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ABSTRACT

Voice activity detection (VAD) is a fundamental prerequisite for
tasks involving speech processing, particularly automatic speech
recognition (ASR). Traditional supervised VAD systems employ
a single type of network to acquire frame-level labels from the
ASR pipeline, yet their detection performance often falls short
of satisfactory levels, impeding the identification of high-quality
speech by these systems. In this study, we present a novel hetero-
geneous convolutional recurrent neural network (HCRNN) with
an attention mechanism and feature aggregation for voice activity
detection. This approach effectively integrates the advantages of
distinct networks, aiming to achieve superior performance in voice
activity detection. We begin by presenting our detection frame-
work, which employs a convolutional neural network (CNN) as the
initial component of a long short term memory (LSTM) or gated
recurrent unit (GRU) architecture. The feature map obtained from
this front-end CNN is subsequently fed into the LSTM or GRU
component of the system. The choice of LSTM or GRU lies in
their ability to model long-term dependencies between inputs, a
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crucial aspect in voice activity detection. To enhance the frame-
work’s performance, we introduce two novel attention mechanisms.
The first mechanism focuses on the fusion of both spatial and
channel-wise information within local receptive fields. Given an
intermediate feature map, our module generates attention maps
along two independent dimensions: channel and spatial. These
attention maps are then multiplied with the input feature map to
achieve adaptive feature refinement. The second attention mecha-
nism is dedicated to discovering contextual features from embedded
sequences using a multi-head self-attention (MHSA) layer. This
layer allows the model to capture relationships between different
elements within sequences, further enhancing the representation
power of the system. Finally, refined features from the LSTM or
GRU back-end are aggregated using either trainable scalar weights
or vector-based attention weights. This aggregation step ensures
that the most relevant features are emphasized, contributing to
more accurate voice activity detection. To evaluate the efficacy
of our proposed method, we conducted experiments on synthetic
VAD datasets, Kaggle VAD datasets and AVA-speech datasets.
The results demonstrate that the proposed method outperforms
the baseline CRNN in low signal-to-noise ratio and noisy scenarios,
exhibiting robustness against various noise types. Summarizing,
our framework effectively integrates the strengths of CNN and
RNN (LSTM or GRU) to enhance detection performance. The
inclusion of attention mechanisms and feature aggregation further
optimizes system performance, making it a promising approach for
voice activity detection.

1 Introduction

In recent years, the application of deep learning (DL) in voice activity de-
tection (VAD) has achieved remarkable performance in various downstream
tasks. These DL-based VAD methods have demonstrated promising results,
outperforming traditional algorithms in numerous applications, such as Ren-
evey and Drygajlo [18], Ramirez et al. [17], Sohn et al. [20], and Tan et al. [21].
Due to its scalability, the proposed method enables us to effectively handle
large-scale data, exhibiting superior generalization performance compared to
previous machine learning techniques. VAD is also motivated by this trend to
incorporate hybrid acoustic features as input to neural networks in Drugman
et al. [5] and Meier and Kellermann [15], or by modeling contextual informa-
tion using popular neural architectures such as Deep Neural Networks (DNN)
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in Zhang and Wang [29], convolutional neural network (CNN) in Thomas et al.
[22], Zazo Candil et al. [28], and Obuchi [16], recurrent neural network (RNN)
in Gelly and Gauvain [7], Eyben et al. [6], and Hughes and Mierle [9], and
convolutional recurrent neural network (CRNN) in Dinkel et al. [4].

The extraction of salient features in context using convolutional neural
networks (CNNs) or deep neural networks (DNNs) has been demonstrated
to be effective. Nevertheless, the inherent input length constraint of these
models limits their ability to process long messages, which can be crucial
for VAD tasks. Previous attempts to model contextual information using
recurrent neural networks (RNNs) have not been promising. In this regard,
the attention mechanism in Kim and Hahn [12], Jo et al. [11], and Sofer
and Chazan [19] demonstrates practical high performance in various context-
involving settings. ACAM in Kim and Hahn [12] uses LSTM and attention
mechanism to generate VAD, which is essential for capturing the correlation
between the hidden vectors of the encoder and decoder. In Jo et al. [11],
VAD is based on the Self Attention (SA) framework. The idea behind this
architecture is to model contextual information between acoustic input frames.
Unfortunately, the SA mechanism is only used for short context frames. Also,
without using a CNN on the input, the spectral information of the speech may
not be fully exploited. Sofer and Chazan [19] utilizes a Convolutional Neural
Network (CNN) to exploit the spatial information of the noisy input spectrum
to extract a sequence of frame-wise embeddings, followed by a self-attention
encoder designed to find contextual information from the embedding sequence.
Unlike Jo et al. [11] which is used separately for each frame (with context
frames), this method is able to process the entire waveform at once, allowing
for long receptive fields.

In this study, we present a voice activity detection (VAD) system that
combines CRNN modules with an attention mechanism and feature aggregation.
First, the CRNN module is designed to capture frame-wise features and extend
the effective receptive field. Second, the attention mechanism focuses on
essential features while suppressing irrelevant ones. To this end, we introduce
two novel attention mechanisms. On one hand, we employ a method that
emphasizes meaningful features along the channel and spatial axes. This
approach leverages the fact that convolution operations integrate cross-channel
and spatial information to refine feature representation. On the other hand,
we address less context-sensitive issues using the multi-head self-attention
(MHSA) module. Finally, refined features from backend LSTMs or GRUs
are aggregated based on trainable scalar weights or vector-based attention
weights across different scales. Our results demonstrate that the combined
architecture outperforms individual components. Furthermore, we demonstrate
that the proposed method not only achieves state-of-the-art performance on
various benchmarks but is also computationally efficient, processing the entire
waveform in a single step.
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2 Methods

The VAD systems proposed in this paper take an acoustic feature vector
extracted from the audio as an input, and should produce frame-level class
labels for two categories: non-speech (ns) and speech (s). We implemented the
first six different architectures to built VAD systems, as illustrated by Figure 1.
The last two diverse methods are built in Figure 2. Table 1 shows different
configurations for eight algorithms.
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Figure 1: The first six different methods for implementing VAD

Table 1: Different configurations for eight algorithms in Figures 1 and 2.

algorithm batch norm 1-layer lstm 2-layer lstm ca-block sa-block ha-block scalar weights mhsa-block vector-based attention weights
Figure 1a ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Figure 1b ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗

Figure 1c ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗

Figure 1d ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗

Figure 1e ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗

Figure 1f ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗

Figure 2a ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗

Figure 2b ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓

To mimic the nonlinear response to the human ear’s acoustic spectrum, we
choose a logarithmic mel-scale filter bank energy (fbank). In order to prepare
for input into the neural network, the adjacent 11 acoustic feature frames are
concatenated as input to the convolution operation.
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Figure 2: The last two different methods for implementing VAD

2.1 The CRNN architectures

Our first approach to implementing a VAD system utilizes a convolutional
recurrent neural network (CRNN) backend. The architecture consists of a
two-layer CNN (utilizing 5× 5 and 3× 3 convolutions), each followed by 2× 2
max pooling. A single layer of long short-term memory (LSTM) is appended
after the last CNN output, enhancing the temporal consistency of our model.
The final two layer is fully-connected layers, which outputs whether speech
exists in each frame. The framework and specific parameters can be seen in
Figure 1a.

The second method is depicted as Figure 1b. Compared with Figure 1a, The
operation of batch normalization is excluded. A single layer long short term
memory (LSTM) will be replaced with a two-layer long short term memory
(LSTM). Others remain unchanged. We also tried larger networks but saw no
performance gain, possibly due to the limited diversity of the training data.
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2.2 The channel attention module

As shown in Figure 1c, a channel attention block (ca-block) is inserted after
the single-layer long short term memory (LSTM). The idea of channel-wise
attention is borrowed from SENets in Hu et al. [8]. Specifically, the ca-block
in Figure 3 consists of two operations: squeeze and excitation. The squeeze
operation employs global average pooling of feature maps to generate channel
statistics. Formally, the statistics z ∈ RC are generated by shrinking feature
maps U =

[
u1,u2, · · · ,uC

]
through its spatial dimensions H×W , so that the

c-th element of z is calculated by:

zc =
1

H×W

H∑
i=1

W∑
j=1

uc(i, j) (1)

Therefore, C×H×W feature maps are reduced to C×1×1 channel-wise statis-
tics where H is the input height, W is the input width, and C is the number
of channels. The excitation operation then takes the channel-wise statistics
as inputs and computes the scaled values with a range of

[
0, 1

]
through two

fully-connected (FC) layers forming a bottleneck. A simple gating mechanism
with sigmoid activation is formulated as follows:

s = σ(W2δ(W1z)) (2)

where σ refers to the sigmoid function, δ means the ReLU function, W1 ∈
RC

r ×C , W2 ∈ RC×C
r and r is a reduction ratio. The final output of the

ca-block is obtained by rescaling U with the activations s:

xc = sc ⊗ uc (3)

where X =
[
x1,x2, · · · ,xC

]
, s =

[
s1, s2, · · · , sC

]
, and ⊗ refers to channel-wise

multiplication.

2.3 The spatial attention module

A spatial attention block (sa-block) can be seen in Figure 1d. According
to Woo et al. [26], we exploit the inter-spatial relationships of features to
generate spatial attention maps. To compute the spatial attention, we first
apply average-pooling and max-pooling operations along the channel axis
and concatenate them to generate an efficient feature descriptor. On the
concatenated feature descriptor, we apply a convolution layer to generate a
spatial attention map M(U) ∈ RH×W which encodes where to emphasize or
suppress.

We aggregate channel information of a feature map by using two pooling
operations, generating two 2D maps: Uavg ∈ R1×H×W and Umax ∈ R1×H×W .
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Figure 3: An overview of the proposed ca-block

Each denotes average-pooled features and max-pooled features across the
channel. Those are then concatenated and convolved by a standard convolution
layer, producing our 2D spatial attention map. In short, the spatial attention
is computed as:

M(U) = δ(f3×3(
[
AvgPool(U);MaxPool(U)

]
))

= δ(f3×3(
[
Uavg;Umax

]
))

(4)

where δ is the sigmoid function and f3×3 represents a convolution operation
with the filter size of 3× 3. The spatial attention process can be summarized
as:

Y = M(U)⊗U (5)

where Y is the final refined output. This detailed operation is described in
Figure 4.

2.4 The hybrid attention module

Figure 1e shows a hybrid attention block (ha-block) applied. The hybrid
attention module is bred from the ca-block and sa-block. Given an intermediate
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Figure 4: An overview of the proposed sa-block

feature map U ∈ RC×H×W as input, the ha-block infers a 1D channel attention
map s ∈ RC×1×1 and a 2D spatial attention map M ∈ R1×H×W . The overall
attention process can be summarized as:

X̂ = s(U)⊗M(U)⊗U (6)

where X̂ is the final refined output. In our hybrid attention block (Figure 5),
we exploit both spatial and channel-wise attention based on an efficient archi-
tecture and empirically verify that exploiting both is superior to using only
the channel-wise attention as Hu et al. [8].

2.5 The scalar weights module

A feature aggregation module is shown in Figure 1f. The feature aggregation
module is based on scalar weights and aims to capture more information for
important estimated features. Given a feature matrix, this method assigns
weights to each element of the matrix through a trainable layer. The matrix
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Q =



q11 q12 · · · q1j · · · q1m
q21 q22 · · · q2j · · · q2m
...

...
. . .

...
. . .

...
qi1 qi2 · · · qij · · · qim
...

...
. . .

...
. . .

...
qn1 qn2 · · · qnj · · · qnm


(7)

is a parameter which can be learned by model optimization, where i is the
feature dimension index, n is the total dimension, j is the RNN category index,
and m is the total number of RNN categories used. The RNN categories are
GRU and LSTM. m is set to 2 here. The associated scalar weights for each
element of a feature row can be defined as follows:

ωij = τ(qij) (8)

where τ is the softmax activation function calculated as follows:

τ(qij) =
exp (qij)∑m
j=1 exp (qij)

(9)

Given the output feature map f lstm ∈ RC×H×W from ha-block after
the LSTM branch and the output feature map fgru ∈ RC×H×W from
ha-block after the GRU branch, the two feature maps are reshaped to
1D feature vectors f̂ lstm =

[
f̂ lstm
1 , f̂ lstm

2 , · · · , f̂ lstm
i , · · · , f̂ lstm

n

]
and f̂gru =[

f̂gru
1 , f̂gru

2 , · · · , f̂gru
i , · · · , f̂gru

n

]
, respectively. Here, n = C ×H ×W is the
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feature dimension. It is also the hidden state number in LSTM or GRU. The
feature vectors are aggregated by the following equations:

f̂i = ωi1f̂
lstm
i + ωi2f̂

gru
i (10)

The weighted feature vector is f̂ =
[
f̂1, f̂2, · · · , f̂i, · · · , f̂n

]
. Then, we feed

them into a LayerNorm layer.

2.6 The mhsa module

A multi-head self-attention block (mhsa-block) can be described in Figure 2a.
The mhsa-block in Vaswani et al. [24] is the core of prominent architectures
in multiple Machine Learning domains such as Natural Language Processing
(NLP) and Computer Vision (CV). The main goals of the mhsa encoder is
mapping a query and a set of key-value pairs to an output. The output is
computed as a weighted sum of the values, where the weight assigned to each
value is computed using the given query with the corresponding key. An
intermediate feature vector vt is converted into an embedding vector et to be
fed as an input of the self-attention network. In this process, the corresponding
embeddings provided to the model are computed as follows:

et = vt + pt (11)

where t is the desired position in an input sequence, and the positional
embedding pt as a vector containing pairs of sines and cosines for each frequency.
It is defined as:

pt =



sin(ω0 · t)
cos(ω0 · t)
sin(ω1 · t)
cos(ω1 · t)

...
sin(ωd/2−1 · t)
cos(ωd/2−1 · t)


(12)

where ωk = 1
100002k/d and d = 160 is the encoding dimension. Given the

frame-wise embedding sequence E = [e1, e2, · · · , et, eL] ∈ Rd×L where L is
the input sequence length, a single layer attention of the multi-head attention
with H = 4 attention heads is computed as:

MultiHead = Concat(head0, · · · , headH−1)W
O (13)

where

headi = softmax(
QiK

T
i√
d

)Vi,

Qi = E ·WQ
i ,Ki = E ·WK

i , Vi = E ·WV
i

(14)
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The terms (WQ
i , WK

i , WV
i , WO) are the learned parameter sets of the multi-

head attention layer. Then, we feed them into a LayerNorm layer.

2.7 The vector-based attention weights module

Figure 2b depicts a feature aggregation module using vector-based attention
weights methods. The vector-based attention was proposed in Chen et al. [3]
for sentence embedding and in Wu et al. [27] for text-independent speaker ver-
ification. Such attention provides a vectorial attention weight for each feature
sequence estimated by algorithm, collecting more discriminative information.

Here, we ignore the frame index t. Given the output feature vector
f lstm ∈ Rn from mhsa-block after the LSTM branch and the output fea-
ture vector fgru ∈ Rn from mhsa-block after the GRU branch, the two
feature vectors are f lstm =

[
f lstm
1 , f lstm

2 , · · · , f lstm
i , · · · , f lstm

n

]
and fgru =[

fgru
1 , fgru

2 , · · · , fgru
i , · · · , fgru

n

]
, respectively. The input vector of vector-

based attention methods is defined as hi =

[
f lstm
i

fgru
i

]
. The corresponding

attention weight ai =
[
ωi1, ..., ωij , ..., ωim

]
for each element of the vector can

be computed as:
ai = τ(W2f(W1hi + b1) + b2)

T (15)

where W1 ∈ Rd×2 and W2 ∈ R2×d are weight matrices, b1 ∈ Rd and b2 ∈ R2

are bias items, d = 16 is a hyper-parameter, m = 2 is the total number of
used RNN categories, f(·) is a non-linear activation function, e.g. ReLU. The
softmax function ensures that the sum of all elements is 1 in the weight vector
ai. Each element ωij of the vector ai is the attention weight for the element
of the hi. The final enhanced feature vector is formulated as follows:

f =
[
f1, ..., fi, ..., fn

]
(16)

where fi = ωi1f
lstm
i + ωi2f

gru
i . Then, we feed them into a LayerNorm layer.

3 Experiments

3.1 Datasets

3.1.1 Synthetic VAD datasets

To evaluate the effectiveness of the proposed methods, we resort to the
AISHELL-1 corpus set by Bu et al. [1]. We choose it because it is open
and available. 340 speakers’ data is employed for training (120098 utterances,
340 hours). Test set contains 7176 utterances from 20 speakers. The corpus is
sampled at 16 kHz with 16 bit quantization. For all the datasets, to produce the
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frame-level ground truth personal VAD labels used in training and evaluation,
we run forced alignment with a pretrained speech recognition model.

To generate noisy speech for evaluating the robustness of the proposed
algorithm, white noise, babble noise, factory1 noise, factory2 noise, and pink
noise from Noisex-92 in Varga and Steeneken [23] are added to the clean
speech. a total of 25 different conditions are considered: 5 types of noise with
5 signal-to-noise ratio (SNR) each (-10, -5, 0, 5, and 10 dB). To make the
train set, we randomly select 30000 utterances from the AISHELL-1 training
set. There is a noisy condition of random selection for each utterance in
training. To make the test set, we use the whole AISHELL-1 testing set (7176
utterances) and consider that the test incorporates the type of noise (f16 and
leopard) that is absent in the train set.

3.1.2 Kaggle VAD datasets

Kaggle VAD datasets (kaggle-speech) in lazyrac00n [14] collect 719 audio from
three different databases (TIMIT, PTDB-TUG and Noizeus). one of those
creates an annotation file which write, in a txt format, where the silent and
sounding intervals are in the signal. Noise signal (from AURORA database)
is artificially added to the speech signal, in particular the database contains
audio corrupted with babble (crowd of preople), street, train, train station,
car and restaurant noise at SNRs of 5dB, and the original ones. To make the
train set, we randomly select 519 utterances. To make the test set, we select
the remaining 200 utterances.

3.1.3 AVA-speech datasets

AVA-Speech is a publicly available dataset of movies densely labeled with
speech activity in Chaudhuri et al. [2]. At time of writing, AVA-Speech
consisted of 160 segments from movies hosted on YouTube, each 15 minutes in
duration, totalling 40 hours of labelled data. The segments are densely labelled
for speech activity using the following mutually exclusive labels: “NoSpeech”,
“CleanSpeech”, “Speech+Music” and “Speech+Noise”. We select 39 segments
from it and make 3988 utterances ranging from 3s to 15s. To make the train
set, we randomly select 3188 utterances. To make the test set, we select the
remaining 800 utterances.

3.2 Experimental setup

In order to train the models, 6 epochs were utilized for the synthetic VAD
datasets, while 100 epochs were allocated for both the Kaggle VAD datasets and
AVA-speech datasets. The model is trained with Adam optimizer in Kingma
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and Ba [13] and a learning rate of 0.00005, using an effective batch size of 16.
We use a LSTM or GRU network with 160 cells, followed by a fully-connected
layer with 160 neurons.

To evaluate the performance of the proposed approach, we calculated
the Average Precision (AP) in Zhu [30] for each class and the mean Average
Precision (mAP) over all the classes.

4 Results

With an input frame x and the corresponding ground truth label y ∈ {ns, s},
The VAD task can be thought of as a binary classification problem. The
network outputs the unnormalized distribution of x over the two classes,
denoted as z = fVAD(x). We use zk to denote the unnormalized probability of
the k-th class. To train the model, we minimize the cross entropy loss as:

LCE(y, z) = − log
exp(zy)∑
k exp(z

k)
(17)

where k ∈ {ns, s}.
Results of the first six different methods for synthetic VAD datasets are

listed in Table 2. It suggest that each of the components contribute to overall
performance, with hybrid attention mechanism and feature aggregation based
on scalar weights yielding the largest performance boost. The proposed model
in Figure 1f shows decent performance for white and babble noises, which are
present in the train set. A similar result for comparably f16 scenario, which
is absent in the train set, displays the robustness of the proposed algorithm.
The proposed method in Figure 1f outperforms the other methods for all the
noisy conditions, except the leopard.

This states the benefit of this approach. It is further evident that our
model, which combines a CRNN embedder before the hybrid attention encoder
and applies the feature aggregation based on scalar weights, gains even better
results. The parameter of the proposed model is 389K which is much smaller
than 440K of the algorithm with two-layer LSTM structures in Figure 1b, with
better performance (Table 2). This suggests that the proposed model is robust
enough to maintain the performance in a harsh environment while lessening
the parameter size.

In Table 3, the results for synthetic VAD datasets prove the strength
of the proposed model, which merges a CRNN embedder before the mhsa
block and employs the feature aggregation based on vector-based attention
weights, with similar or better performance. We show that the fusion of
mhsa-block and vector-based attention weights outperforms methods based
solely on mhsa-block. Figure 6 further confirms this conclusion.



14 Tan and Ding

Table 2: Comparison results of the first six proposed algorithm in white, babble, f16 and
leopard noises with different SNRs. We report the Average Precision (AP) for each class,
and the mean Average Precision (mAP) over all the classes.

Noise scenario Figure 1a Figure 1b Figure 1c
Noise SNR ns s mean ns s mean ns s mean

white

-10 0.7861 0.9244 0.8959 0.7897 0.9258 0.9023 0.8026 0.9264 0.9058
-5 0.8296 0.9340 0.9149 0.8121 0.9306 0.9101 0.8319 0.9315 0.9155
0 0.8455 0.9373 0.9218 0.8251 0.9324 0.9141 0.8465 0.9341 0.9202
5 0.8535 0.9386 0.9245 0.8366 0.9329 0.9171 0.8530 0.9351 0.9224
10 0.8590 0.9391 0.9264 0.8431 0.9330 0.9183 0.8575 0.9359 0.9244

babble

-10 0.6874 0.8964 0.8650 0.6754 0.8932 0.8594 0.6637 0.8767 0.8486
-5 0.7408 0.9137 0.8852 0.7200 0.9089 0.8777 0.7248 0.9046 0.8762
0 0.7945 0.9264 0.9027 0.7730 0.9227 0.8966 0.7829 0.9220 0.8981
5 0.8286 0.9329 0.9129 0.8140 0.9309 0.9097 0.8226 0.9301 0.9109
10 0.8463 0.9361 0.9182 0.8376 0.9340 0.9172 0.8429 0.9337 0.9166

f16

-10 0.5655 0.8180 0.7870 0.6512 0.8834 0.8467 0.5614 0.7960 0.7700
-5 0.6608 0.8896 0.8543 0.6983 0.9048 0.8693 0.6445 0.8748 0.8362
0 0.7450 0.9189 0.8876 0.7610 0.9215 0.8900 0.7355 0.9139 0.8772
5 0.7869 0.9283 0.9026 0.8085 0.9300 0.9050 0.7828 0.9250 0.8951
10 0.8137 0.9323 0.9119 0.8328 0.9330 0.9151 0.8091 0.9292 0.9076

leopard

-10 0.5288 0.7982 0.7618 0.6778 0.8921 0.8447 0.5987 0.8959 0.8417
-5 0.5694 0.8369 0.7934 0.7207 0.9067 0.8599 0.7002 0.9152 0.8611
0 0.6407 0.8788 0.8297 0.7655 0.9187 0.8749 0.7677 0.9242 0.8708
5 0.7197 0.9123 0.8599 0.8075 0.9282 0.8908 0.8029 0.9286 0.8756
10 0.7669 0.9258 0.8727 0.8356 0.9332 0.9050 0.8243 0.9315 0.8787

network parameters 233906 439618 233988
Noise scenario Figure 1d Figure 1e Figure 1f

Noise SNR ns s mean ns s mean ns s mean

white

-10 0.7974 0.9297 0.9076 0.7869 0.9271 0.9035 0.8188 0.9353 0.9140
-5 0.8315 0.9358 0.9185 0.8240 0.9333 0.9156 0.8419 0.9406 0.9225
0 0.8485 0.9377 0.9232 0.8439 0.9358 0.9210 0.8527 0.9426 0.9247
5 0.8570 0.9384 0.9261 0.8542 0.9368 0.9241 0.8595 0.9432 0.9247
10 0.8625 0.9388 0.9279 0.8594 0.9374 0.9258 0.8649 0.9434 0.9285

babble

-10 0.6639 0.8767 0.8477 0.6747 0.8837 0.8550 0.7033 0.9062 0.8703
-5 0.7225 0.9049 0.8759 0.7278 0.9064 0.8774 0.7758 0.9246 0.8968
0 0.7844 0.9234 0.9000 0.7831 0.9229 0.8980 0.8238 0.9346 0.9149
5 0.8248 0.9319 0.9139 0.8213 0.9314 0.9114 0.8479 0.9397 0.9236
10 0.8450 0.9355 0.9210 0.8414 0.9348 0.9179 0.8604 0.9419 0.9281

f16

-10 0.5243 0.8161 0.7733 0.6091 0.8305 0.7977 0.6965 0.8951 0.8606
-5 0.6202 0.8891 0.8464 0.6755 0.8885 0.8464 0.7724 0.9246 0.8942
0 0.7012 0.9187 0.8834 0.7501 0.9191 0.8784 0.8247 0.9375 0.9135
5 0.7469 0.9282 0.9014 0.7987 0.9296 0.8970 0.8510 0.9423 0.9210
10 0.7844 0.9321 0.9095 0.8215 0.9326 0.9104 0.8649 0.9436 0.9244

leopard

-10 0.5636 0.8573 0.8087 0.6362 0.8911 0.8384 0.5622 0.82550 0.7813
-5 0.5750 0.8796 0.8269 0.6688 0.9096 0.8548 0.6078 0.8657 0.8155
0 0.6301 0.9030 0.8482 0.7029 0.9201 0.8650 0.6746 0.8988 0.8452
5 0.7086 0.9209 0.8662 0.7325 0.9253 0.8708 0.7445 0.9196 0.8653
10 0.7607 0.9296 0.8758 0.7571 0.9278 0.8741 0.7958 0.9304 0.8768

network parameters 233924 234006 388986

Figure 7 shows the receiver operating characteristic (ROC) curves for
all systems tested on kaggle-speech. We see that the Figure 2b systems we
propose outperform the CNN-biLSTM VAD in Wilkinson and Niesler [25]
and the MARBLENET VAD in Jia et al. [10] across all operating points.
When threshold=0.5, the CNN-biLSTM VAD, the MARBLENET VAD, and
the Figure 2b method obtain accuracy rates of 91.49%, 91.56% and 90.99%,



Heterogeneous Convolutional Recurrent Neural Network 15

Table 3: Comparison results of the last two proposed algorithm in white, babble, f16 and
leopard noises with different SNRs. We report the Average Precision (AP) for each class,
and the mean Average Precision (mAP) over all the classes.

Noise scenario Figure 2a Figure 2b
Noise SNR ns s mean ns s mean

white

-10 0.8623 0.9381 0.9310 0.8696 0.9405 0.9313
-5 0.8792 0.9422 0.9380 0.8841 0.9450 0.9397
0 0.8865 0.9438 0.9414 0.8904 0.9469 0.9437
5 0.8892 0.9441 0.9428 0.8927 0.9474 0.9454
10 0.8896 0.9436 0.9432 0.8932 0.9473 0.9461

babble

-10 0.7957 0.9148 0.9056 0.7953 0.9163 0.9034
-5 0.8199 0.9254 0.9159 0.8268 0.9299 0.9180
0 0.8467 0.9347 0.9263 0.8563 0.9395 0.9300
5 0.8682 0.9403 0.9339 0.8754 0.9444 0.9373
10 0.8811 0.9429 0.9387 0.8849 0.9465 0.9411

f16

-10 0.7792 0.9099 0.8919 0.8112 0.9254 0.9120
-5 0.8022 0.9234 0.9061 0.8418 0.9361 0.9232
0 0.8383 0.9350 0.9208 0.8655 0.9422 0.9311
5 0.8673 0.9406 0.9310 0.8789 0.9452 0.9363
10 0.8810 0.9425 0.9371 0.8864 0.9467 0.9403

leopard

-10 0.6922 0.8862 0.8703 0.7548 0.9100 0.8720
-5 0.7100 0.8966 0.8779 0.7693 0.9187 0.8786
0 0.7404 0.9102 0.8887 0.7871 0.9267 0.8849
5 0.7806 0.9230 0.8989 0.8072 0.9332 0.8906
10 0.8197 0.9318 0.9056 0.8259 0.9375 0.8958

network parameters 363186 647108
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Figure 6: Average mAP curves of four noises (white, babble, f16, and leopard) under different
SNRs for VAD systems tested on synthetic VAD datasets.
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Figure 7: ROC curves for VADs tested on kaggle-speech.
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ROC curves for VAD systems tested on ava-speech

cnn-bilstm (AUC = 0.9361, model size = 178K)
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Figure 8: ROC curves for VADs tested on ava-speech.

respectively. The feature scales of the CNN-biLSTM VAD and the Figure 2b
method are the same. Figure 8 shows the receiver operating characteristic
(ROC) curves for all systems tested on ava-speech. We also see that the
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Figure 2b systems we propose outperform the CNN-biLSTM VAD and the
MARBLENET VAD across all operating points. When threshold=0.5, the
CNN-biLSTM VAD, the MARBLENET VAD, and the Figure 2b method
obtain accuracy rates of 86.03%, 84.21% and 86.65%, respectively.

5 Conclusions

In this paper, we propose a heterogeneous CRNN network framework with
attention mechanism and feature aggregation for voice activity detection, which
introduces hybrid attention block (ha-block) or multi-head self-attention (mhsa)
block into the rear of LSTM layer in the network architecture. The attention
module can improve representation power of CRNN networks. In the ha-block,
we apply attention-based feature refinement with two distinctive modules,
channel and spatial, and achieve considerable performance improvement while
keeping the overhead small. In the mhsa-block, it is applied on the frame-wise
embedding sequence to gain contextual information. Finally, a novel feature
aggregation method has been implemented based on scalar weights or vector-
based attention weights. It can extract more robust embeddings from the
CRNN network structure.

We evaluate the proposed method with the baseline CRNN system. Ex-
periments conducted on synthetic VAD datasets, kaggle VAD datasets and
AVA-speech datasets. The mean Average Precision (mAP) and receiver operat-
ing characteristic (ROC) curves demonstrate the effectiveness of the proposed
method. The algorithm with mhsa modules and feature aggregation based
on vector-based attention weights achieves the best mAP, on average. In the
future, we plan to incorporate the new attention mechanism and feature ag-
gregation methods into more CRNN-based network architectures and evaluate
the effect of different configurations.
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