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ABSTRACT

Subspace partitioning plays a fundamental role in the design of
effective classification methods. A novel subspace learning machine
(SLM) was recently proposed. It projects feature vectors into a
1D feature subspace and partitions it into two disjoint sets. To
effectively generalize the SLM method to high-dimensional feature
space, SLM with soft partitioning, denoted by SLM/SP, is proposed
in this work. By incorporating the Soft Decision Tree (SDT)
data structure for decision learning, the SLM/SP begins with the
adaptive learning of a tree structure using local greedy subspace
partitioning. Once the tree structure is finalized, all parameters
are globally updated. To apply SLM/SP to image classification
tasks, we propose modulated designs for the topology of the SDT
and a novel module for efficient local representation learning in
the subspace learning diagram. The SLM/SP methodology offers
efficient training, high classification accuracy, and small model
size, underscored by experimental results on image classification
benchmarks.
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1 Introduction

Image classification has seen significant advancements with the advent of
machine learning (ML) and pattern recognition (PR). It has recently relied
primarily on end-to-end optimization with a predefined model architecture in
the deep learning (DL) paradigm, and traditional PR and ML approaches have
been largely overlooked. However, these traditional methods have the potential
to offer interpretable and efficient solutions for image classification tasks. We
consider this learning paradigm and focus on a novel learning diagram design
for image classification from the vantage point of high-dimensional feature
space partitioning.

One of the critical limitations of traditional PR and ML methods is the lack
of effective feature space partitioning. The classification work can be done in a
single stage, such as the support vector machine (SVM), or multi-stages, such
as the decision tree (DT) and multilayer perceptron (MLP). The model is much
more efficient when utilizing multi-stage feature space partitioning, such as DT.
At the same time, DT uses a single feature for decision-making at each node,
which can lead to suboptimal performance. The recent subspace learning
machine (SLM) [10, 11, 12] adopts the DT architecture while combining
multiple features and outputs a new variable for decision-making at each
node. SLM can be viewed as a generalized DT. The linear combination of
multiple features can be written as the inner product of a projection vector
and a feature vector. The effectiveness of SLM depends on selecting suitable
projection vectors for effective feature space partitioning. Two projection
vector selection methods were studied in Fu et al. [11], namely, probabilistic
search and optimization-based search. SLM and DT apply a hard split to a
feature using a threshold at a decision node. The effectiveness of SLM was
demonstrated on datasets with feature dimensions up to 34D.

For tasks with higher dimensional feature spaces, SLM with hard split loses
efficiency due to the exponentially increasing training complexity as a function
of the feature dimension. We propose a novel SLM method that adopts soft
partitioning, denoted as SLM/SP, to address the limitation. Our motivation
is to develop a more efficient and effective feature space partitioning to handle
high-dimensional feature spaces. We aim to leverage the strengths of SLM and
soft decision trees (SDT) to create a more powerful and flexible framework for
image classification.

This paper presents the SLM/SP method and demonstrates its effectiveness
in image classification tasks. SLM/SP adopts the soft decision tree (SDT) data
structure, and a novel topology is proposed with (i) inner nodes of SDT for data
routing, (ii) leaf nodes of SDT for local decision-making, and (iii) edges between
parent and child nodes in the SLM/SP tree for representation learning. Specific
modules are designed for the nodes and edges, respectively. The training of an
SLM/SP tree starts by learning an adaptive tree structure via local greedy
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exploration between subspace partitioning and feature subspace learning. The
tree structure is finalized once all leaf nodes’ stopping criteria are met and
all module parameters are updated globally. The proposed SLM/SP learning
diagram design includes topology, data structure, and specific modules for
classification-oriented feature learning and decision-making.

To apply SLM/SP to image classification tasks, we assign specific operations
for the nodes and edges of the SDT topology and propose modulated designs
for the adaptive learning of the whole SLM/SP model architecture. More
specifically, we assign sample routing operation for the inner node, feature
transformation operation for the edge, and local distribution estimation for
the leaf nodes. For each operation in the SLM/SP model, we propose specific
efficient modules for the SLM/SP model. For the SLM/SP image classification
framework, the SLM/SP tree can serve as a joint feature-decision learning
model or a pure decision learning model. For the joint feature-decision learning
diagram of SLM/SP, we propose a novel subspace learning augmented block
(SLAB) design as an efficient local representation learning module for the
feature transformation operation on the edges of the SLM/SP tree.

The application of SLM/SP to image classification tasks enables efficient
training, high classification accuracy, and trim model size. It is shown by
experimental results that an SLM/SP tree for image classification offers a
lightweight and high-performance classification solution.

The contributions of this work are summarized below.

e We propose a novel, efficient, and effective image classification framework
based on SLM.

e We generalize SLM from hard-partitioning to soft-partitioning and pro-
pose a novel SLM/SP learning diagram for classification.

e We propose a modularized design and adaptive topology for SLM /SP
and a novel module SLAB for efficient local representation learning in
the SLM/SP learning diagram.

o We demonstrate the efficiency and effectiveness of SLM/SP in image
classification with model size, FLOPs, and accuracy with several bench-
marking datasets for both pure decision learning and joint feature learning
and decision learning paradigms.

The rest of this paper is organized as follows. Background information
is reviewed in Section 2. The SLM/SP method is proposed in Section 3.
The application of SLM/SP to image classification is discussed in Section 4.
Experimental results show the excellent tradeoff between effectiveness and
efficiency of SLM/SP in Section 5. Finally, concluding remarks and future
extensions are given in Section 6.
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2 Background Review

The proposed SLM /SP method follows the work of SLM, which targets an inter-
pretable, computationally efficient, and small-size learning model following the
traditional ML paradigm. SLM is an early work in green learning [22], in which
we aim to develop green solutions to machine learning problems in contrast to
deep learning. SLM is a supervised decision-learning module with a lightweight
model and achieves effective classification and regression performance on low-
dimensional data. To generalize the SLM to high-dimensional data and push
the performance of green learning on image classification, we learn from soft
decision tree and the state-of-the-art efficient image classification methods
to propose SLM/SP image classification method as a green learning solution
with lightweight model size and FLOPs, and performance comparable to deep
learning. In this section, we introduce the DL and traditional ML-based image
classification, green learning, subspace learning machine, and soft decision
tree in the following sections, respectively. We discuss more details on the
efficient image classification methods in Section 4.2 when introducing efficient
representation learning and SLAB.

2.1 Deep Learning and traditional ML for Image Classification

Image classification methods can be generally categorized into DL and tra-
ditional ML methods. Traditional ML techniques comprise two sequential
modules: 1) extraction of features from images and 2) classification based on
these extracted features. In contrast, DL techniques perform feature extraction
and classification concurrently within a single module. Convolutional neural
network (CNN) models marked the inception of DL like AlexNet [21], VGG
[38], GoogLeNet [40] and ResNet [13] have demonstrated remarkable accuracy
levels. A significant advancement in this field is the Vision Transformer (ViT)
model [9], which currently provides unparalleled performance on several image
classification benchmark datasets. The success of DL techniques can be at-
tributed to factors such as the availability of extensive training datasets, ample
computational resources, end-to-end optimization, neural architecture search,
and the implementation of large models such as transformers. However, DL
techniques are hindered by their lack of interpretability, high computational
expenses, and complex model structures. This research proposes an inter-
pretable, computationally efficient, and compact learning model by adhering
to the conventional ML paradigm.

2.2 Green Learning

Learning from the DL methods and traditional methods, green learning (GL)
was proposed to address several concerns associated with DL, such as the
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substantial carbon footprints produced by large DL networks in recent years.
GL-based models are characterized by their low-carbon footprints, small
model sizes, low computational complexity, and logical transparency. GL has
been successfully applied to a wide range of applications. Examples include
point cloud classification, segmentation and registration [46, 47|, fake image
detection [2, 3, 52, 53, 54|, image generation [1, 28, 29, 51], blind image quality
assessment [34], disease classification [32], face gender classification [36], and
object tracking [48, 49, 50].

GL for image classification comprises three sequential modules: 1) unsuper-
vised representation learning, 2) supervised feature learning, and 3) supervised
decision learning. Modules 1 and 2 collectively correspond to the feature
extraction module in the classical PR paradigm. However, there is a significant
distinction: Modules 1 and 2 in GL are automated, whereas feature extraction
in PR is conducted ad hoc. Automatic feature extraction is achieved by unsu-
pervised representation learning, such as the Subspace Approximation with
Adjusted Bias (Saab) transform [23]. The Saab transform is a joint spatial-
spectral transform that decomposes a local patch into a DC (direct current)
component and several AC (alternating current) components. The AC filters
are derived from principal component analysis (PCA). Typically, multi-stage
Saab transforms are applied. They are used to build several GL-based image
classification methods, including Pixelhop [4], Pixelhop++ [5], and IPhop [44].
The Saab coefficients in various stages offer new representations for patches
of different receptive fields. They are used as feature candidates. Note that
Saab coeflicients are not handcrafted since they are obtained automatically
by exploiting the correlation of pixels in a local neighborhood. Besides, no
supervision labels are used to derive the Saab transform. The dimension of
the representation space is usually huge. It is essential to reduce its dimension
using a supervised learning method. A supervised feature learning method,
the discriminant feature test (DFT), was proposed in Y. Yang et al. [45].
The multi-stage Saab transforms and DFT serve as modules 1 and 2 of a GL
system, respectively. The features extracted with modules 1 and 2 are usually
called the successive subspace learning (SSL) features [4, 5, 44].

2.3 Subspace Learning

Subspace learning is a powerful framework for data representation, widely
used in various fields such as computer vision, machine learning, and signal
processing. The core idea of subspace learning is to represent high-dimensional
data in a lower-dimensional subspace, where the underlying structure of the
data can be more easily identified and analyzed. In this section, we provide an
overview of prominent techniques in the subspace learning paradigm, namely
sparse representation and low-rank representation, and then compare and
highlight the unique contributions of our SLM method.
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Sparse representation is a technique that approximates a signal as a linear
combination of a few basis vectors from a dictionary [35]. This approach has
been employed to model the underlying structure of data, where each data
point is represented as a sparse linear combination of atoms from a dictionary.
The sparse representation of the data can be utilized as a feature vector for
further analysis. The efficacy of sparse representation has been demonstrated,
particularly when combined with other techniques such as dictionary learning
[33].

Low-rank representation is another technique that has been applied to
image classification [31]. This approach represents a set of data points as a
low-rank matrix, where the rank of the matrix is smaller than the number of
data points. Low-rank representation can be employed to model the underlying
structure of data and is effective in tasks such as data denoising and feature
extraction. Specifically, low-rank representation has been utilized to model
the correlation between different data points and to identify the underlying
patterns and structures in the data.

To offer an efficient and effective supervised decision learning module for GL,
SLM is presented in Fu et al. [10, 11, 12]. Given a set of discriminant features
as the input, SLM is used to output a probability vector of all possible image
classes. SLM takes a tree structure, utilizes a subspace partitioning process for
each node splitting and generating purer leaf nodes for final predictions. For
subspace partitioning, SLM identifies a discriminant subspace, denoted by S°,
learns optimal projection vectors from a set of candidates in S to yield the
most discriminant subspace and then find the optimal partitions that split the
subspace of a parent node into those of child nodes. The partitioning process
is recursively applied at each child node to build an SLM tree.

While sparse and low-rank representations are powerful techniques, they
differ from our SLM method in several aspects. SLM employs a feature space
partitioning idea that clusters data into subspaces. In contrast, sparse and
low-rank representations do not explicitly model the clustering structure of the
data. Furthermore, SLM utilizes a machine learning framework to learn the
subspace structure of the data, whereas sparse representation and low-rank
representation are typically employed as feature extraction techniques.

The training complexity of getting effective projection vectors in SLM is
high. Lowering the complexity of training is the motivation of this research.
The training complexity of SLM can be significantly reduced by replacing hard
partitioning with soft partitioning, leading to SLM /SP.

2.4 Soft Decision Tree

The generalization of SLM from hard feature space partitioning to soft parti-
tioning with the SLM/SP method is inspired by research on the soft decision
tree (SDT). The very first soft decision tree (SDT) was introduced by Suarez
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and Lutsko [39]. Research on SDT in the 90s included Jordan and Jacobs [18]
and Suarez and Lutsko [39]. The work by Suérez and Lutsko [39] examined a
specific scenario where axis-aligned features are used as the input and parent
nodes are either static distributions over classes or linear functions. A similar
idea called the hierarchical mixture of experts (HMEs) [18] was introduced
earlier. Parent nodes are linear classifiers, and the tree structure is fixed [18].
Several follow-up studies have been conducted in the last decade. A compu-
tationally efficient training method that directly optimizes hard partitioning
through differentiation with stochastic gradient estimators was investigated
by Léon and Denoyer [30]. More contemporary SDTs, such as Ioannou et al.
[16] and Laptev and Buhmann [24], have incorporated MLPs or convolutional
layers in parent nodes to enable more complex input space partitioning. An-
other direction is to combine nonlinear data transformations with DTs to
enhance model performance. For example, the neural decision forest (NDF)
[19] achieved state-of-the-art performance on the ImageNet in 2015. A similar
idea was developed by Xiao and Xu [43]|, where an MLP was used as the
root transformer. One can optimize it to minimize the loss of differentiable
information gain. However, it is essential to note that the model architectures
are predetermined and fixed in all these methods. The choice of effective
architectures is still an open question.

Architecture growth is a key facet of DTs [7] and is typically performed
greedily with a stopping criterion based on the validation set error [17, 39].
Prior research in DTs has endeavored to enhance this greedy growth strategy.
Decision jungles [37] utilize a training mechanism to merge partitioned input
spaces between different subtrees, thereby rectifying suboptimal splits caused
by the locality of optimization. Irsoy et al. [17] introduced budding trees, which
are incrementally grown and pruned based on the global optimization of existing
nodes. Recently, a novel approach called Adaptive Neural Trees (ANTs) [41]
was proposed that unites the paradigms of deep neural networks and decision
trees. ANTSs incorporate representation learning into a decision tree’s edges,
routing functions, and leaf nodes. This is achieved through a backpropagation-
based training algorithm that adaptively grows the architecture from primitive
modules, such as convolutional layers. The advantages of these neural tree
models include lightweight inference via conditional computation, hierarchical
separation of features useful to the task, and a mechanism to adapt the
architecture to the size and complexity of the training dataset.
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3 SLM Tree with Soft Partition (SLM/SP)

3.1 Owverview of SLM/SP

For SLM with Soft Partition (SLM/SP), we consider a K-class classification
problem. The input feature space X contains N samples, where each sample
has a D-dimensional feature vector. A sample is denoted by

$n:(In71"'In7d"'7In7D)T€RD, n=1---,N. (1)

The partitioning in the feature space in SLM can be expressed mathemati-
cally in the form of
aTx +b=0, (2)

where b is the bias and

a:(ala"'7a'd7"'aa/D)Ta H(I||:1, (3)
is the unit vector that points to the surface in a normal direction. It is also
called the projection vector. Then, the full space, S, is split into two half
subspaces:

S, :a’x>-b and S_: a’'x < —b. (4)

The above process can be conducted recursively to lead to a binary decision
tree that offers a hierarchical partition of the feature space. One challenge
in Eq. (4) lies in finding a good projection vector a at each intermediate (or
called inner) node so that samples of different classes are better separated.
This is related to the distribution of samples of different classes at the node.
The ultimate objective is to lower the weighted entropy of all leaf nodes.

The output of the root node contains two child nodes, denoted by S, and
S_. Hard partitioning assigns an input sample to one of the two. With soft
partitioning, its assignment is a probabilistic one. For linear soft partitioning,
the probabilities of going to S; and S_ are

pi(z)=c(a’x+b), and p_(z) =1—c(a’x +b), (5)

where o is the sigmoid logistic function, respectively. The dimension of x
determines the complexity of each soft partitioning. The soft partitioning Eq.
(5) can be generalized to any differentiable linear or nonlinear function. For
example, to achieve higher modeling capability, the linear function a”x + b
in Eq. (5) can be replaced by a simple MLP with one hidden layer. With
nonlinear activation functions such as ReLU or Leaky ReLU, an MLP can be
trained via back-propagation. This work uses a single hidden layer MLP as a
pre-processing unit for soft partitioning. Then, the probability of going to S
can be written as

pi(2) =o(a’"ReLU(a™x +b) + V). (6)
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where a and b are for the first layer and a’ and b’ are for the second layer of
the MLP. The same soft partitioning process can be repeated at child nodes
recursively. For example, we conduct soft partitioning on S; so that the
probability for an input to arrive at the (+, +)-grand-child node p4 4 (z) is
the cascaded multiplication of p4(x) at inner nodes. It is straightforward to
get the mathematical expressions for p1 4 (z), py —(x), p— +(x), and p_ _(z).
Combining SLM and soft partitioning leads to an SLM/SP tree. SLM/SP
learns the parameters in the training stage. After training, SLM/SP employs
them to assign an input sample to one of a set of partitioned subspaces with
a path probability. The generalization of the SLM/SP process to the tree
topology, the probabilistic inference of the SLM /SP trees, and the application
of the SLM/SP tree to image classification are discussed in Section 3.2, Section
3.3, and Section 4 respectively.

3.2 Design of SLM/SP Tree

In this section, we formalize the definition of SLM/SP trees, including the
topology of the SLM/SP trees, the determination of the tree structure, and
the general formulation of the parameter learning. In general, the topology
of the SLM/SP tree is the form of DT enhanced with SLM/SP, which aims
to learn the conditional distribution p(y|z) from a set of N labeled samples
denoted in Eq. (1) as training data.

The design of an SLM/SP tree consists of two main choices: 1) determining
the hierarchical tree structure, 2) determining optimal parameters (i.e., a;
and b;) at inner nodes. This section introduces the SLM/SP tree and the
respective modules and operations corresponding to the topology. Then, the
two design choices above are elaborated.

38.2.1 Topology and Operations

The SLM/SP Tree overview is shown in Figure 1. In short, the SLM/SP Tree
is characterized by a set of hierarchical partitions of input space X, a series of
transformations, and separate predictive models in the respective component
regions. For the model’s topology, we restrict it to be a binary tree, defined as
a graph with its node as either an inner node or a leaf node and is the child of
exactly one parent node, except for the root node at the top. We define the
topology T of the tree as T := {N,}, which A is the set of all nodes and
€ is the edges between them. Nodes with no children are leaf nodes Njcqf,
and all the other nodes are inner nodes Nj,ner. Every inner node ¢ C Nipper
has two child nodes, represented as left(i) and right(i). It also £ contains an
edge that connects input space X to the root node as shown in Figure 1.
For each node and edge, operations are assigned, which act upon the
allocated data samples as illustrated in Figure 1. The process begins at the
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Figure 1: The hierarchical determination of SLM/SP tree.

root, where each sample undergoes transformation and navigates through the
tree according to the assigned operation. An SLM/SP tree is constructed
based on three fundamental modules of differentiable operations.

Inner Node I: each inner node i C Njppner is assigned with an inner
module, If : X; — [0,1] C I, parameterized with 6, in which X; denotes
the representation at node i. Each inner node routes the samples from the
incoming edge to either the left or right child, we use the soft partitioning
described in Section 3.1 where the decision output from the node denotes the
probability of routing to the left child.

Edge E: each edge e C £ is assigned to one or multiple edge modules, and
each edge module EY :C E, parameterized with v, transforms samples from
the previous module and passes them to the next one.

Leaf Node L: each leaf node | C L is assigned to a leaf module, each leaf
module le) :C L, parameterized with ¢, estimates the conditional distribution
p(y|z). For classification tasks with K classes, for example, we can define (¢
as a linear classifier on the transformed feature space A}, that outputs the
distribution over classes q,lf. Each leaf node, [ has a K-D output vector, ¢,
whose kth element is equal to:

exp(¢!)
S exp(el)

where qfC is the probability of class k at the [-th leaf.

From input space X, data is passed through edges, inner nodes, and leaf
nodes. For example, in Figure 1, to reach the distribution q' at the leaf node
I =1, input X undergoes a series of transformations X — Xg’ = Eg’ (X)—
XV = BV (XY) = XY = EY(X}) and the leaf module L, yields the predicted
distribution ¢! = p®»¥(y) := L‘f(X;Z’) The probability of selecting this path
is given by (1 — I (Xg’))]f (XY), which is the cascaded multiplication of the
probability of the inner node module Ig routing right and inner node module
I? routing left.

(Ii; = k= 1a T K. (77)
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The definition of specific operations assigned to the SLM/SP tree topology,
T, can be generalized to any differentiable functions. It enables the general-
izability of the SLM/SP tree. For example, when the identity transform is
assigned to edge modules E, the topology of the SLM/SP tree is reduced to
standard binary SDT. Commonly used operations in CNNs and ViTs could
be applied to the SLM/SP tree operations to improve the model’s effective-
ness. For high-dimensional data sources (say, images), further details about
operation assignments are discussed in Section 4.

8.2.2 Hierarchical Tree Determination

The tree architecture growth process is illustrated in Figure 2. We use a greedy
search to find parameters at each node [ to decide whether there is a gain in
reducing the loss function by splitting the node or extending the node ! with an
edge. We employ a loss function that minimizes the cross-entropy at each leaf
weighted by its path probability and the target distribution. Mathematically,
the loss function at the th leaf node can be written as

N L K
Li(z) ==Y P'z,) Y Tilogq,, (8)
k=1

n=11=1

where P*(z,,) is the probability for input x,, to arrive at leaf node ¢, and qfc
is the probability distribution at leaf node £ for class k, and T} is the target
distribution of class k at node I. The target distribution T} is obtained by
putting all training samples through the tree and finding the statistics of all
classes at the node £. The loss function evaluates the discrepancy between the
predicted distribution qfc and the target distribution T,£.7 taking into account
its path probability.

Starting from the root node, one of its child nodes grows in the breadth-first
order and incrementally modifies the hierarchy of the SLM/SP tree. More
specifically, as illustrated in Figure 2, we evaluate three cases during the
process of each leaf node: 1) extend the node, 2) split the node into two child
nodes, 3) keep the child node. We use the validation dataset to evaluate the
effectiveness of the three cases with the loss in Eq. (8). That is, we fix the
previously optimized parameters and optimize the parameters of the newly
added modules, compare the validation loss improvement of the 1)extend and
2)split, and greedily select the case with the lowest validation loss. The intuition
of evaluating the three cases is to utilize the local distribution and greedily
explore the most effective option between soft feature space partitioning and
richer local representation learning. We stop the split at a particular leaf node
if there is no further validation loss improvement on the validation dataset,
which is greedily adopted during the tree growth. We also use the maximum
tree depth and the minimum sample number per node as stopping criteria.
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Figure 2: The overview of an example SLM/SP tree.

8.2.83 Module Parameters Determination

After the tree structure is finalized, we apply global optimization to update
the projection vector and the bias at inner nodes for furthermore performance
improvement. The total loss function from all leaf nodes can be written as

L(z,) = Z Z L(zn)

=1 n=1 ¢cLeafNodes

N
= - Z Z P(x,) Z T log gt (9)

n=1 ¢c€LeafNodes k

N
L

3

Since £ as well as all modules and operations assigned to the nodes and edges of
the SLM/SP tree are differentiable; we use the mini-batch stochastic gradient
descent (SGD) method to determine parameters and minimize L(x). The
global optimization of the module parameters can correct suboptimal decisions
made during the local optimization during the growth and determination of
the hierarchical tree structure, and empirically improve the generalization
error.
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3.3 Probabilistic Inference with SLM/SP Tree

The SLM/SP tree models the conditional distribution p(y|z), which is a root-
to-leaf path in the tree, with the final distribution determined by the leaf
node. Each input z,, to the SLM/SP tree stochastically traverses the tree
based on the decisions of inner node modules and undergoes a sequence of
transformations with each edge module until it reaches a leaf node where the
corresponding module predicts the label .

The inference with SLM/SP can be implemented in two schemes based on
a the tradeoff between accuracy and computation: 1) full-path inference and
2) single-path inference.

8.8.1 Full-Path Inference

The full-path inference calculates the probabilistic distributions over all leaves.
The predicted class of a single test sample, x,,, is given by

L

J(xn) = argml?xZPe(a;n)qﬁ(wn). (10)
=1

To get the global estimation of k(z,), we need to traverse the full SLM/SP
tree to estimate the probability P*(x,) for input (z,) to arrive at a leaf
node ¢, and the local probabilistic distribution ¢‘(a,,) among k classes. When
the depth of the SLM/SP tree increases, the time and memory complexity
increases exponentially and may become too high to be practical if the total
number of test samples is large.

8.8.2  Single-Path Inference

For a larger test sample size, we must simplify the multi-path inference for
higher memory- and time efficiency at the expense of lower accuracy. The
simplified scheme adopted in our experiments is the single-path inference.
That is, it greedily traverses the tree in the direction of highest confidence of
inner nodes to reach a leaf node, ¢, and then predicts its class based on the
maximum likelihood at that node, namely,

(x,) = argmkaxqi, (11)

where qf; is the probability at the leaf node ¢ for class k learned from the
training samples.
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4 Image Classification with SLM/SP

The image classification framework with the SLM/SP tree is illustrated in
Figure 3. We utilize the SSL feature as input feature space X for the proposed
SLM/SP tree image classification framework. With the topology 7 of the
SLM/SP tree, we adopt flexible designs of the tree module with different
modules for the nodes N and edges £. To evaluate the efficiency and effective-
ness of the capabilities of the SLM/SP tree, we propose two learning roles of
the SLM/SP tree in the image classification framework, i.e., 1) pure decision
learning and 2) decision learning with supervised local representation learning.
For the supervised local representation learning in 2), we propose a novel,
efficient local representation learning module named SLAB for the edges £ in
the SLM/SP tree topology 7. To evaluate the learning capability of SLM /SP
with the two learning roles, we adopt two module designs for the SLM/SP
tree, respectively.

Input Image nsupervised Representation Learnin,
32x32x3 Jusupervs pres © 9 SLM Tree with Soft Partition
ERAE 5x5 5x5
Py o Block-1 - Block-2 - Block-3 SSL Feature
|
b D e
28 x 28 x K, 10 x 10 x K l Ey
i . Inner Node
Max Pooling Max Pooling
I Edge
2
14 x 14 x K, 5x5x Ky 1x1xKy / \
Leaf Node I Node
] . ) Ly Edge T,
Feature Feature Feature By 7N
Aggregation i ion / \
* % = Leaf Node Leaf Node
DFT DFT DFT I I
‘
q
[ Dog
—
2 ( ol
Feature Learning SSL Feature r

Figure 3: Image Classification Framework with SLM/SP Tree.

In this section, we first discuss the module designs with SLM/SP as two
learning roles in Section 4.1, and then discuss the details of the proposed SLAB
module in Section 4.2.

4.1 Design of SLM/SP Modules
4.1.1  SLM/SP for Pure Decision Learning

With extracted image representations, SLM/SP can be applied to the image
classification as a pure decision-learning module. To evaluate the decision
learning capability of the SLM/SP tree, we adopt the identity function for
the edges £ in the tree for the image classification framework. The topology
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of the SLM/SP tree is then reduced to the standard binary SDT tree graph.
With certain restriction, the SLM/SP tree nodes process the fixed global
feature learned with SSL, and the goal of the tree is to model the conditional
distribution p(y|X) by soft subspace partitioning with the inner nodes I and
local conditional distribution estimation with the leaf nodes L.

We adopt MLP with two hidden layers for the inner nodes I to achieve
effective soft feature space partitioning. Then, we use linear classifiers for the
leaf nodes L for the local conditional distribution estimation. We follow the
same SLM/SP tree designs described in Section 3.1, including tree growth,
inference strategies, and stopping criterion. The SSL feature for SLM/SP
tree input X has 1D spatial dimension following [4, 5]. With SLM/SP as
pure decision learning module, we can directly compare the SLM/SP decision
learning capability with other classification methods like SVM and XGBoost
as in Section 5, and demonstrate that SLM/SP serves as efficient and effective
supervised decision learning module.

4.1.2  SLM/SP for Decision Learning with Supervised Local Representation Learning

To enhance the capability of the SLM/SP tree for image classification, SLAB is
designed for the edges £ in the tree for the image classification framework and
serves as an effective local representation learning module. With the flexibility
of the topological design of the SLM/SP tree, we adopt SLAB for edges £
instead of identity function in pure decision learning. SLAB can be stacked on
the edge of an SLM/SP tree with the extension strategy in tree growth. The
local representation learned with SLAB discriminates the samples from more
global to more local when going deeper into the SLM/SP tree. The detailed
design of SLAB is presented in Section 4.2.

Like the SLM/SP for decision learning, the inner nodes I in the SLM/SP
tree serve as a feature space soft partitioning module. The SLAB-based local
representation enables more efficient design for the inner node module, i.e., a
global average pooling layer for the input feature space and one hidden layer
MLP for sample routing. Furthermore, we adopt a global average pooling
layer before the linear classifier for the leaf node modules to fit with SLAB
edge modules.

4.2 Supervised Local Representation Learning
4.2.1 Preliminaries

For the supervised efficient local feature learning module design, preliminaries
include depth-wise separable convolutions, squeeze, and excitement blocks,
and linear feature subspace learning.
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Depth-wise Separable Convolutions. To enhance computational ef-
ficiency, depth-wise separable convolutions are utilized as a replacement for
standard convolutions. As outlined by Howard et al. [14], a convolution with
a weight tensor of dimensions k x k x M x N (where k x k represents the
kernel size, and M and N denote the number of input and output channels,
respectively) can be decomposed into two separate convolutions. The first is
a depth-wise, or channel-wise, convolution with an M-channel k x k kernel,
independently learning spatial correlations within each channel. The second
is a pointwise convolution that combines channels to generate new features.
Since combining a pointwise convolution and a k x k depth-wise convolution
significantly reduces the number of parameters and computations, incorporat-
ing depth-wise separable convolutions into basic building blocks can drastically
reduce parameters and computational costs. Our proposed SLAB employs
these separable convolutions.

Squeeze and Excitement Block. As introduced by Hu et al. [15], the
squeeze and excitement(SE) block is designed to enhance the representational
power of the feature map by enabling it to perform dynamic channel-wise
feature recalibration. The SE block takes a convolutional feature map as input,
investigates the relationship between channels, and models the interdependen-
cies between the channels of the convolutional features. Each channel in the
input feature map is squeezed into a single numeric value using global average
pooling, yielding a 1D tensor feature map. Then, two pointwise convolution
layers are applied to the feature map; the first layer performs a dimension
reduction of the input, followed by a ReLLU activation function. The second
layer performs a dimension increase, followed by a sigmoid activation function.
The output of the second layer is used to perform a channel-wise multiplication
with the original input feature map. This process allows the network to adap-
tively adjust each feature map’s importance, enhancing its representational
power. The SE block has been shown to improve performance significantly
with negligible additional computational cost.

Linear Feature Subspace Learning. For a given set of real images as
input, the features in the convolutional layers form a manifold of interest. It has
been widely assumed that these manifolds of interest in neural networks could
be embedded in low-dimensional subspaces. This implies that when we examine
all individual pixels of a deep convolutional layer, the information encoded
in those values resides in some manifold, which can be embedded into a low-
dimensional subspace. This fact can be leveraged by simply reducing a layer’s
dimension, thus reducing the dimension of the operating space. This approach
has been effectively utilized by Howard et al. [14] and has been incorporated
into efficient model designs of other networks. With the standard design of
the linear convolution and nonlinear activation setting of the dimensional
reduction embedding, an activation function such as ReLU is applied to a
particular channel that inevitably loses information. However, if we have
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numerous channels and structures in the activation manifold, there could be
redundant information that might still be preserved in other channels.

4.2.2  Subspace Learning Augmented Block (SLAB)

Inspired by the designs of depth-wise separable convolutions, squeeze and
excitement blocks, and linear feature subspace learning, we propose a novel
feature learning block named SLAB. SLAB utilizes the depth-wise separable
convolution for efficient convolution design, squeeze-and-excitement block for
enhancing the local representational power of the feature map, and linear
feature subspace learning to preserve the information on the manifold of
interest.

An overview of SLAB is illustrated in Section 4. We use the relative size
of the cubic blocks to represent the spectral dimension difference between
different feature maps. For the convolution layer design in the SLAB, we
utilize pointwise convolution for feature channel adaptation and depth-wise
convolution for channel-wise spatial information learning. In particular, with
the input of a low-dimensional manifold consisting of features of interest,
we first apply pointwise convolution to expand the spectral dimension, as
discussed in the preliminary section. More redundant information is intro-
duced to the high-dimensional feature map with channel expansion. We learn
effective nonlinear local representation without losing much information from
the manifold of interest. Then, with the high-dimensional feature map, a
depth-wise convolution follows the pointwise convolution for expressive spatial
dense feature learning capability. Afterward, the high-dimensional feature is
embedded into a low-dimensional subspace as the transformed manifold of
interest, and linear transformation is applied during the feature dimension
reduction to preserve the information in the subspace manifold of interest. For
the residual learning setting, the SLAB utilizes the low-dimensional subspace
embedding learned for residual connection, i.e., the skip residual connection is
between the input and output subspace manifold of interest.

SE block is adopted in the proposed SLAB design to enhance the local
representative power. As discussed in the preliminaries, the SE block can
improve the performance with negligible additional computational cost. To
maximize the performance improvement capability, we attach the SE block to
the high-dimensional feature map in the SLAB, after the dense spatial feature
learning step with depth-wise convolution as shown in Figure 4.

SLAB is a novel design inspired by efficient convolution designs from deep
learning. With the novel design of the pointwise and depthwise convolution
sequence, linear and nonlinear transformation combination, SE block, and
residual connection, we utilize the most efficient supervised learning for the
subspace manifold of interest, which retains the same feature dimensions as
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Figure 4: An Overview of SLAB. The low-dimensional manifold-of-interest feature space is
of dimension H x W x C, the expanded high-dimensional feature space for dense spatial and
spectral local representation learning is of dimension H x W x C’.

the input space and can be stacked with the edge extension in tree growth. In
Section 5, we demonstrate the SLM /SP with SLAB for local representation
learning with tremendous performance improvement over SLM/SP for decision
learning design in terms of efficiency and effectiveness.

5 Experiments

5.1 SLM/SP for Pure Decision Learning with SSL feature
5.1.1 FExperimental Setup

Datasets and Performance Metrics. To demonstrate the SLM /SP decision
learning capability, we conduct experiments on the four image classification
datasets: MNIST [27], Fashion-MNIST [42], CIFARI10 [20], and STL10 [6].
The experimental results in this section show the complex decision-learning
capability of the SLM/SP tree compared to SVM and XGBoost.The four
datasets are detailed as follows.

MNIST is a dataset of handwritten digits consisting of a training set of
60,000 examples and a test set of 10,000 examples. Each example is a 28x28
grayscale image of a digit representing a number from 0 to 9. The MNIST
dataset is widely used for training and testing machine learning algorithms,
particularly in computer vision. The MNIST dataset is often used to train and
evaluate machine learning models for image classification tasks, as it provides
a large, standard dataset for this purpose.

Fashion-MNIST is a dataset consisting of a training set of 60,000 examples
and a test set of 10,000 examples. Each example is a 28x28 grayscale image
associated with a label from 10 classes. Fashion-MNIST is intended to serve as
a direct drop-in replacement for the original MNIST dataset for benchmarking
machine learning algorithms, as it shares the same image size and structure.
The images in Fashion-MNIST are of higher quality and more diverse than
those in the original MNIST dataset, making it a more challenging and realistic
dataset for machine learning tasks.
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The CIFAR-10 dataset consists of 60000 32x32 color images in 10 classes,
with 6000 images per class. The dataset is divided into five training batches
and one test batch, each with 10000 images. The test batch contains exactly
1000 randomly selected images from each class. The training batches contain
the remaining images in random order, but some may have more images from
one class than another. Between them, the training batches contain exactly
5000 images from each class.

STL-10 is an image classification dataset inspired by the CIFAR-10 dataset
but with some modifications. In particular, each class has fewer labeled
training examples than in CIFAR-10. It consists of 10 classes of images, with
a total of 5,000 images in the training set and 8,000 images in the test set. It
is considered to be a more challenging and realistic dataset than some other
popular image classification datasets, such as MNIST and Fashion-MNIST,
due to the larger image size and the greater diversity of the images.

Image Classification Benchmarks. For performance benchmarking,
we consider a couple of representative GL- and DL-based image classification
methods. As mentioned earlier, GL-based methods utilize SSL feature and
have three cascaded modules: 1) unsupervised representation learning, 2)
supervised feature learning, and 3) supervised decision learning. Here, we
compare three GL-based methods:

e GL-1: pixelhop [4] for module 1 and SVM for module 3;
e GL-2: pixelhop++ [5] for module 1 and XGBoost for module 3;
e GL-3: pixelhop++ for module 1 and SLM/SP for module 3.

For GL-2, we replace the linear classifier in Chen et al. [5] with the
XGBoost Classifier, use DFT to select 2000 features for decision learning and
set the tree depth to 5 and the tree number to 1000. For GL-3, we use DFT
to select 512-D features as the input to SLM/SP and set the hidden layer
neuron number to 512 and the maximum depth of the SLM/SP tree to 5. For
CIFAR-10 and STL-10 datasets, we include VGG-16 [38] and LeNet-5 [26]
in performance benchmarking. They are representatives of heavyweight and
lightweight neural networks, respectively. We follow the standard design of
VGG-16 and the settings in Chen et al. [5] for LeNet-5. We adopt the same
hyperparameters in DL networks for CIFAR-10 and STL-10.

5.1.2 Experimental Results and Discussion

CIFAR-10. The performance comparison of five benchmarking methods for
CIFAR-10 is shown in Table 1. We can categorize them into lightweight and
heavyweight two groups based on the inference complexity and the model size
given in the first two rows. LeNet-5, GL-1, GL-2, and GL-3 belong to the
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Table 1: Performance Comparison for CIFAR-10 with GL.

CIFAR-10
Methods VGG-16  LeNet5  GL-1 GL2  GL-3 (SLM/SP)
FLOPs 875.06 M 14.74 M 21.30 M 17.73 M 20.29 M
(Against LeNet-5)  (59.40x) (1x) (1.45x%) (1.20x) (1.38x)
Model Size 138.36 M 395.01 K 1.66 M 739.89 K 439 M
(Against LeNet-5)  (350.27x) (1x) (4.20x) (1.87x) (11.11x)
Accuracy (%) 93.15 68.72 71.37 75.29 87.36

lightweight group while VGG-16 belongs to the heavyweight group. GL-3,
which uses the proposed SLM/SP classifier, outperforms LeNet-5, GL-1, GL-2
by 18.64%, 15.99%, and 12.07%, respectively. In particular, GL-2 and GL-3 are
almost identical except for the last module. GL-2 uses the XGBoost classifier,
while GL-3 uses the proposed SLM/SP classifier. Their significant performance
gap demonstrates the effectiveness of SLM/SP over XGBoost. The additional
costs in inference complexity (FLOPs) and model sizes appear well justified.
As compared to the heavyweight VGG-16 model, GL-3 is inferior by 5.79% in
classification accuracy. However, GL-3 demands much fewer inference FLOPs
and fewer model parameters. The savings in memory and computation are
attractive for mobile and edge computing.

STL-10. STL-10 is used to study the data deficiency setting. Due to the
small number of training data in STL-10, DL-based methods cannot benefit
much from their large model sizes as compared to the CIFAR-10 dataset.
The performance comparison of five benchmarking methods for STL-10 is
shown in Table 2. GL-3 achieves the best classification accuracy among all five
benchmarking methods. At the same time, its inference complexity is close to
the lowest. VGG-16 can only achieve classification accuracy similar to GL-3
but with much higher inference complexity (106x) and memory requirement
(33x) for the training data deficiency case. The experimental results show
that GL-3 can effectively utilize the limited training data and provide the best
tradeoff between efficiency and effectiveness.

Table 2: Performance Comparison for STL-10 with GL.

STL-10
Methods VGG-16 LeNet-5 GL-1 GL-2 GL-3 (SLM/SP)
FLOPs 875.06 M 14.74 M 76.72 M 8.16 M 8.19 M
(Against LeNet-5)  (59.40x) (1x) (5.20x) (0.55x%) (0.56x)
Model Size 138.36 M 395.01 K 8.10 M 427.02 K 4.40 M
(Against LeNet-5)  (350.27x) (1x) (20.51x) (1.08x) (11.14x)
Accuracy (%) 65.75 51.89 56.48 62.07 66.15

MNIST. For MNIST and Fashion MNIST two datasets, we compare the
performance of three benchmarking methods, i.e., LeNet-5, GL-2, and GL-3.
MNIST is an easy dataset. The results are shown in Table 3. The classification
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Table 3: Performance Comparison for MNIST with GL.

MNIST
Methods LeNet-5 GL-2  GL-3 (SLM/SP)
FLOPs 846.08 K 149 M 2.05 M
(Against LeNet-5) (1x) (1.76x) (2.42x)
Model Size 61.71 K 5782 K 1.12 M
(Against LeNet-5) (1x) (0.94x) (18.15x%)
Accuracy (%) 99.04 99.19 99.30

accuracy saturates at 99% for most benchmarking methods. The improved
classification accuracy rates of GL-3 over LeNet-5 and GL-2 are 0.26% and
0.11%, respectively. Although the gains are relatively small, they are achieved
with additional inference complexity and a larger model size.

Fashion MINIST. The results are shown in Table 4. Its classification
accuracy is around 90% for most benchmarking methods. The improved clas-
sification accuracy rates of GL-3 over LeNet-5 and GL-2 are 2.46% and 0.83%,
respectively. The inference complexity of all three methods is comparable.
Although the model size of GL-3 is larger than those of LeNet-5 and GL-2,
it is still relatively small (i.e., 1.25M). It can be well deployed in mobile and
edge devices.

Table 4: Performance Comparison for Fashion-MNIST with GL.

Fashion MNIST

Methods LeNet5 GL-2 GL-3 (SLM/SP)
FLOPs 3.58 M 2.69 M 3.00 M
(Against LeNet-5) (1x) (0.75x) (0.85x)
Model Size 194.56 K 233.03 K 1.25 M
(Against LeNet-5) (1x) (1.20x) (6.41x)
Accuracy (%) 89.74 91.37 92.20

5.2 SLM/SP for Decision Learning with SLAB
5.2.1 FExperimental Setup

Datasets and Performance Metrics. To demonstrate the SLM/SP with
Efficient Local Feature Learning, we conduct experiments on the four image
classification datasets: MNIST [27], CIFAR10, CIFAR100 [20] and Tiny-
Imagenet [25]. The MNIST and CIFAR10 datasets are detailed in Section 5.1,
and the CIFAR-100 and Tiny-Imagenet are detailed as follows.
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CIFAR-100 is introduced by Krizhevsky and Hinton [20] along with CIFAR-
10. It is a subset of the Tiny Images Dataset and consists of 60,000 32x32
color images. The dataset is divided into 100 classes, each containing 600
images. These 100 classes are further grouped into 20 superclasses. Each
image in the dataset comes with two labels: a fine label, the class it belongs
to, and a coarse label, the superclass it belongs to. There are 500 training
images and 100 testing images per fine class. The CIFAR-100 dataset is widely
used for benchmarking in the field of machine learning, particularly for tasks
related to image classification. It provides a challenging test bed due to its
fine-grained classification tasks and the relatively small size of the images. We
use CIFAR-100 to show the capability of the proposed classification framework
for higher class numbers, and it is a direct comparison with the CIFAR10
dataset since the input images are from similar domains.

Tiny-Imagenet was proposed by Le and X. Yang [25]. It is a subset of the
original ImageNet dataset [8]. It consists of 100,000 images across 200 classes,
with each class containing 500 training images, 50 validation images, and 50
test images. The images are downsized to a resolution of 64x64 pixels, which
makes the dataset more challenging for information extraction and image
classification tasks. This dataset has since been used in numerous benchmarks.
We use Tiny-Imagenet is a more challenging image classification task with
more class numbers than CIFAR-100 and higher input image resolution.

Image Classification Benchmarks. As discussed in Section 4.2, for
experimental setup of the SLM/SP with SLAB for local representation learning
(SLM/SP-SLAB), we utilize the optimization in SLAB for major global to
local representation learning at each node in the SLM/SP tree, and SSL for
unsupervised rich decorrelated spectral information via Saab transform.

For the overall SLAB setting, we utilize a 3x3 filer size for the depth-
wise convolution, set 0.0625 as the squeeze ratio for the SE block, and set
the pointwise expansion ratio to 6. For the optimization, we apply Adams
optimizer and set the learning rate as le-3 and weight decay as le-6. We set
the learning rate scheduler as a step scheduler, and the learning rate drops to
0.1x every 50 epochs. We set the local optimization for each dataset as 100
epochs and the global optimization as 200 epochs.

For MNIST, we apply 5x5 Saab filters to the input 28x28 grayscale images
and utilize DFT to select the most discriminated 16 greedily channels with the
lowest spatial global average DFT loss, output 28x28x16 feature map as the
global SSL representation. Then we apply SLM/SP to the global representation
for joint local representation and decision learning. For SLAB, we set the
channel number of the manifold-of-interest subspace feature as 64. To compare
with the results in Section 5.1, we demonstrate the results with three learned
SLM/SP tree architectures, named SLM-SLAB-tiny, SLM-SLAB-small, and
SLM-SLAB-large, by settings the maximum depth of the SLM/SP tree to 3
for tiny, 4 for small, and 5 for large, respectively. We set the hidden layer
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dimension for the inner node module as 0.5x of the input dimension. The
batch size is set to 256.

For CIFAR10 and CIFARI100, similar to MNIST, we apply 5x5 Saab filters
to the input 32x32x3 color images and DFT to greedily select 32 channels,
yielding 32x32x32 global SSL feature map for the SLM/SP tree. For SLAB,
we set the channel number of the manifold-of-interest subspace feature as 64
for CIFAR10 and 128 for CIFAR100. We set the hidden layer dimension for
the inner node module as 0.5x of the input dimension. Linear classifiers are
adopted for the leaf node modules. The batch size is set to 256.

For Tiny-Imagenet, we apply SSL to extract a 64x64x32 feature map for
SLM/SP tree. For SLAB, we set the channel number of the manifold-of-interest
subspace feature as 256. We set the hidden layer dimension for the inner node
module as 0.5x of the input dimension. Linear classifiers are adopted for the
leaf node modules. The batch size is set to 64.

5.2.2 FExperimental Results and Discussion

MNIST. For MNIST, we compare the performance of benchmarking methods
in Section 4.2 along with the SLM-SLAB. The results are shown in Table
5. The classification accuracy saturates at 99% for all the benchmarking
methods. We compare the results from the three proposed designs, SLM-
SLAB-tiny, SLM-SLAB-small, and SLM-SLAB-large, with previous results.
The module has the most lightweight model size and inference among the
benchmark methods for SLM-SLAB-tiny and still outperforms the LeNet-5
and GL series. The SLM-SLAB-tiny utilizes 0.3x of the model parameters and
0.76x FLOPs compared to LeNet-5, and the improved classification accuracy
rate over LeNet-5 is 0.31%. The SLM-SLAB-tiny also outperforms GL-3 with
SLM/SP for decision learning by 0.05%, with more than 50x smaller model
size. Figure 5 shows the SLM/SP tree architecture discovered on MNIST for
the SLM-SLAB-tiny setting and the probability of each class reaching each
node in the SLM/SP tree. The hierarchical clustering effect among the ten
classes after the tree growth and subspace learning process is the foundation
of the efficient and high-performance classification achieved with SLM/SP.
For SLM-SLAB-small, the performance can be further pushed to another
0.12% with 1.6x model size and FLOPs, which is still fewer than 0.5x of
the previously the most lightweight LeNet-5 model. The best performance
of MNIST is achieved with SLM-SLAB-large, with 2.25x model size and 4.5x
FLOPs compare to LeNet-5, the SLM-SLAB-large achieves 0.52% accuracy
improvement, which is significant considering the hard cases and saturated
accuracy.

CIFAR-10. The performance comparison of five benchmarking methods
for CIFAR-10 is shown in Table 6. We propose SLM-SLAB-small and SLM-
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Table 5: Performance Comparison for MNIST with SLM-SLAB.

MNIST

Methods FLOPs  Model Size Accuracy (%)
LeNet-5 846.08 K 61.71 K 99.04
GL-1 14.23 M 3.128 M 99.09
GL-2 1.51 M 104.28 K 99.19
GL-3 2.060 M 1.12 M 99.30
SLM-SLAB-tiny  645.62 K 18.5 k 99.35
SLM-SLAB-small 1.14 M 30.5 K 99.47
SLM-SLAB-large 3.8 M 139.35 K 99.56
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Figure 5: SLM/SP tree architecture discovered on MNIST for SLM-SLAB-tiny setting.
With inner nodes routing the samples starting from the root, the probability of each class
reaching each node in the SLM/SP tree is illustrated with the red histogram.

SLAB-large for the CIFAR-10 dataset and compare the results with the
methods in Section 5.1. With GL-3, which uses the proposed SLM/SP classifier,
there is already a significant performance gap with previous GL and LeNet-5,
which demonstrates the effectiveness of SLM/SP for decision learning over
XGBoost. The SLM-SLAB method further pushes the performance to the
next level by 3.37% and 4.44%, with the small and large settings, respectively.
With the proposed SLAB for efficient local representation learning, the overall
parameter distribution is more efficient, and the SLM-SLAB-small module
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Table 6: Performance Comparison for CIFAR10 with SLM-SLAB.

CIFAR10

Methods FLOPs Model Size Accuracy (%)
LeNet-5 1474 M  395.01 K 68.72
GL-1 21.30 M 1.66 M 71.37
GL-2 17.83 M 147 M 75.29
GL-3 20.29 M 4.39 M 87.36
SLM-SLAB-small 37.62 M 1.31 M 90.73
SLM-SLAB-large 60.08 M 4.89 M 91.80

uses 0.3x the number of parameters to achieve performance improvement
above. While introducing the convolutions in the SLAB, the filters need to
apply to each spatial location of the feature map, which yields 1.85x FLOPs
compare to GL-3. SLM-SLAB-large is proposed to match the model size with
GL-3 for a more direct comparison. With similar model size and 3x FLOPs,
SLM-SLAB-large achieves efficient module design with the best accuracy.

CIFAR-100. The performance benchmarking results are summarized in
Table 7. With the increased number of classes in the dataset, the GL features
fail to represent the data distribution with the fine class labeling. For example,
with the GL-2 setting same as CIFAR-10, the model only achieves 25.24%
test accuracy with model size as 3.73 M, which is higher than the compared
mobilenetv2 and SLM-SLAB listed in Table 7. Hence, we compare our SLM-
SLAB method with representative deep-learning methods, i.e. VGG-16, Resnet-
18, and mobilenetv2. We utilize the VGG-16, Resnet-18 and mobilenetv2 as
straightforward, effective, and efficient CNN designs for image classification.
Compared to VGG-16, SLM-SLAB outperforms it by 0.18% while utilizing 25x
fewer model parameters and 18x fewer FLOPs, demonstrating the method’s
high performance and lightweight design. Compare to mobilenetv2, SLM-SLAB
has less 1.32% accuracy with 1.8x fewer model parameters and 1.8x fewer
FLOPs. Resnet-18 achieves comparable performance in accuracy, with 8.4x
larger model parameters utilized for optimization compared to SLM-SLAB.
In summary, the results demonstrate that SLM-SLAB enables lightweight
inference with its performance comparable with straightforward and efficient
deep learning models.

Tiny-Imagenet. The performance benchmarking results are summarized
in Table 8. Similar to CIFAR100, we compare the proposed SLM-SLAB
with representative deep-learning methods, i.e. VGG-16, Resnet-18, and
mobilenetv2. With the distribution of Tiny-Imagenet among 200 classes,
the task is much more challenging than CIFAR-100. With the 43x model
parameters and 20x FLOPs, the straightforward CNN design achieves the best
accuracy among the listed methods. Similar to CIFAR-100, our SLM-SLAB
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Table 7: Performance Comparison for CIFAR100 with SLM-SLAB.

CIFAR100
Methods FLOPs  Model Size Accuracy (%)
VGG-16 666.34 M 34.01 M 64.48
Resnet-18 148.76 M 11.23M 65.61
MobileNetv2 68.4 M 2.36M 65.98
SLM-SLAB (Ours) 37.65 M  1.34 M 64.66

Table 8: Performance Comparison for Tiny-Imagenet with SLM-SLAB.

Tiny-Imagenet

Methods FLOPs  Model Size Accuracy (%)
VGG-16 2.56 G 40.71 M 38.75
Resnet-18 595.24 M 11.28 M 25.90
MobileNetv2 253.60 M 2.57T M 33.13
SLM-SLAB (Ours) 12558 M 0.94 M 32.12

achieves similar results compared to mobilenetv2 with 2.73x fewer model
parameters and 2x fewer FLOPs. Our method outperforms the recent-18
model by 6.22%, with 12x fewer model parameters and 4.7x fewer FLOPs.
The results demonstrate that our proposed SLM-SLAB achieves a lightweight
model and inference compared to deep learning methods’ efficient and effective
designs.

6 Conclusion and Future Work

A novel image classification framework based on a tree-based classifier called
Subspace Learning Machine with Soft Partitioning (SLM/SP) is proposed
in this work. SLM/SP adopts the SDT data structure, modulated design,
and adaptive topology. It learns an adaptive tree structure with local greedy
subspace partitioning. SLAB is proposed for the SLM /SP tree edge for efficient
local representation learning. With the proposed SLM/SP, the optimal weights
at each edge and node can be obtained by optimizing a differentiable loss
function using the mini-batch SGD method. The SLM/SP classifier enables
efficient training, high classification accuracy, and small model size and can be
highly competitive with DL networks against image classification datasets.
In this work, we experimented with SLM /SP on datasets with class numbers
up to 200. As the number of classes increases, the SLM/SP tree grows deeper
to achieve higher accuracy. This, in turn, requires an exponentially increasing
number of training samples. It remains an open problem to achieve the



Image Classification via Subspace Learning Machine with Soft Partitioning (SLM/SP) 27

efficiency and effectiveness of SLM/SP for more diversified datasets with
high-class numbers such as ImageNet and ImageNet-1k [8].

The SLM/SP method has the potential to contribute to green Al by pro-
viding a foundational classification model to be applied to various applications.
For instance, in the realm of image-based classification, SLM/SP may be useful
for tasks such as fake image detection [2, 3, 52, 53, 54], disease classification
[32], and face gender classification [36]. Additionally, its ability to handle
high-dimensional inputs could make it a viable solution for point cloud classifi-
cation, segmentation, and registration [46, 47|, as well as regression problems
such as image generation [1, 28, 29, 51| and object tracking [48, 49, 50]. While
we are excited about the potential of SLM/SP, its practical applications are
still largely unexplored. It will be interesting to improve SLM/SP further
and explore its applications for a wide range of classification and regression
problems in the future.
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