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ABSTRACT

The cascade of 2D geometric transformations were exploited to
model relations between entities in a knowledge graph (KG), lead-
ing to an effective KG embedding (KGE) model, CompoundE.
Inspired by the recent trend in KGE designs that leverage mul-
tiple transformation from SO(3) instead of SE(2), we leverage
3D compound geometric transformations, including translation,
rotation, scaling, reflection, and shear and propose a family of
KGE models, named CompoundE3D, in this work. CompoundE3D
allows multiple design variants to match rich underlying charac-
teristics of a KG. We propose a beam search-based algorithm to
locate the near-optimal embedding scoring function designs for
different datasets in the vast search space resulted from different
combinations of operator components. Since each variant has its
own advantages on a subset of relations, an ensemble of multiple
variants can yield superior performance. The effectiveness and
flexibility of CompoundE3D are experimentally verified on four
popular link prediction datasets.
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1 Introduction

Knowledge graphs (KGs) find rich applications in knowledge management and
discovery [74, 45, 75], recommendation systems [56, 81], fraud detection [76, 82],
chatbots [27, 1], etc. KGs are directed relational graphs. They are formed by a
collection of triples in form of (h, r, t), where h, r, and t denote head, relation,
and tail, respectively. Heads and tails are called entities and represented
by nodes while relations are links in KGs. KGs are often incomplete. One
critical task in knowledge graph (KG) management is “missing link prediction”.
Knowledge graph embedding (KGE) methods have received a lot of attention
in recent years due to their effectiveness in missing link prediction. According
to [23], many KGs such as DBpedia [2], YAGO [50], Freebase [4], NELL [8],
Wikidata [55], and ConceptNet [49] have been created and made publicly
available for KGE model development and evaluation.

One family of KGE models builds a high-dimensional embedding space,
where each entity is a vector. The relation is modeled by a certain geometric
manipulation such as translation and rotation. To evaluate the likelihood of
a candidate triple, the geometric manipulation associated with the relation
is applied to the head entity and then the distance between the manipulated
head and the tail is measured. The shorter the distance, the higher likelihood
of the triple. To this end, these KGE models are called distance-based KGEs.
Examples of distance-based KGEs include TransE [5], RotatE [51], and PairRE
[10]. Each of them uses a single geometric transformation to represent relations
between entities. Specifically, translation, rotation, and scaling operations are
adopted by TransE, RotatE, and PairRE, respectively.

The above-mentioned KGE models achieve reasonably good performance
in link prediction with only a single geometric transformation. The cascade
of multiple 2D geometric transformations offers a powerful tool in image ma-
nipulation [43]. This idea was exploited to develop a new KGE model, called
CompoundE, in [20]. TransE, RotatE and PairRE are all degenerate cases of
CompoundE. Thus, CompoundE outperforms them in link prediction perfor-
mance. CompoundE unifies translation, rotation, and scaling operations under
one common framework. It has several mathematically provable properties
that facilitate the modeling of different complex relation types in KGE. The
effectiveness of these composite operators has been successfully demonstrated
through extensive experiments and applications in downstream tasks such as
entity typing and multihop query answering in [20]. Furthermore, a few recent
KGEs [19, 70, 40] leverage SO(3) rotations rather than SO(2) rotations. SO(3)
rotations enable the KGEs to better encode non-commutative relations than
RotatE which uses SO(2) rotations, achieving more effective parameterization
and endowing a model with greater modeling power.

Inspired by prior success, we wonder whether it would be beneficial to look
for compound geometric transformations in the 3D space in the KGE model
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design. Here, we extend the CompoundE work in [20] along three directions.
First, we include more affine operations beyond translation, rotation, and
scaling such as reflection and shear. Second, we extend these geometric
transformations from the 2D space to the 3D space and propose a family of
KGE models, CompoundE3D. Third, CompoundE3D allows multiple design
variants to match rich underlying characteristics of a KG. Since each variant
has its own advantages on a subset of relations, an ensemble of multiple
variants can yield superior performance. The effectiveness of CompoundE3D
is experimentally verified on four popular link prediction datasets.

It is worthwhile to emphasize that we enhance CompoundE by addressing
two critical issues. First, compound operations lead to numerous model
variants, and it is unclear how to determine a scoring function that performs
the best for a given dataset. Here, we propose an adapted beam search
algorithm that builds more complex scoring functions from simple but effective
ones gradually. Second, although ensemble learning is a popular strategy,
it remains under-explored when it comes to building KGE models. In this
work, we explore two ensemble strategies that potentially boost link prediction
performance and allow different CompoundE3D variants to work together
and complement each other. First, we implement a weighted sum of different
scoring functions for link prediction. Second, we apply unsupervised rank
aggregation functions to unify rank predictions from individual model variants.
Both strategies help boost the ranking of valid candidate entities and reduce
the impact of outliers.

The major contributions of this work are summarized below.

• We examine affine operations in the 3D space, instead of the 2D space,
to allow more versatile relation representations. Besides translation,
rotation, and scaling used in CompoundE, we include reflection and
shear transformations which allow an even larger design space.

• We propose an adapted beam search algorithm to discover better model
variants. Such a procedure avoids unnecessary exploration of poor
variants but zooms into more effective ones to strike a good balance
between model complexity and prediction performance.

• We analyze the properties of each operation and its advantage in modeling
different relations. Our analysis is backed by empirical results on four
datasets.

• To reduce errors of an individual model variant and boost the overall link
prediction performance, we aggregate decisions from different variants
with two approaches; namely, the sum of weighted distances and rank
fusion.
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The rest of this paper is organized as follows. A brief review of related
work is provided in Section 2. The design methodology of CompoundE3D is
explained and the decision ensemble of multiple model variants is elaborated in
Section 3. Experimental results and performance benchmarking with previous
work are presented in Section 4. Finally, concluding remarks and future
research directions are given in Section 5.

2 Related Work

2.1 Knowledge Graph Embedding (KGE) Models

A large number of distance-based KGE models are derived by treating relations
as certain transformations. They are briefly reviewed below.

2.1.1 2D Geometric Transformations

Quite a few KGE models are inspired by 2D geometric transformations such
as translation, rotation, and scaling in the 2D plane. TransE [5] models the
relation as a translation between head and tail entities. This simple model is
not able to model symmetric relations effectively. RotatE [51] treats relations as
certain rotations in the complex space, which works well for symmetric relations.
Furthermore, RotatE introduces a self-adversarial negative sampling loss that
improves distance-based KGE model performance significantly. PairRE [10]
models relations with the scaling operation to allow variable margins. This
is helpful in encoding complex relations. The unitary constraint on entity
embedding in PairRE is also effective in practice. CompoundE [20] adopts
compound geometric transformations, including translation, rotation, and
scaling, to model different relations. It offers a superior KGE model without
increasing the overall complexity much.

2.1.2 High-dimensional Transformations

NagE [70] introduces generic group theory to the design of KGE models and
gives a generic recipe for their construction. QuatE [78] extends the KGE
design to the Quaternion space which enables more compact interactions
between entities and relations while introducing more degree of freedom. To
model non-commutativeness in relation composition more effectively, both
RotatE3D [19] and DensE [40] leverage quaternion rotations but in different
forms. ROTH [9] adopts the hyperbolic curvature to capture the hierarchical
structure in KGs. On the other hand, it is questioned in [57] whether the
introduction of hyperbolic geometry in KGE is necessary.
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2.2 Classification-based Models

Another family of models is built by classifying an unseen triple into “valid”
(or positive) and “invalid” (or negative) two classes and then using the soft
decision to measure the likelihood of the triple.

2.2.1 Neural Models

A multilayer perceptron (MLP) network [18] is used to measure the likelihood
of unseen triples for link prediction. The neural tensor network (NTN) [47]
adopts a bilinear tensor neural layer to model interactions between entities
and relations of triples. ConvE [15] stacks head entities and relations, reshapes
them to 2D arrays, and uses the convolutional neural network (CNN) to
extract the information from them. The resulting feature map interacts with
tail entities through dot products. R-GCN [46] uses the graph convolutional
network (GCN) with relation-specific weights to obtain entity representations,
which are subsequently fed to DistMult [68] for link prediction. Despite its
potential of handling the inductive setting, its performance is not on par with
the embedding based approach.

2.2.2 Advanced Neural Networks

KG-BERT [72] uses the pretrained language model, BERT [16], to obtain
the entity representation from textual descriptions (rather than from KG
links). However, its inference time is much longer compared to embedding-
based models. SimKGC [58] improves transformer-based classification methods
by constructing contrastive pairs. It uses BERT to estimate the semantic
similarity and treats triples of higher similarity score as positive sample pairs,
and vice versa. However, its performance is sensitive to the language model
quality, and its required computational resource is high. Assuming entities
textual descriptions, KEPLER [60] uses pretrained transformers to extract
textual embeddings as initialization for entity embeddings. It then uses TransE
embedding as a decoder to perform link prediction. Other more advanced
KGE can be potentially applied in KEPLER to improve the KG completion
performance.

2.2.3 Lightweight Classification Model

KGBoost [63] proposes a novel negative sampling scheme, and uses the XG-
Boost [11] classifier for link prediction. Inspired by the Discriminant Feature
Learning (DFT) [71, 34] that extracts most discriminative features from trained
embeddings, GreenKGC [62] is a lightweight and modularized classification
method that trains a binary classifier to classify unseen triples.
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2.3 Advanced Relation Modeling

Special techniques have been developed to model complex relations. For
example, to model relations such as 1-to-N, N-to-1, and N-to-N effectively,
TransH [64] projects the embedded entity space into relation-specific hyper-
planes. TransR [38] learns a relation-specific projection that maps entity
vectors to a certain relation space. TransD [29] derives dynamic mapping
based on relation and entity projection vectors. TranSparse [30] enforces the
relation projection matrix to be sparse. Recently, many KGE models including
X+AT [69], SFBR [37], and STaR [35] apply translation and scaling operations
to both distance-based and semantic-matching-based [59] models to improve
the performance gain. The inclusion of translation is proven to be effective
in improving KGEs in the Quaternion space such as DualE [7], BiQUE [25].
ReflectE [77] models each relation as a normal vector of a hyper-plane that
reflects entity vectors. It can be used to model symmetric and inverse relations
well. So far, the cascade of various affine operations is a natural yet unexplored
idea to pursue.

2.4 Model Ensembles

Although ensemble learning is a prevailing strategy in machine learning, it
remains under-explored for knowledge graph completion. Link prediction
evaluation is essentially a ranking problem. It is desired to optimize an ensemble
decision so that valid triples get ranked higher than invalid ones among all
candidates. Rank aggregation is a classical problem in information retrieval.
Both supervised methods [6, 11] and unsupervised methods [33, 14] have been
studied. Since the ground truth ranking in KG’s link prediction is not available
(except the top-1 triple), the unsupervised setting is more relevant. Yet, the use
of rank aggregation to boost link prediction performance has received limited
attention. Several examples are given below. KEnS [12] performs ensemble
inference to combine predictions from multiple language-based KGEs for
multilingual knowledge graph completion. AutoSF [79] develops an algorithm
to search for the best scoring functions from multiple semantic matching
models. The ensemble of multiple identical low-dimensional KGE models is
adopted in [66] to boost the link prediction performance. Recently, DuEL
[31] treats link prediction as a classification problem and aggregates binary
decisions from several different classifiers using unsupervised techniques.
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3 Proposed Method

3.1 CompoundE3D

In this work, we use 3D affine transformations, including Translation, Scaling,
Rotation, Reflection, and Shear as illustrated in Figure 1, to model different
relations in KGs. This large set of transformation operators offer immense
flexibility in the KGE design against different characteristics of KG datasets.
Below, we formally define each of the 3D affine operators in homogeneous
coordinates.

(a) Translation (b) Scaling (c) Rotation

(d) Reflection (e) Shear (f) Compound

Figure 1: Composing different geometric operations in the 3D subspace.

3.1.1 Translation

Component T ∈ SE(3), illustrated by Figure 1a, is defined as

T =


1 0 0 vx
0 1 0 vy
0 0 1 vz
0 0 0 1

 , (1)
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3.1.2 Scaling

Component S ∈ Aff(3), illustrated by Figure 1b, is defined as

S =


sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

 , (2)

3.1.3 Rotation

Component R ∈ SO(3), illustrated by Figure 1c, is defined as

R = Rz(α)Ry(β)Rx(γ) =


a b c 0
d e f 0
g h i 0
0 0 0 1

 , (3)

where
a = cos(α) cos(β),

b = cos(α) sin(β) sin(γ)− sin(α) cos(γ),

c = cos(α) sin(β) cos(γ) + sin(α) sin(γ),

d = sin(α) cos(β),

e = sin(α) sin(β) sin(γ) + cos(α) cos(γ),

f = sin(α) sin(β) cos(γ)− cos(α) sin(γ),

g = − sin(β),

h = cos(β) sin(γ),

i = cos(β) cos(γ).

(4)

This general 3D rotation operator is the result of compounding yaw, pitch,
and roll rotations. They are, respectively, defined as

• Yaw rotation component:

Rz(α) =


cos(α) − sin(α) 0 0
sin(α) cos(α) 0 0

0 0 1 0
0 0 0 1

 , (5)

• Pitch rotation component:

Ry(β) =


cos(β) 0 − sin(β) 0

0 1 0 0
sin(β) 0 cos(β) 0

0 0 0 1

 , (6)
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• Roll rotation component:

Rx(γ) =


1 0 0 0
0 cos(γ) − sin(γ) 0
0 sin(γ) cos(γ) 0
0 0 0 1

 . (7)

3.1.4 Reflection

Component F ∈ SO(3), illustrated by Figure 1d, is defined as

F =


1− 2n2

x −2nxny −2nxnz 0
−2nxny 1− 2n2

y −2nynz 0
−2nxnz −2nynz 1− 2n2

z 0
0 0 0 1

 . (8)

The above expression is derive from the Householder reflection, F = I− 2nnT.
In the 3D space, n is a 3-D unit vector that is perpendicular to the reflecting
hyper-plane, n = [nx, ny, nz].

3.1.5 Shear

Component H ∈ Aff(3), illustrated by Figure 1e, is defined as

H = HyzHxzHxy =


1 Shy

x Shz
x 0

Shx
y 1 Shz

y 0
Shx

z Shy
z 1 0

0 0 0 1

 . (9)

The shear operator is the result of compounding 3 operators: Hyz, Hxz, and
Hxy They are mathematically defined as

Hyz =


1 0 0 0

Shx
y 1 0 0

Shx
z 0 1 0

0 0 0 1

 , (10)

Hxz =


1 Shy

x 0 0
0 1 0 0
0 Shy

z 1 0
0 0 0 1

 , (11)

Hxy =


1 0 Shz

x 0
0 1 Shz

y 0
0 0 1 0
0 0 0 1

 . (12)
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Matrix Hyz has a physical meaning - the shear transformation that shifts
the y- and z- components by a factor of the x component. Similar physical
interpretations are applied to Hxz and Hxy.

The above transformations can be cascaded to yield a compound operator;
e.g.,

O = T · S ·R · F ·H, (13)

In the actual implementation, we use the operator’s representation in regular
Cartesian coordinate instead of the homogeneous coordinate. Furthermore,
a high-dimensional relation operator can be represented as a block diagonal
matrix in the form of

Mr = diag(Or,1,Or,2, . . . ,Or,n), (14)

where Or,i is the compound operator at the i-th stage.
We can define the following three scoring functions for CompoundE3D:

• CompoundE3D-Head

f (h)
r (h, t) = ∥Mr · h− t∥, (15)

• CompoundE3D-Tail

f (t)
r (h, t) = ∥h− M̂r · t∥, (16)

• CompoundE3D-Complete

f (h,t)
r (h, t) = ∥Mr · h− M̂r · t∥, (17)

where h and t denote head and tail entity embeddings, and Mr and M̂r

denote the relation-specific operators that operate on head and tail entities,
respectively.

Generally speaking, we have five different affine operations available to use,
i.e. translation, scaling, rotation, reflection, and shear. Each operator can be
applied to 1) head entity, 2) tail entity, or 3) both head and tail. Hence, we
have in total 15 different ways of applying operators at each stage. All these
possible choices are called CompoundE3D variants. For a given KG dataset,
there is a huge search space in finding the optimal CompoundE3D variant. It
is essential to develop a simple yet effective mechanism to find a variant that
gives the best performance under a certain complexity constraint.

3.2 Beam Search for Best CompoundE3D Variant

Since each affine operator can be viewed as a component in designing the
new KGE, different order of combination of operators can lead to large design
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space of factorial complexity. There is a need to find the highly performant
embedding design quickly without resorting to exhaustive search. In this
subsection, we present a beam search algorithm to locate the close to optimal
CompoundE3D variant. For the i-th stage, the set of all operator pairs that
can be applied at a certain step is

P ∈ {(T, I), (S, I), (R, I), (F, I), (H, I),

(I, T̂), (I, Ŝ), (I, R̂), (I, F̂), (I, Ĥ),

(T, T̂), (S, Ŝ), (R, R̂), (F, F̂), (H, Ĥ)},
(18)

where I is the identity operator. First, we apply all operator pairs in P
and calculate scoring functions for all intermediate variants. Each variant
is optimized with l iterations using the training set and its performance is
evaluated on the validation dataset. Then, we choose the top-k best-performing
variants as starting points for further exploration in the next step. The same
process is repeated until one of terminating conditions is triggered. Afterward,
we proceed to the (i+1)-th stage. The whole search is completed after the final
stage is reached. The total number of stages is a user selected hyper-parameter.

The beam search process in building more complex KGE models from
simpler ones is described in Algorithm 1. Additional comments are given
below.

• We initialize the algorithm by setting up a loop to iterate over the set,
P, of all possible operator combinations to train and evaluate them and
find the top-k variants as starting points.

• In the next loop, we have two stopping criteria to terminate the beam
search: 1) # operators > λ, meaning that we stop the search when the
number of operators exceeds the upper bound λ; 2) ∆MRR

∆Param < γ, meaning
that the ratio of increase in MRR versus the increase in free parameters
fall below the threshold γ, and it is no longer worthwhile to increase the
model complexity for the marginal gain in model performance.

• P×W denotes the Cartesian product between the operator pairs set P
and top-k variants set W from the last step while ḟ i−1

r (h, t)◁ (Mi, M̂i)
denotes applying the operator pair (Mi, M̂i) to previous optimal scoring
function ḟ i−1

r (h, t).

• For example, if ḟ i−1
r (h, t) = ∥R · h− t∥ and (Mi, M̂i) = (S, Ŝ), then

f̃ i
r(h, t) = ∥S ·R · h− Ŝ · t∥.

• After the loop terminates due to any terminating condition is triggered,
we select the top-1 performing variant from the explored variants set,
W, as the best choice.
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Algorithm 1 Beam Search for Best CompoundE3D Variant

initialize i← 1,U← {}
for (Mi, M̂i) ∈ P do
f̃ i
r(h, t)← ∥Mi · h− M̂i · t∥;

train f̃r(h, t) for l iterations;
MRR ← evaluate f̃ i

r(h, t) with valid set;
U.insert({MRR, f̃ i

r(h, t)});
end for
W← top-k variants from U
i← i+ 1
∆MRR← γ, ∆Param← 1
while # operators ≤ λ and max ∆MRR

∆Param ≥ γ do
initialize V← {}
for {(Mi, M̂i), ḟ i−1

r (h, t)} ∈ P×W do
f̃ i
r(h, t)← ḟ i−1

r (h, t)◁ (Mi, M̂i);
train f̃ i

r(h, t) for l iterations;
evaluate f̃ i

r(h, t) with valid set;
∆MRR ← f̃ i

r(h, t) MRR−ḟ i−1
r (h, t) MRR;

∆Param ← f̃ i
r(h, t) Param−ḟ i−1

r (h, t) Param;
V.insert(MRR, ∆MRR, ∆Param, f̃ i

r(h, t));
end for
W← top-k variants from V;

end while
f∗
r (h, t)← best variant from W;

3.3 Model Ensembles

Figure 2 illustrates two main KGE ensembles methods that we experiment
with CompoundE3D, namely rank fusion and weight distance sum.

3.3.1 Weighted-Distances-Sum (WDS) Strategy

We choose the top-k performing CompoundE3D variants and conduct a
weighted average of their predicted scores. The following three weighting
schemes are considered.

• Uniform Weights. This scheme takes an equal weight of selected k
variants as

f̂r(h, t) =
1

k

k∑
i=1

f i
r(h, t), (19)

where f i
r(h, t) is the scoring function for the i-th variant.
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Figure 2: The ensemble of multiple CompoundE3D variants.

• Geometric Weights. This scheme sorts the variants based on their
MRR performance on the validation dataset in a descending order and
assign weight λk, 0 < λ < 1, to the k-th variant. That is,

f̂r(h, t) =
1∑k

i=1 λ
k

k∑
i=1

λkf i
r(h, t). (20)

Since λk > λk+1, we assign a higher weight to a better performer in
computing the aggregated distance.

• Learnable Weights. This scheme trains a set of learnable weights,
wi > 0, based on the training dataset to minimize the following weighted
score:

f̂r(h, t) =
1∑k

i=1 wi

k∑
i=1

wif
i
r(h, t). (21)
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The learnable weights are implemented as parameters in the optimization
process under the same learning rate and the optimizer in finding the
best variants.

For each relation, we compare the three weight schemes and choose the
one that offers the best performance.

3.3.2 Rank Fusion Strategy

Link prediction is a list ranking problem. Rank fusion can be exploited to
boost the performance. A few simple rank fusion methods can be applied to
score-based KGE methods. For example, we can take the maximum, minimum,
median, sum, and L2 distance of candidates’ ranks. They are denoted by
CombMAX, CombMIN, CombMEDIAN, CombSUM, and Euclidean in Table
1, respectively. Three advanced rank fusion methods are also considered and
included in the table. They are: Borda Count [53], Reciprocal Rank Fusion
(RRF) [14], and RBC (Rank Biased Centroid) [3]. Borda Count awards points
to candidates based on their positions in an individual preference list, where
the top candidate gets the most points and the last candidate gets the least
points. RRF aggregates the reciprocal rank to discount the importance of
lower-ranked candidates. The factor k in the table mitigates the impact of high
rankings by outliers. RBC discounts the weights of lower-ranked candidates
using a geometric distribution. The mathematical formulas of all rank fusion
functions are given in the second column of Table 1, where Ri is the rank of
the i-th base model (or variant), 1 ≤ i ≤ n, e ∈ E represents an entity in the
entity set, and k and ϕ are hyper-parameters.

3.4 Optimization

By following RotatE’s negative sampling loss and the self-adversarial training
strategy, we choose the following loss function of CompoundE3D

LKGE = − log σ(ζ1 − fr(h, t)) (22)

−
n∑

i=1

p(h′
i, r, t

′
i) log σ(fr(h

′
i, t

′
i)− ζ1),

where σ is the sigmoid function, ζ1 is a preset margin hyper-parameter, (h′
i, r, t

′
i)

is the i-th negative triple, and p(h′
i, r, t

′
i) is the probability of drawing negative

triple (h′
i, r, t

′
i). Given a positive triple, (hi, r, ti), the negative sampling

distribution is

p(h′
j , r, t

′
j |{(hi, r, ti)}) =

expα1fr(h
′
j , t

′
j)∑

i expα1fr(h′
i, t

′
i)
, (23)

where α1 is the temperature in the softmax function.
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Table 1: A list of rank fusion functions under consideration.

Name Function
CombMAX max{R1(e), · · · , Rn(e)}
CombMIN min{R1(e), · · · , Rn(e)}

CombMEDIAN median{R1(e), · · · , Rn(e)}

CombSUM
n∑

i=1

Ri(e)

Euclidean
√
R1(e)2 + · · ·+Rn(e)2

Borda Count
n∑

i=1

|E| −Ri(e) + 1

|E|

RRF [14]
n∑

i=1

1

k +Ri(e)

RBC [3]
n∑

i=1

(1− ϕ)ϕRi(e)−1

4 Experiments

4.1 Experimental Setup

4.1.1 Datasets

We evaluate the link prediction performance of CompoundE3D and compare
it with several benchmarking methods on the following four KG datasets.

• DB100K [17]. It is a subset of the DBpedia KG. The dataset contains
information related to music content such as genre, band, and musical
artisits. It is a relatively dense KG since each entity appears in at least
20 different relations.

• YAGO3-10 [41]. It is a subset of YAGO3, which describes citizenship,
gender, and profession of people. YGGO3-10 contains entities associated
with at least 10 different relations.

• WN18RR [5, 15]. It is a subset of the WordNet lexical database. The
inverse relation is removed from WN18RR to avoid test leakage.

• Ogbl-Wikikg2 [28]. It is extracted from Wikipedia. It contains 2.5M
entities and is the largest one among the four selected datasets.

The statistics of the four KG datasets are given in Table 2.
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Table 2: Statistics of four link prediction datasets.

Dataset #Entities #Relations #Training #Validation #Test Ave. Degree
DB100K 99,604 470 597,572 50,000 50,000 12

ogbl-wikikg2 2,500,604 535 16,109,182 429,456 598,543 12.2
YAGO3-10 123,182 37 1,079,040 5,000 5,000 9.6
WN18RR 40,943 11 86,835 3,034 3,134 2.19

4.1.2 Evaluation Protocol

The commonly used evaluation protocol for the link prediction task is explained
below. For every triple (h, r, t) in the test set, we corrupt either the head
entity h or tail entity t to generate test examples (?, r, t) and (h, r, ?). Then,
for every head candidate that forms triple (ĥ, r, t) and tail candidate that
forms triple (h, r, t̂), we compute distance-based scoring functions fr(ĥ, t) and
fr(h, t̂), respectively. The lower score value indicates that the generated triple
is more likely to be true. Then, we sort scores of all candidate triples in
ascending order and locate the rank of the ground truth triple. Furthermore,
we evaluate the link prediction performance under the filtered rank setting [5]
that gives salience to unseen triple predictions since embedding models tend
to give observed triples better ranks. We adopt the Hits@k and the mean
reciprocal rank (MRR) as evaluation metrics to compare the quality of KGE
models.

4.1.3 Hyper-parameter Search

We perform an extensive search on six hyper-parameters of CompoundE3D
with respect to different KG datasets. They are: 1) the dimension of the
embedding space (Dim), 2) the learning rate (lr), 3) the batch size (B), 4)
the negative sample size (N), 5) the margin hyper-parameter (ζ), and 6) the
sampling temperature (α). Their search values are listed in Table 3.

In the search process, we first compute scoring functions with a certain
hyper-parameter setting that allows a few variants to have decent performance,
where the number of training iterations for each variant is set to l = 30000.
After locating the optimal variant, we finetune hyper-parameters under the
optimal variant. The optimal configurations are shown in Table 4. The Adam
optimizer [32] is employed for all parameter tuning. For ensemble experiments,
we adopt the same optimal configuration for each base variant model.

4.1.4 Other Implementation Details

We run experiments and perform hyper-parameter tuning on a variety of
GPUs, including Nvidia P100 (16G), V100 (32G), A100 (40G) and A40
(48G), depending on the GPU memory requirement of a job. Typically, we



Knowledge Graph Embedding with 3D Compound Geometric Transformations 17

T
ab

le
3:

T
he

se
ar

ch
sp

ac
e

of
si

x
hy

pe
r-

pa
ra

m
et

er
s.

D
at

as
et

D
B

10
0K

og
b
l-
w

ik
ik

g2
Y

A
G

O
3-

10
W

N
18

R
R

D
im

{1
50

,3
00

,4
50

,6
00
}

{9
0,
15

0
,1
80

,2
40

,3
00
}

{4
50

,6
0
0
,7
5
0
,9
0
0
}

{1
8
0
,2
4
0
,3
6
0
,4
8
0
,6
0
0
}

lr
{2

,3
,4
,5
,6
,7
,8
,9
}
×

10
−
5
{0

.0
00

5,
0
.0
01

,0
.0
05

,0
.0
1
}

{3
,4
,5
,6
,7
}
×

1
0
−
4

{4
,5
,6
,7
,8
}
×

1
0−

4

B
{2

56
,5
12

,1
02

4,
20

48
}

{2
04

8,
40

96
,8
19

2}
{5

12
,1
02

4,
2
0
4
8,
4
0
9
6}

{5
1
2
,1
0
2
4
,2
0
4
8,
4
0
9
6}

N
{2

56
,5
12

,1
02

4,
20

48
}

{1
25

,2
50

,5
00
}

{2
56

,5
12

,1
0
2
4
,2
0
4
8}

{2
5
6
,5
12

,1
0
2
4,
2
0
4
8}

ζ
{4
,5
,6
,7
,8
,9
,1
0
,1
1
,1
2
,1
3
}

{5
,6
,7
,8
,9
}

{1
1
,1
2,
1
3
,1
3.
1,
1
3
.3
,1
3
.5
}

{5
,6
,7
,8
,9
}

α
{0

.5
,0
.7
,0
.9
,1
.0
,1
.2
}

{0
.5
,1
.0
}

{0
.8
,0
.9
,1
.0
,1
.1
,1
.2
}

{0
.5
,0
.7
,0
.9
,1
.0
,1
.2
}



18 Ge et al.

Table 4: Optimal configurations for link prediction tasks, where B and N denote the batch
size and the negative sample size, respectively.

Dataset CompoundE3D Variant #Dim lr B N ζ α

DB100K ∥S · h− T̂ · R̂ · Ŝ · t∥ 600 0.00005 1024 512 9 1
ogbl-wikikg2 ∥T · h− Ĥ · t∥ 300 0.001 8192 125 8 1
YAGO3-10 ∥T · S ·R · h− t∥ 600 0.0005 1024 1024 13.3 1.1
WN18RR ∥R · S ·T · h− t∥ 480 0.00005 512 256 6 1

request 8 CPU cores with less than 70G RAM for each job. Results of each
optimal configuration in Table 4 can be reproduced on one single V100 for all
datasets. For the WN18RR dataset, we adopt the rotation implementation
from Rotate3D [19].

4.2 Experimental Results

4.2.1 Performance Evalution

We compare the link prediction performance of a few benchmarking KGE
methods with that of CompoundE3D using the optimal configuration given in
Table 4. The performance benchmarking results for DB100K, ogbl-wikikg2,
and YAGO3-10 datasets are shown, respectively, in Table 5, Table 6, and

Table 5: Comparison of the link prediction performance under the filtered rank setting for
DB100k.

Datasets DB100K
Model MRR H@1 H@3 H@10

TransE [5] 0.111 0.016 0.164 0.27
DistMult [68] 0.233 0.115 0.301 0.448

HolE [42] 0.26 0.182 0.309 0.411
ComplEx [52] 0.242 0.126 0.312 0.44
Analogy [39] 0.252 0.142 0.323 0.427
RUGE [26] 0.246 0.129 0.325 0.433

ComplEx-NNE+AER [17] 0.306 0.244 0.334 0.418
SEEK [67] 0.338 0.268 0.37 0.467

AcrE (Parallel) [44] 0.413 0.314 0.472 0.588
PairRE [10] 0.412 0.309 0.472 0.600

TransSHER [36] 0.431 0.345 0.476 0.589
CompoundE [20] 0.405 0.306 0.461 0.588
CompoundE3D 0.450 0.373 0.488 0.594

CompoundE3D RRF 0.457 0.376 0.497 0.607
CompoundE3D WDS 0.462 0.378 0.506 0.616
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Table 6: Comparison of the link prediction performance under the filtered rank setting for
ogbl-wikikg2.

Datasets ogbl-wikikg2

Metrics Dim Valid Test
MRR MRR

AutoSF+NodePiece 100 0.5806 0.5703
ComplEx-N3-RP 100 0.6701 0.6481

TransE [5] 500 0.4272 0.4256
DistMult [68] 500 0.3506 0.3729
ComplEx [52] 250 0.3759 0.4027
RotatE [51] 250 0.4353 0.4353

Rotate3D [19] 100 0.5685 0.5568
PairRE [10] 200 0.5423 0.5208

TripleRE [73] 200 0.6045 0.5794
CompoundE [22] 100 0.6704 0.6515

CompoundE3D
90 0.6994 0.6826
180 0.7146 0.6962
300 0.7175 0.7006

Table 7: Comparison of the link prediction performance under the filtered rank setting for
YAGO3-10.

Datasets YAGO3-10
Metrics MRR Hit@1 Hit@3 Hit@10

DistMult [68] 0.34 0.24 0.38 0.54
ComplEx [52] 0.36 0.26 0.4 0.55
DihEdral [65] 0.472 0.381 0.523 0.643
ConvE [15] 0.44 0.35 0.49 0.62
RotatE [51] 0.495 0.402 0.55 0.67

InteractE [54] 0.541 0.462 - 0.687
HAKE [80] 0.545 0.462 0.596 0.694
DensE [40] 0.541 0.465 0.585 0.678

Rot-Pro [48] 0.542 0.443 0.596 0.699
CompoundE [20] 0.477 0.376 0.538 0.664
CompoundE3D 0.542 0.450 0.602 0.701

CompoundE3D RRF 0.541 0.446 0.607 0.707
CompoundE3D WDS 0.551 0.463 0.608 0.703

Table 7. In particular, rows with bold model names are experimental results
from this paper and results from other models are obtained from other papers.
The best and the second-best results in each column are indicated by the
boldface font and with an underline respectively. CompoundE3D has significant
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performance improvement over CompoundE and other recent models. We see
a clear advantage of CompoundE3D by including more affine operators and
extending affine transformations from 2D to 3D in the new framework,

To verify the effectiveness of model ensembles, we examine two different
ensemble strategies for DB100K and YAGO3-10 datasets.

• For the DB100K dataset, we select the best two performing variants.
They are ∥S · h− R̂ · Ŝ · t∥ and ∥S · h− T̂ · R̂ · Ŝ · t∥

• For the YAGO3-10 dataset, we select the best three performing variants.
They are ∥T · S ·R · h− t∥, ∥S ·R ·T · h− t∥, and ∥S ·T ·R · h− t∥.

4.2.2 Model Ensembles

As discussed in Section 3.3, we have two strategies to conduct model ensembles:
weighted-distances-sum (WDS) and rank fusion. Among the three WDS strate-
gies, the learnable weight strategy is the most effective one for DB100K while
the uniform weight performs the best for YAGO3-10. We use CompoundE3D
WDS to denote the best WDS scheme in Tables 5 and 7 and document the
performance of other weighting strategies in Table 8. Among all eight rank
fusion strategies, we observe that reciprocal rank fusion (RRF) is the most
effective one for both DB100K and YAGO3-10. Thus, we use CompoundE3D
RRF to denote the best rank fusion scheme in Tables 5 and 7, and document
the performance of other rank fusion strategies in Table 9. Overall, the WDS
strategy has a slight advantage over the best performing rank fusion strategy
RRF. There are differences between WDS and RRF strategy. WDS aggregates
the distance scores from each sub-models in the ensemble and then makes the
ranking decision. In the RRF strategy, the individual model first ranks relevant
entities based on the distance score, and then reranks the entities by using a
rank aggregation function. The WDS strategy requires more memory to be
optimized on a single GPU. If without model sharding, the GPU memory can
be a bottleneck for including more models to further boosting the ensemble
performance. For RRF, although each sub-model can be trained on a single
GPU in parallel, the rank aggregation computation has a long runtime.

Table 8: Comparison of different weighted-distances-sum (WDS) strategies for DB100K and
YAGO3-10.

Datasets DB100K YAGO3-10
Strategies MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

Learnable Weights 0.462 0.378 0.506 0.616 0.545 0.451 0.586 0.696
Uniform Weights 0.460 0.376 0.503 0.614 0.551 0.463 0.608 0.703

Geometric Weights 0.446 0.348 0.503 0.618 0.531 0.439 0.580 0.691
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Table 9: Performance comparison of different rank fusion methods for DB100K and YAGO3-
10.

Datasets DB100K YAGO3-10
Aggregation Function MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

CombMAX 0.455 0.375 0.496 0.603 0.536 0.440 0.600 0.701
CombMIN 0.452 0.369 0.496 0.606 0.527 0.427 0.597 0.702

CombMEDIAN 0.456 0.376 0.497 0.606 0.541 0.445 0.605 0.705
CombSUM 0.456 0.376 0.497 0.606 0.540 0.446 0.606 0.704
Euclidean 0.455 0.375 0.496 0.605 0.540 0.445 0.603 0.702

Borda 0.456 0.376 0.497 0.606 0.540 0.446 0.606 0.704
RRF 0.457 0.376 0.497 0.607 0.541 0.446 0.607 0.707
RBC 0.456 0.376 0.497 0.606 0.540 0.445 0.604 0.703

4.2.3 Effectiveness of Beam Search

We conduct ablation studies on DB100K and YAGO3-10 datasets to shed light
on the effects of different transformation operators on model performance.
We begin with the variant of the simplest configuration and add additional
operators at each stage. Good simple models that lead to optimal variants and
their performance numbers are reported in Tables 10 and 11. Furthermore,
we visualize the distribution of the MRR performance as more operators are
added with respect to DB100K and YAGO-3 in Figures 3a and 3b, respectively.
To interpret box plots, yellow bar represents the median, box represents the
interquantile range, two end-bars denote the lower and upper whiskers, and
lastly dots are outliers. They both show the effectiveness of the proposed beam
search algorithm.

Table 10: Ablation study on CompoundE3D for DB100K.

Datasets DB100K
Variant MRR Hit@1 Hit@3 Hit@10

∥S · h− Ŝ · t∥ 0.417 0.323 0.471 0.590
∥S · h− R̂ · Ŝ · t∥ 0.447 0.364 0.492 0.600
∥S · h− T̂ · R̂ · Ŝ · t∥ 0.450 0.373 0.488 0.594

Table 11: Ablation study on CompoundE3D for YAGO3-10.

Datasets YAGO3-10
Metrics MRR Hit@1 Hit@3 Hit@10
∥R · h− t∥ 0.496 0.402 0.547 0.676
∥S ·R · h− t∥ 0.501 0.404 0.554 0.680
∥T · S ·R · h− t∥ 0.542 0.450 0.602 0.701
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(a) DB100K (b) YAGO3-10

Figure 3: The distribution of the MRR performance versus the operator number of various
model variants for DB100K and YAGO3-10 dataset.

Figure 4: Effects of rotation and reflection operators on symmetric relations.

4.2.4 Modeling of Symmetric Relations

Rotation and reflection are isometric operations. As stated in [51, 77], their 2D
versions can handle symmetric relations well in some cases. It is our conjecture
that the same property holds for their corresponding 3D operators. To check
it, we perform ablation studies and evaluate the base scoring functions of those
with only translation and scaling versus those with rotation and reflection
as well. The MRR performance numbers of different model variants for
symmetric and asymmetric relations in DB100K are compared in Figure 4. In
this figure, we choose the most frequently observed relation types for meaningful
comparison. As expected, rotation and reflection operators indeed bring more
significant performance improvement on symmetric relations than asymmetric
relations. This supports our conjecture that rotation and reflection operators
are intrinsically advantageous for the modeling of symmetric relations.
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4.2.5 Modeling of Multiplicity

Multiplicity is the scenario where multiple relations co-exist between two
entities; namely, triples (h, r1, t), . . . , (h, rn, t) hold simultaneously. Generally,
it is challenging to model multiplicity in traditional KGE models due to their
limited power in relational modeling. In contrast, CompoundE3D is capable of
modeling multiplicity relation patterns well since it can use multiple distinct
sets of transformations that map from the head to the tail. We present two
examples to illustrate CompoundE3D’s capability in modeling multiplicity
relations in Figure 5. They are taken from the actual link prediction examples
in DB100K. There are three different relations held for a fixed (head, tail) pair.
The top three tail predictions for each relation in the two examples are shown
in the figure. We see that CompoundE3D can handle multiplicity well due to
its rich set of variants.

Figure 5: Illustration of CompoundE3D’s capability in multiplicity modeling.



24 Ge et al.

4.2.6 Modeling of Hierarchical Relations

We would like to investigate CompoundE3D’s capability in modeling hierarchi-
cal relations. WN18RR offers a representative dataset containing hierarchical
relations. Two metrics can be used to measure the hierarchical behavior of
relations [9]: 1) the Krackhardt score denoted by KhsGr

, and 2) the curvature
estimate denoted by ξGr

. If relation r has a high KhsGr
score and a low

ξGr score, then it has a stronger hierarchical behavior, and vice versa. We
compare the filtered MRR performance of different baseline models, such as
TransE, RotatE, CompoundE (2D version), and CompoundE3D in Table 12.
In the same table, we also list the KhsGr

and ξGr
values for each relation to

see whether it has a stronger hierarchical behavior. We see from the table
that CompoundE and CompoundE3D have better performance than TransE
and RotatE in almost all relations. Furthermore, CompoundE3D outperforms
CompoundE in all hierarchical relations except “member meronym”. This
result indicates that CompoundE3D can model hierarchical relations more
effectively than CompoundE by including more diverse 3D transformations.

Table 12: Comparison of filtered MRR performance on each relation type of WN18RR.

Relations Types KhsGr ξGr TransE RotatE CompoundE CompoundE3D
similar to 1-to-1 0.07 -1.00 0.294 1.000 1.000 1.000
verb group 1-to-1 0.07 -0.50 0.363 0.961 0.974 0.898

member meronym 1-to-N 1.00 -0.50 0.179 0.259 0.254 0.246
has part 1-to-N 1.00 -1.43 0.117 0.200 0.200 0.202

member of domain usage 1-to-N 1.00 -0.74 0.113 0.297 0.309 0.378
member of domain region 1-to-N 1.00 -0.78 0.114 0.217 0.401 0.413

hypernym N-to-1 1.00 -2.64 0.059 0.156 0.179 0.182
instance hypernym N-to-1 1.00 -0.82 0.289 0.322 0.351 0.356

synset domain topic of N-to-1 0.99 -0.69 0.149 0.339 0.382 0.396
also see N-to-N 0.36 -2.09 0.227 0.625 0.629 0.622

derivationally related form N-to-N 0.07 -3.84 0.440 0.957 0.956 0.959

4.2.7 Model Efficiency

It is important to investigate the relationship between the model performance
and the model dimension. The model dimension reflects memory and com-
putational complexities. To illustrate the advantage of CompoundE3D over
prior models across a wide range of embedding dimensions, we plot the MRR
performance of link prediction on the Wikikg2 dataset in Figure 6, where the
dimension values are set to 12, 24, 48, 102, 150, 198, 252, and 300. We see
from the figure that CompoundE3D consistently outperforms all benchmarking
models in all dimensions. Furthermore, we analyze the complexity of different
KGE models in terms of the number of free parameters. Table 13 compares
the number of free parameters of different KGE models for the ogbl-wikikg2
dataset. In addition, we compared the wall clock time for completing the
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Figure 6: Comparing different model’s MRR performance metric across different dimensions.

Table 13: Complexity comparison of KGE models on ogbl-wikikg2 under a similar testing
MRR.

Models No. of Parameters Wall Clock Time
TransE [5] 1,251M -
DistMult [68] 1,251M -
ComplEx [52] 1,251M -
ComplEx-RP [13] 250.1M -
RotatE [51] 500M -
RotatE3D [19] 750.4M -
PairRE [10] 500M -
CompoundE [20] 250.1M 8 hrs 48 mins
CompoundE3D 225.2M 7 hrs 4 mins

training and inference experiments under the same hardware setting for Com-
poundE and CompoundE3D using the optimal configuration. CompoundE3D
reduces the total runtime by 19.7%. This runtime reduction is largely due to
the simplier formulation of the CompoundE3D scoring function.

We refer to the ogbl-wikikg2 leaderboard when reporting the number of
free parameters used by baseline models. The reported number of parameters
for CompoundE3D is when the embedding dimension is set to 90. As shown
in Figure 6 and Table 13, CompoundE3D offers the best performance among
all benchmarking models while having the smallest number of free parameters.
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5 Conclusion and Future Work

A novel and effective KGE model based on composite affine transformations
in the 3D space, named CompoundE3D, was proposed in this work. A beam
search procedure was devised to build a desired KGE from the simplest config-
uration to more complicated ones. The ensemble of the top-k model variants
was also explored to further boost link prediction performance. Extensive
experimental results were provided to demonstrate the superior performance
of CompoundE3D. We conducted ablation studies to assess the effect of each
operator and performed case studies to shed light on the modeling power
of CompoundE3D for several relation types such as multiplicity, symmetric
relations, and hierarchical relations.

As to future research directions, it will be interesting to explore the effec-
tiveness of CompoundE3D in other important KG problems such as entity
typing [24, 61] and entity alignment [21]. Besides, research on performance
boosting in low-dimensional embedding space is valuable in practical real-world
applications and worth further investigation.

Large Language Models (LLMs) have demonstrated impressive capability
in different NLP applications and become the state-of-the-art model in many
tasks. We believe the LLM can still benefit from incorporating knowledge graph
embedding methods such as retrieval augmented generation (RAG). To achieve
that, it is essential to combine KG embedding methods with text representation
learning approaches. We are confident that our work can contribute to and be
integrated into future research developments in this area. Furthermore, today’s
LLMs are based on generative pre-trained transformers (GPTs). They are
challenged by their hallucination, reliability, huge computational complexity,
and lack of incremental learning capabilities. To tackle these deficiencies, an
alternative approach could be the decomposition of a generic LLM to several
smaller domain-specific mid-size language models (MLM) that have a “multi-
modal interface” to handle textual or visual input/output and a “knowledge
core” implemented by knowledge graphs (KGs) for knowledge representation,
data mining, and incremental learning. Such a modular design could improve
the interpretability, reliability, computational complexity, and incremental
capability of next-generation MLMs with justifiable and logical reasoning.
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