumulative distribution of the loss value over the ratio of foreground examples
seen from the model. Given the very skewed distribution, a small percent of examples
actually contribute in the optimization of the model (results from [110]).

Table 9: Weak supervision comparison between full supervision and point-wise at different
training point ratios (results from [74]).

Dataset Method Accpixel F1pixel Diceobj AJIobj

Lung Cancer (LC)

Fully-sup 0.9615 0.8771 0.8521 0.6979
GT points 0.9427 0.8143 0.8021 0.6497

5 % 0.9262 0.7612 0.7470 0.5742
10 % 0.9312 0.7700 0.7574 0.5754
25 % 0.9331 0.7768 0.7653 0.6003
50 % 0.9332 0.7819 0.7704 0.6120

MoNuSeg (MO)

Fully-sup 0.9194 0.8100 0.6763 0.3919
GT points 0.9097 0.7716 0.7242 0.5174

5 % 0.8951 0.7540 0.7015 0.4941
10 % 0.8997 0.7490 0.7033 0.5031
25 % 0.8966 0.7511 0.7087 0.5120
50 % 0.8999 0.7566 0.7157 0.5160

Cancer dataset, the performance drops significantly if we reduce the number of
training points at half. On the other hand, for the MoNuSeg, the performance
is very close in terms of AJI and Dice. Even using 10% of the points, the AJI
performance gap is still small.

Another question that may arise is how supervision helps the generalization
in other datasets. In Table 10, one can see that the AJI score is not affected
when using much less training data (even 5%) while training using MoNuSeg
and testing on the Lung Cancer dataset. Conversely, there is a small perfor-
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Table 10: Weak supervision comparison between full supervision and point-wise at different
training point ratios (results from [74]).

Train → Test Ratio Accpixel F1pixel Diceobj AJIobj

MO → LC

5 % 0.9271 0.7589 0.7418 0.5609
10 % 0.9213 0.7518 0.7297 0.5555
25 % 0.9222 0.7551 0.7320 0.5588
50 % 0.9226 0.7579 0.7336 0.5608

LC → MO

5 % 0.9004 0.7419 0.7028 0.4884
10 % 0.8964 0.7338 0.6913 0.4971
25 % 0.8974 0.7234 0.6886 0.4870
50 % 0.8970 0.7232 0.6986 0.5030

Figure 21: (a) Perturbations in point-wise annotations. Yellow points represent nuclei center,
while red and blue are points offset by four and eight pixels, respectively. (b) Object-wise
metrics for nuclei segmentation over different amounts of perturbations measured in pixel
distance from nuclei center. (results from [54]).

mance improvement when adding more training points when we use the Lung
Cancer for training and MoNuSeg for testing. This may be attributed to the
smaller size of the LC dataset that challenges the model when a very small
fraction of points is included for training. In general, performance drops in
both datasets, where LC testing is affected more by the domain shift, while the
performance difference because of the training domain shift is less in MoNuSeg.

Moving along the point-wise annotations, annotation errors from pathol-
ogists can be simulated as perturbation noise and GT points can be some
pixels further from the actual center. In Figure 21, we can see how the noise
during annotation can affect the segmentation performance, especially when
the points have a distance larger than 8 pixels from nuclei center, reaching
closer to nuclei boundaries or even falls out from nuclei.
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4.3.2 Qualitative Comparison

In addition to the provided quantitative comparisons about the segmentation
performance among different methods, it is always useful in this problem to
analyze visually different examples across state-of-the-art methods. Thus, a
qualitative comparison can give more insights on the advantages and weaknesses
of different methods and cast the overall analysis as more complete. This
subsection comprises several nuclei segmentation examples, trying to show
the effectiveness of some proposed models and help the reader to understand
more deeply the nuclei segmentation problem and its current limitations and
challenges.

As has been stressed in many papers, the main source of errors lies on the
contours of nuclei that compromises the segmentation performance. Overlap-
ping or touching nuclei in dense clusters and blurred boundaries can cause
over or under segmentation problems. Contour aware attention mechanisms
in a Deep Neural Network (DNN) turn out to help the network to delineate
the nuclei boundaries more accurately.

CNN3 [48] introduces a third class for detecting the boundaries of cells. The
main motivation of that is that in a post-processing step, touching nuclei can
be accurately segmented. This is possible by trying to grow the nuclei area in
an iterative way, maximizing the boundary probability, without decreasing the
nuclei one of other neighboring instances (constrain invasions). They let the
nuclei anisotropically grow until boundary-class reaches a local minima, while
constraining the growth with the inside (nuclei) and outside (background)
classes of surrounding areas. In comparison with CNN2 [104], it helps to
identify boundaries and touching nuclei more precisely (see Figure 22).

Subjective annotations result in mislabelled instances and inaccurate bound-
ary delineations. The inter-annotator variance is even more evident due to
blurred edges and staining artifacts. Based on the observation that noise in
labeling has the tendency to statistically dominate the gradients and hence
loss calculations. CIA-Net [110] shows an improved performance over earlier
methods by adding the “truncated loss” to diminish the influence in the learning
of the outlier regions with high confidence. Focusing on the more informative
regions in the training process helps mitigate the over-segmentation problem.
In Figure 23, one can see the effectiveness of adding the IAM unit that focuses
on the texture and spatial dependence between nuclei and their boundaries, as
well as that of truncated loss function for more accurate boundary detection,
despite the noisy labels.

As mentioned, another way to mitigate over-segmentation and resolve over-
lapping instances is proposed in Hover-Net [24]. Instance-wise horizontal and
vertical distances from their respective center of mass provide rich information
to the encoder branch, on top of textural features. In Figure 24, we can see
how the distance information helps in splitting the nuclei apart.
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Figure 22: In the middle and bottom rows, ground truth (annotated) boundaries are red,
detected are blue, and the overlap between the two is yellow. Segmentation comparisons
are shown with the CNN2 baseline model. In bottom row yellow is more prevalent, thus
indicating more precise boundaries detection with respect to ground truth. (figure from [48]).

Cropped image regions show horizontal and vertical map predictions, with
corresponding ground truth. Arrows highlight the strong instance information
encoded within these maps, where there is a significant difference in the pixel
values.

Besides overlapping nuclei, another major challenge in this area is nuclei size
variability among different organs, datasets, and scanning protocols. Attention
mechanisms among the encoder and decoder have been proven efficient because
they bring more contextual information from the coarse feature maps with
larger receptive fields. In [50], the coarser features are used as a gating signal
within the gated attention on the skip connections between the encoder and de-
coder. In Figure 25, we can see the effect of such a gated mechanism over other
SOTA models. It can identify and segment more accurately both small and
large size nuclei with different textures, thus decreasing the false negative rate.

Qu et al. [74] carry out a visualization comparison using certain fractions
of point-wise annotations to show how reducing the training points can affect
the nuclei segmentation performance. In Figure 26, we can observe that for
easier images where there are not many nuclei texture/color variations, even
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Figure 23: Comparison of CIA-Net without the Information Aggregation Module (IAM)
and BES-Net. CIA-Net can identify more accurately connected nuclei that should be slit,
even when ground truth is noisy or mislabelled (figure from [110]).

Figure 24: Horizontal and vertical prediction maps are shown on areas prone to overlapping
nuclei, along with their corresponding ground truth. Distance information alleviates over-
segmentation and nuclei splitting phenomena (adjusted figure from [24]).

when less than 50% of point annotations are used, the segmentation quality
is good. On the other hand, for other more challenging images where nuclei
texture varies significantly, one can see that nuclei are more under-segmented
and only using 50% or the full set of point annotations, the segmentation
result is more accurate.

4.4 Discussion And Conclusions

Having reviewed a large body of papers pertinent to nuclei segmentation from
different categories and analyzed their quantitative and qualitative performance
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Figure 25: A challenging nuclei segmentation comparison among several models, demon-
strating the gated attention mechanism. (a) GT, (b) Baseline U-Net [80], (c) CNN2 [104],
(d) CNN3 [48], (e) Hover-Net [24], (f) NucleiSegNet [50] (adjusted figure from [50]).

on public datasets, it is time to discuss our observations and draw some
conclusions.

4.4.1 General Remarks

As a first point, early generic molecular segmentation tools used for nuclei
segmentation perform very poorly compared to dedicated models that target
the very task. Unsupervised methods using domain adaptation or predictive
learning seem to achieve a better performance than methods that use con-
trastive learning, and they are dominant. Yet, all DL-based methods with no
supervision have a much inferior performance compared to the fully or weakly
supervised ones. Turns out that transferring meaningful features between two
different domains, either from natural or medical images, is very challenging,
especially when presented with very few training images, which is the case for
nuclei segmentation. On the other hand, the two recent unsupervised methods
of CBM and HUNIS, based on more traditional segmentation ways and prior
knowledge of the problem, achieve a competitive performance even among
supervised DL-based solutions. This is to say that still, traditional techniques,
when effectively applied, can provide a high performance solution with a small
number of parameters and in a more transparent way.

Early CNN architectures for binary pixel classification, before U-Net be-
comes the mainstream baseline for nuclei segmentation, definitely improved the
performance over earlier traditional methods. Although, they are challenged
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Figure 26: Demonstration of weak supervision from point labels, using different ratio of
points for training. Starting from top row, odd rows display results from LC dataset, while
even rows from the MO dataset. Upper examples show typical segmentation cases, while
bottom examples more challenging ones Gt points refer to the full set of available annotations.
(combined figures from [74]).

by class imbalance problems and segmenting dense nuclei clusters. FCNs
further improved the segmentation performance, especially when coupled with
multi-tasking branches that focus on the contours of nuclei.

In more recent approaches, the dominant baseline DNN architecture for
nuclei segmentation is the U-Net. The best performance is yielded when
DenseNet is used as a backbone model. Also, additional extensions on top of
the main model, such as attention mechanisms that bring more contextual
information at different scales and exploit the relevance between nuclei and
contour, help the classifier to detect and segment nuclei of different sizes.
Drawing a piece of evidence from CIA-Net and BRP-Net, this not only increases
the segmentation performance but also improves the generalization ability on
an unseen organ since those two models perform better on Test-2 (unseen
organ) than Test-1 set in MoNuSeg. Moreover, boundary awareness during
training definitely helps a model boost its segmentation performance. That
can be achieved either using a separate class for boundaries, combined with
a post-processing method, or via gated mechanisms that learn more from
the informative regions (i.e. boundaries and nuclei), hence suppressing other
background information that is more noisy. Mask RCNN has been proven to
be effective in other computer vision tasks, albeit in nuclei segmentation, its
performance is not convincing compared to other baseline models. It requires
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many annotated data for training and, thereby is not very practical for this
task. Besides, its large model size and slow inference time make it less efficient
for deployment.

4.4.2 Weak Supervision Standpoint

One commonly faced challenge in this problem is the noisy labels because
that is a laborious and sensitive task, prone to errors and subjectivity. One
question that arises is how models can identify the erroneous labels and prevent
their influence on the learning model (in terms of gradient propagation). In
Figure 20, we can see that only the top 10% of samples have an influence
on the 80 % of the distribution of overall cross-entropy loss. That is, the
really informative regions are scarce, and most foreground examples have a
minuscule contribution to the learning process and wrong labels largely affect
training. As a remedy, some efficient techniques applied are gated attention
for boosting contextual multi-scale information, contour-specific task learning
to complement nuclei appearance, and loss functions that can account for class
imbalance and suppress noisy regions. The utter goal is to steer the learning
process toward more informative regions and rely less on labels that convey
noise and may be misleading to gradient descent process. Models are better
off trained by putting more emphasis on the nuclei and their corresponding
contours, digging out the labels that conform with the model’s predictions
(more informative about nuclei shape, texture, and boundaries).

Trying to ease the annotation process (can save almost 88% [73] of the full
pixel annotation time) and enable access to larger annotated datasets, partial
(or point-wise) annotations is a recent line of research in nuclei segmentation
that has attracted a lot of interest. Observing results that include certain
fractions of the overall points, the more data points we include, the higher the
performance is. Yet, a remarkable note is that even using a very small fraction
of points – 5 or 10% – the performance does not change much compared to the
full set of annotated points. Notably, the initial choice of a set of points seems
not to play a significant role in the model’s performance. Certainly, models
trained on the full pixel-wise annotations seem to have a better performance,
nevertheless, the gap is relatively small (about 7 %, when using point-wise
annotations.

From these findings, it is evident that exhaustively annotated datasets with
pixel-wise labels are not much favored. The tremendous savings in annotation
time from the point-wise labels – given the small performance gap with the
full mask based methods – provides a better trade off for future research, as it
can enable the acquisition of larger datasets at much less cost. Moreover, weak
supervision using a reduced training set of points does not affect much the
generalization performance across different datasets, although this needs to be
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validated with more experiments in the future using larger testing datasets.
Finally, perturbations in point-wise annotations resulting from human error
are tolerated by a certain amount of pixels. After some point, the performance
drops significantly since nuclei positions are very misleading, and Voronoi
labels become too noisy. It is important then to identify the amount of labels,
their type, and the areas that needed annotations for minimizing the labels
requirement but still achieving a high performance, satisfying pathologists so
that they can use future CAD tools in their everyday cancer diagnosis pipeline.

5 Future Work

All in all, supervision seems advantageous to the nuclei segmentation task,
but the amount and type of supervision is the key for foreseeing the future
line of research. The impractical and costly nature of pixel-wise annotations
inhibits the rapid growth of the field, taking into account that DL-models
require by their nature a large amount of data samples. Trying to extrapolate
from current methods, fully unsupervised methods are hard to achieve a high
performance. The nuclei color and texture variations from the staining and
digitization process, make domain adaptation very challenging for unsupervised
methods, and hence their generalization ability is poor. However, still strong
prior knowledge and simple image processing techniques (e.g. HUNIS method)
can provide a competitive performance. Although, there is still a gap compared
to state-of-the-art DL-based fully supervised methods.

Future models in nuclei segmentation will be mainly trained using the
weak supervision paradigm. Point-wise annotations reduce dramatically the
annotation time and costs. Taking into account that the performance gap with
fully supervised methods is relatively small, as well as this research trend is
more recent and has not been fully explored, one can argue that point-wise
based methods pave the way for future trends.

Taking it one step further, from our earlier observations, achieving a high
performance may not require all the nuclei points to be annotated. This
shows a direction, where future algorithms will be trained on points from
a few nuclei that are representative of the overall image distribution. This
is expected to minimize pathologists’ labor and yield datasets with more
annotations. Therefore, AI algorithms can be part also of the annotation
tool, thus making the nuclei annotation process more to the point. That is,
we envision a system that suggests what nuclei need supervision and guides
the segmentation process by indicating to pathologists which nuclei they
need to pinpoint on their centers. This will reduce human fatigue and hence
shifting errors in point-wise annotations that as shown earlier can impact the
performance.
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The question arises is for which nuclei we need human supervision. Further-
more, what is the smallest and most representative subset of nuclei points needs
to be annotated, so the model under training has a representative distribution
about the nuclei of a histopathology image and can potentially maximize the
generalization ability to others nuclei as well. For, easy to segment nuclei
may not need supervision and unsupervised methods can perform well already.
Also, outlier nuclei in appearance should not be included, trying to filter out
noisy annotations. For pointing to the annotator, which pixels need super-
vision, an unsupervised model would be preferably deployed to identify the
group of nuclei whose appearance is more challenging. A supervised model
pre-trained on another dataset could also be an option, nevertheless, the bias
that would be carried over may give a distorted idea of the areas that need
annotation. Hence, we argue that an unsupervised model is more intuitive
for identifying areas and nuclei that need supervision. The key to that is to
find a representation about nuclei where different appearance aspects can be
encoded. Therefore, it would be easy to identify inlier and outlier nuclei from
a distribution based on Gaussian distance criteria.

As another path, in some challenging images, for certain groups of nuclei
(e.g. high inner nuclei variation appearance or overlapping nuclei) may also
need their full segmentation masks to enhance the annotated data and help
in the model training. Thus, it would be interesting in the future to develop
hybrid models that could be trained from an annotated dataset that comprises
point-wise and fully annotated masks together in areas that models need pixel-

Figure 27: The envisioned workflow for CAD-assisted annotations in nuclei segmentation
from an unsupervised model to identify areas need annotation. Two modes of annotations
may be required from future models to achieve a high performance: (a) point-wise and (b)
mask annotations. A hybrid model that can best leverage this information will benefit from
a minimum set of annotations to achieve high performance. Certainly, the quality of training
depends on the unsupervised model that guides the annotation process.
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level supervision to achieve a very high performance. Figure 27 illustrates the
workflow pipeline we imagine for future data annotation in nuclei segmentation.

With regards to transparent solutions for medical applications, interpretable
models will be favored in the future, so pathologists can understand the seg-
mentation output that comes out of an AI-assisted CAD tool and what factors
(i.e., visual features) led to the result. Therefore, apart from a good segmenta-
tion performance, explainability and transparency in the nuclei segmentation
pipeline are also of high importance, as it will make the future CAD tools
more trustworthy to pathologists and hence more easily integrated into their
everyday clinical diagnosis.
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